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Model for gelation with explicit solvent effects: Structure and dynamics
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We study a two-component model for gelation consisting off-functional monomers~the gel! and inert
particles~the solvent!. After equilibration as a simple liquid, the gel particles are gradually cross linked to each
other until the desired number of cross links have been attained. At a critical cross-link density, the largest gel
cluster percolates and an amorphous solid forms. This percolation process is different from ordinary lattice or
continuum percolation of a single species in the sense that the critical exponents are new. As the cross-link
densityp approaches its critical valuepc , the shear viscosity diverges:h(p);(pc2p)2s with s a nonuniversal
concentration-dependent exponent.
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I. INTRODUCTION

It is generally accepted that percolation is an essen
aspect of gelation or vulcanization—it is doubtful that ev
in a highly entangled melt of long polymers, a nonzero va
of the static shear modulus could exist in the absence o
infinite connected network. However, percolation has usu
been studied in rather special limits. Site and bond perc
tion of a single species on regular lattices are very well ch
acterized and off-lattice percolation seems to present no
features@1#, at least insofar as critical behavior is concern
More closely related to real gels are the so-called correla
percolation models where the distribution of cross links
drawn from a Boltzmann distribution appropriate for a ne
est neighbor lattice gas@2#. Except at special points in th
phase diagram, these models are also in the universality c
of the simple percolation problem. In our previous work
transport properties near the gel point@3#, we have also used
a simple one-species percolation process to produce th
cipient gel. We found that the shear viscosity diverges as
percolation concentrationpc is approached according t
h(p);(pc2p)2s with s'0.7. This value of the exponents
is in excellent agreement with a prediction of de Genn
based on a superconductor–normal conductor analogy@4#
and with recent analytical work on a Rouse model@5#. It is
also reasonably close to some experimental results fors @6#
but quite different from that produced by another set of
periments 1.1<s<1.3 @7#. Thus, it seems reasonable to a
if different versions of the cross-linking process might pr
duce significantly different cluster size distributions fro
percolation and, consequently, different rheological prop
ties.

Gelation often occurs in the presence of a solvent
over some period of time rather than instantaneously, a
the usual percolation models. To simulate this feature,
have considered a two-species model consisting of a frac
c of f-functional particles that are eligible to bond irrever
ibly to others of the same kind. The remaining particles
inert and function as a background liquid, through which
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gel particles and clusters diffuse. Cross linking occurs
stages: the equations of motion of all the particles are in
grated forward for a fixed number of time steps betwe
cross-linking attempts and this process is continued until
desired number of cross links is attained. At a critical co
centration of cross linkspc ~in the thermodynamic limit!, the
largest cluster percolates and an amorphous solid forms.
this process, one can calculate the usual static or geomet
quantities used to characterize percolating systems, e.g.
fraction of particles on the ‘‘infinite cluster’’P`(p);(p
2pc)

b, the mean mass of finite clustersS(p);up2pcu2g,
the fraction of samples percolatingf (p), and the cluster size
distribution n(m,p)5m2tf(mup2pcu1/s), where m is the
mass of a cluster and the radius of gyrationRg(m);m1/D,
whereD is the fractal dimension of the clusters. For simp
percolation processes,t'2.18, s'0.45, and these two ex
ponents determine the others through scaling relations@1#.
Here we find, at least for smallc, that the cluster size distri
bution, even atpc , is not well described by a simple powe
law. However, the other static quantities listed above do d
play power law behavior nearpc and a standard finite-siz
scaling analysis provides a very good collapse of our d
Moreover, the hyperscaling relation 2b1g5dn, where d
53 is the dimensionality andn the correlation length expo
nent, is satisfied. This suggests that this percolation trans
is fundamentally describable in terms of a fixed point w
two ~at least! relevant scaling fields. As the percolation poi
is approached from below, the shear viscosity diverges
cording to h(p);(pc2p)2s. In contrast to our previous
work on a model without solvent, we find values ofs in the
range 0.3<s(c),0.45 as compared withs'0.7. These re-
sults suggest that the critical behavior of transport coe
cients of systems close to the gel point is nonuniversal.

