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At zero temperature, the elastic constants of diluted central force networks are known to vanish at a
concentratiorp, (of either sites or bonds) that is substantially higher than the corresponding geometric
percolation concentratiop.. We study such diluted lattices at finite temperatures and show that there
is an entropic contribution to the moduli similar to that in cross-linked polymer networks. This entropic
elasticity vanishes ap. and increases linearly witli for p. < p < p,. We also find that the shear
modulus at fixedl" vanishes asu ~ (p — p.)f with an exponentf that is, within numerical uncer-
tainty, the same as the exponerthat describes the conductivity of randomly diluted resistor networks.
[S0031-9007(98)06270-X]

PACS numbers: 64.60.Cn, 05.70.Fh, 82.20.Mj

In systems with no bond bending forces, multiple con-is particular to central force networks: If there are bond-
nectivity is required for the existence of a mechanicallybending forces present, rigidity sets in at the percolation
rigid network. For this reason, the onset of rigidity in point [5].
diluted networks occurs above the percolation threshold. One of the issues that has generated much work is the na-
The nature of this onset has been discussed by a numbertire of the rigidity transition. Some years ago, de Gennes
authors in the context of central force networks at zero temf6] argued that the elastic constants should vanish at the
perature [1—3]. There are, however, classes of systems, ppercolation point aép — p.)/ with an exponenf that is
particular, microscopic ones, where temperature throughientical to the exponentthat describes the conductance
the collisions it produces, introduces an additional com-of a random resistor network near the percolation point.
ponent to the rigidity, entropic in nature. We show thatHis argument technically does not apply to either a generic
the onset for this component in a randomly diluted cen<central force network or to a network in which there are
tral force network does occur at the percolation thresholdbond-bending forces and, indeed, although the expofient
Near the zero temperature rigidity onset there is a crossovéias not been accurately determined until recently [3], it is
from the entropically to the energetically derived elasticclear thatf # ¢ atT = 0.
response. In this Letter, we consider the problem of elasticity of

From a larger perspective, systems with no bond benddisordered lattices from a different point of view. In par-
ing forces are the most economical structures in Naturdjcular, we address the following questions: (i) Do diluted
hence their importance in large scale engineering strucsystems have nonzero elastic constants beglpwat finite
tures and their prevalence in living organisms [4]. temperatures due to entropic effects? (ii) If so, do they van-

Feng and Sen [1] were the first to point out that, atish atp. or at some intermediate concentration? (iii) What
zero temperature, randomly diluted central force networkss the exponenf? We are motivated in this work in part
are incapable of withstanding shear or compression belolwy some puzzling aspects of our computer simulations of
a concentration of particles, —the rigidity percolation randomly cross-linked polymers [7,8]. In this work which
concentration—that isonsiderablyhigher than the con- is, because of the time consuming nature of the calcula-
centrationp. at which an infinite connected cluster first tions, restricted to rather small systems we found a signifi-
appears. In the extreme case of the simple cubic latticesant gap between the density of cross-links at which the
pr» = 1 and even the perfect lattice has no resistance torder parameter of the amorphous phase vanishes and that
shear. At the simplest level, this result can be understoodt which percolation occurs. This result—which may be a
in terms of the number of constraints imposed on the sydfinite-size effect—is counterintuitive and violates the basic
tem of particles by the nearest neighbor forces. When thiassumptions of the theory of rubber elasticity. Rigidity in
number becomes less than the remaining number of deross-linked macromolecules (rubber) is entropic in origin
grees of freedom, a soft mode appears. A straightforwarfd] and to obtain some insight into this complicated sys-
mean field theory [2] produces the remarkably accurate retlem, it is of interest to study other purely entropic systems,
sult p, = 2d/z, whered is the spatial dimensionality and especially if more extensive simulations are feasible. Pre-
z the coordination number of the network. For a cubicsumably, if the finite temperature elastic constants in our
lattice,d = 3, z = 6, and p, = 1. The fact that perco- central force networks vanish at the percolation point then
lation and rigidity have separate onsets in dilute systemthe same should occur in cross-linked polymers.
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In this Letter, we report on molecular dynamics (MD)
simulations of site-diluted triangular lattices in which
nearest neighbors interact via the circularly symmetric po-
tential V,,,,(r;;) = 3k(ri;; — ro)*> and where more distant 24 0.4
neighbors are noninteracting. For this system, geometric’e, C
percolation occurs ap. = 0.5 and rigidity percolation e ¢.3-L
(at T = 0) at p, =~ 0.71. Our simulations are constant =3 i & T=0.005, L=64 ©
temperature, constant volume MD [10] with a time step L Q
8t = 0.00164/k/m, and have been carried out for tem- 0.2
peratures fromkzT = 0.00125krg to kT = 0.01krg. Q
The perfect system is unstressed. Although our potentia 0.1+ ¥ (a)
conserves the connectivity of the particles, it is worth not- g
ing that for a piecewise linear force function of the same 04 B B N B
strength but of finite range, the latter temperature is very 05 06 0.7 08 0.9 1
close to the melting point [11]. We have studied lattice P
sizes froml6 X 16 to 128 X 128, for the smaller systems

over the entire concentration rangeS < p = 1.0 of

0.5 T=0.01, L=32
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interest and for the larger systems primarily in the range of 10'1}5‘
concentrations close to geometric percolation. For a given - O T=001, L=32 8
p, the largest cluster was identified and all smaller clusters i & T=0.005, L=32 K
discarded. The equations of motion were then integrated =% X T=0.01, L=64 Q X
for either 10° or 2 X 10° time steps. Periodic boundary ‘e 10%F & T=0.005,1=64 R
conditions were used in all cases. 6 - Q QQ

To obtain the shear modulus we imposed a pure shear 3. i 00 3 02
deformation, i.e., an area preserving stretch/compression 3 Q % §§ AL
of 1% on the two sides of the computational box. Within T A b
linear elasticity theory, the shear moduluss then given C (b)
by u = (pyy — pxx)/4e€ for a distortion in whichL, — [
(1+ €Ly, Ly — (1 — €)L,. Herep,, p,, are the di- o4 N ey ,

agonal elements of the pressure tensor. In practice, we
have stretched each sample in both directions and aver- 107 10> PP, 107!
aged the results of the two simulations. As in the case of
cross-linked polymers, the fluctuations of the shear modu-
lus from sample to