The structure of this article is as follows. In Sec. II, w
describe the present model and simulation procedure
more detail. The geometric properties of the system are
cussed in Sec. III and the data on the shear viscosity
presented in Sec. IV. We conclude with a brief summary a
discussion in Sec. V.
©2003 The American Physical Society01-1
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II. THE MODEL

We consider a system ofN particles in three dimensions
all of which interact with each other through the soft-sph
potential V(r i j )5e(s0 /r i j )

36 for r i j ,1.5s0 @8#. We simu-
lated systems at a temperaturekBT/e51 and volume frac-
tion F5ps0

3N/6V50.4, which is well below the liquid-
solid coexistence density. In the absence of any ot
interactions, this system would be a simple thre
dimensional liquid. We initially place the particles on
simple cubic lattice that fills the computational box. We th
randomly selectNgel5cN particles to be the gel forming
component. After equilibration of the system with Brownia
dynamics, with periodic boundary conditions, for 10 0
time steps, we begin the cross-linking process. At this po
the calculation proceeds viaconservativemolecular dynam-
ics ~MD! so as to allow hydrodynamic modes to develo
Here, we use a time stepdt50.005Ams0

2/e. In the smallest
system, cross linking is carried out one bond at a time
single gel particle is randomly selected and all other gel p
ticles within a distance of 1.2s0 are identified. One of the
particles in this list is randomly selected and bonded irreve
ibly to the central particle through the tethering potent
Vnn(r i j )5 1

2 k(r i j 2r 0)2, with k55e/s0
2 and r 0

5(p/6F)1/3s0. Each gel particle is allowed to bond to n
more than six others and bonding between any pair of p
ticles occurs at most once. The configuration of the en
system is then updated for 100 time steps and the en
bonding process is repeated until 3pNgel cross links have
been added@9#. The parameterp is analogous to the occupa
tion probability in a bond percolation process on the sim
cubic lattice. In larger systems, the number of cross lin
added in the bonding steps is scaled by the system siz
order to keep the cross-linking rate per gel particle const

The parameters in the potentials and the total volu
fraction F are the same as in our previous work@3#. The
differences are that in this earlier work, all particles we
considered to be gel particles and that the cross linking
done instantaneously, att50, when the particles were on th
vertices of a cubic lattice and thus all structural propert
were those of percolation in three dimensions. The pres
model is similar in some ways to a model discussed
Gimel et al. @10# and Hasmy and Jullien@11# who studied
percolation in the context of diffusion-limited cluster-clust
aggregation using Monte Carlo methods. Their model diff
from ours in that it is a lattice model, in the details of th
cross-linking process, in the lack of solvent, and in the nat
of the cluster dynamics. In Monte Carlo simulations, one
forced to arbitrarily choose the mass-dependent diffus
constantD(m) whereas in our molecular dynamics calcu
tions, it is determined by the existing structure and the in
particle forces. In the regime that is of interest here, i.e., h
enough gel density that percolation is possible, these aut
find the critical behavior of ordinary percolation.

In a separate set of runs, we calculate the stress-s
autocorrelation function and, through the appropriate Gre
Kubo formula, the shear viscosity. Equilibration and cro
linking are carried out as described above and the calcula
of the viscosity is again done with a conservative MD.
01140
e

er
-

t,

.

A
r-

s-
l

r-
e
re

e
s
in
t.
e

s

s
nt
y

s

e
s
n

r-
h
rs

ss
n-
s
n

The adjustable parameters in our calculations are the
fractionc, the cross-link densityp, and the system size. Here
we report results forc50.2, 0.3, and 1.0. Calculations fo
other values ofc are in progress and will be reported in
future publication@12#. We parametrize the size of our sy
tem in terms of the dimensionless lengthL5N1/3, whereN is
the total number of gel and solvent particles. Because
cross-linking process is itself quite time consuming, we
able only to simulate systems up to sizeL532 ~32 768 par-
ticles! and this makes our estimates of critical expone
rather imprecise. A second factor contributing to the unc
tainty in critical exponents is that we need to determine
critical cross-link densitypc for each value ofc, whereas for
lattice percolation, this number is known to a high accura
We next discuss the static~geometric! properties of our
model.

III. PERCOLATION

The critical concentrationpc , at which percolation occurs
in the thermodynamic limitL→` is accurately estimated
from the intersection of curvesf (p,L) as a function ofp for
different values ofL. Here f (p,L) is the fraction of samples
percolating in a system of sizeL at cross-link concentration
p. For the two cases of interest here,c50.3 andc50.2, we
find pc50.316560.0005 andpc50.373560.001. Oncepc
has been determined, the correlation length exponentn can
be estimated from the collapse of the data for the functiof
when plotted as function of (p2pc)L

1/n. We show this col-
lapse of the data forc50.2 and 0.3 in Fig. 1. Forc50.3, the
best collapse of the data for 8<L<32 is obtained forn
51.0, which should be compared to the three-dimensio
percolation resultn50.88. Forc50.2, finite-size effects are
more pronounced and the data forL58 have been excluded
For this case, the best collapse of the data is obtained fn
51.05. This method of estimating a critical exponent is n
very accurate but the three-dimensional percolation valun
50.88 provides a significantly worse collapse of the data

FIG. 1. Fraction of samples percolating forc50.2 andc50.3 as
a function of the scaled cross-link concentrationx5(p2pc)L

1/n for
8<L<32. The values of the exponentn used are 1.05 forc50.2
and 1.0 forc50.3. ForL58, we have simulated 20 000 indepe
dent cross linkings at eachp; for L532 the data are derived from
3000 samples for eachp. All quantities are dimensionless.
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We next discuss the mean size of finite clusters beca
this data provides an unbiased estimate of the ratiog/n. In
the thermodynamic limit,S(p);up2pcu2g with g'1.8 for
d53 percolation. For finiteL, S(p,L) is peaked nearpc with
a peak height that grows asLg/n. Therefore, rescaling the
peak heights to the same value for differentL provides an
estimate ofg/n that is not affected by errors in eitherpc or
n. Of course, the overall collapse of the data to a unive
curve depends on accurate determination of these two q
tities but the peak height does not. In Figs. 2 and 3, we sh
the function L2g/nS(p,L) plotted as a function ofx5(p
2pc)L

1/n for the previously determined values ofpc andn.
The collapse to a universal curve is quite respectable for b
c50.3 and 0.2 forg/n51.815 and 1.80, respectively. A
above, the data forL58 have been excluded forc50.2. We
note that in the case of three-dimensional percolation,
ratio g/n'2.05. Use of this value ofg/n in Fig. 2 would
result in a 40% difference between the peak heights foL
532 andL58.

In the scaling theory of percolation@1#, the ratio g/n

FIG. 2. Scaled form of the mean mass of finite clust
L2g/nS(p,L) for c50.3 and 8<L<32. Here,g/n51.815 andn
51.0. Here, the mass of a cluster refers to the number of parti
in the cluster.

FIG. 3. Same as Fig. 2 in this case forc50.2 with
g/n51.80.
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5d(32t)/(t21), whered53 is the dimensionality andt is
the exponent characterizing the cluster size distribution ap
5pc . If we enforce this scaling relation, we obtaint
'2.25 for bothc50.2 andc50.3. Usings5(t21)/dn,
we find s(c50.3)50.415 ands(c50.2)50.417. UsingD
51/(sn) for the fractal dimension results in the predictio
D(c50.3)52.41 andD(c50.2)52.29 for the fractal di-
mensions of the clusters. As well, the hyperscaling relat
2b/n532g/n yields b/n50.593 and 0.6 forc50.3 and
0.2, respectively. The accuracy of these scaling prediction
tested in Figs. 4–7.

In Fig. 4, we show the number of clustersn(m) of massm
at p'pc for c50.2 and 0.3 forL532 andm<400. For the
casem51, we have only counted the uncross-linked g
particles. In neither case is the data well described b
simple power law, in contrast to percolation on a lattice or
the absence of solvent, where the exponentt'2.18 is al-
ready obtained for 2<m<20. A fit to a power law over the
range 20<m<400 yieldst52.13 forc50.2 andt52.16 for
c50.3. The straight lines in Fig. 4 are the best fits to t

s

es

FIG. 4. Number of clustersn(m) of massm for p'pc for c
50.2 and 0.3. The data forc50.2 have been lowered by a factor o
5 for separation of curves. The straight lines represent fits toam2t

with t determined by imposing hyperscaling~see text!. Both n and
m are dimensionless.

FIG. 5. Square of the radius of gyrationRg
2(m) divided by the

square of the hard core diameter,s0
2, as a function of cluster mas

m for p'pc and c50.2 and 0.3. Straight lines are fits toRg
2(m)

5am2/D with the fractal dimensions determined by requiring th
hyperscaling hold~see text!.
1-3
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form n5Am22.25 over the range 20<m<400 and while the
fit is not perfect, the data are not inconsistent with this
havior in the limit of largem.

In Fig. 5, we show the square of the radius of gyrati
Rg

2(m) as a function ofm for a system of sizeL532, to-
gether with curvesm2/D(c) with D(c50.2)52.29 andD(c
50.3)52.41 as determined above. The data again show c
siderable curvature but the fit to the assumed functional fo
is reasonable over the range 20<m<100.

Finally, in Figs. 6 and 7, we display the scaled form
P(L,p), the probability that a gel particle is a part of th
percolating cluster using the predicted exponent ratiosb/n
50.593 forc50.3 andb/n50.6 for c50.2. These two fig-
ures present the least impressive collapse of data to a un
sal curve, especially at the larger values ofP. One can im-
prove the collapse by different choice ofb/n andn but at the
expense of violating hyperscaling. We also note that the d
for the two largest values ofL are reasonably close to eac
other over the entire range ofx.

We have also carried out a limited number of simulatio
for c50.5 and c51.0 with the cross-linking process de
scribed above. In both cases, the critical exponents and

FIG. 6. Plot of the scaled form of the order parameterP(L,p)
for pg50.3 and 8<L<32. The exponents areb/n50.593 andn
51.0. All quantities are dimensionless.

FIG. 7. Same as Fig. 6 but forc50.2 andb/n50.6 andn
51.05.
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cluster size distributions are entirely consistent with ordin
three-dimensional percolation. This suggests that either th
is a critical gel fraction@13#, below which the geometric
properties of the clusters are described by continuously v
ing exponents or that the apparent variation of the expon
with c described above is a finite-size artifact. Only simu
tions of larger systems can resolve this issue.

IV. SHEAR VISCOSITY

We have calculated the shear viscosity for systems up
size L520 as a function of the cross-link densityp for c
50.3 and forL512 for c50.2. Systems are equilibrated a
a liquid, cross linked as described above and then evolve
constant energy MD for 40 000 or 80 000 time steps, depe
ing on the cross-link density. Here, we have typically us
500–2000 different realizations of the cross links at eachp.
We calculate, as in Ref.@3#, the stress-stress autocorrelatio
function Css(t)5

1
3 (a,b^sab(t)sab(0)&, where

sab5(
i 51

N

mv iav ib2(
i , j

r i j ar i j b

r i j
V8~r i j !

are elements of the stress tensor. Here, the sum is over
gel and solvent particles andV8 is the derivative of the pair
potential between particlesi andj. The analysis of the stress
stress correlation function has been described in Ref.@3# and
is done in the same way here. Asp→pc , Css decays ex-
tremely slowly and is fitted, at long times, to a stretch
exponential. The static shear viscosity is then obtained fr
the appropriate Green-Kubo formula@14#,

h5 lim
tmax→`

1

VkBTE0

tmax
Css~ t !.

The results forc50.3 are shown in finite-size scaled form
Fig. 8, whereL2s/nh(L,p) is plotted as a function of the
scaled concentrationx @15#. In contrast to our previous resu
for c51 and instantaneous cross linking where we founs

FIG. 8. The dimensionless shear viscositys0
2h(L,p)/(mkBT)1/2

for c50.3 timesL2s/n plotted as a function ofx5(p2pc)L
1/n with

s/n50.425 andn51.0. The straight line represents the functio
x2s/n ~see text!.
1-4
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'0.7, we find thats'0.425 provides an excellent collaps
of the data withn51.0. We note that, outside the critica
region, consistency of the finite-size scaling ansatz requ
the scaled viscosity to vary asx2s/n5x20.425 and it is clear
that the data are consistent with this behavior.

We have also calculated the shear viscosity forc50.2 for
L512. The raw data are displayed in Fig. 9 as a function
pc2p, together with the corresponding results forc50.3.
Fitting to a power law outside the critical region produces
exponents'0.3 suggesting, as in the case of the static pr
erties, a variation of critical exponents withc and an absence
of universality.

V. DISCUSSION

In this article, we have proposed and investigated a
ferent model for gelation which incorporates a solvent o
microscopic level. For relatively small concentrations of g
the geometric properties of the system close to the gel p
seem to depend continuously on this gel fraction and are
least for the system sizes investigated, markedly differ

FIG. 9. The dimensionless shear viscositys0
2h(p)/(mkBT)1/2

for L512 andc50.2 and 0.3 plotted as a function of (pc2p). The
straight line represents the function (pc2p)2s with s50.425 for
c50.3 ands50.3 for c50.2.
,
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from three-dimensional percolation. In particular, the frac
dimension of the clusters seems to be smaller than thos
percolation clusters and this more spidery morphology m
be responsible for the slower divergence of the shear vis
ity as the gel point is approached. The change in the ex
nents controlling the geometric properties is rather small
further study of larger systems is certainly necessary to c
firm this result. However, the exponents that characterizes
the divergence of the shear viscosity at the gel point is
duced by almost a factor of 2 from its value in the absence
solvent and it is unlikely that this can be attributed to finit
size effects. In light of this result, it seems implausible tha
single universality class describes the behavior of trans
coefficients and, presumably, the moduli of the amorph
phase near the gel point. The considerable dispersion fo
in experimental values of the critical exponents@16# is an-
other indicator that this may be the case.

In future work, we intend to explore this different mod
in greater detail. It will be interesting to investigate if th
exponents and the static exponents are tunable by vary
the concentration of the solvent and the solubility of t
solute. We also intend to study diffusion constants as a fu
tion of cluster size and to investigate the existence of lo
time tails. Finally, one of the original motivations for th
model is the existence of a body of experimental work t
has yielded values in the range 1.1–1.3 for the visco
exponents. Clearly, we have moved further from this rang
of values compared to our previous results. If the cluster s
distribution and cluster geometry is the determining factor
the critical behavior of the transport coefficients then t
indicates that models that produce more compact rather
more tenuous clusters than those arising from percola
may be appropriate.
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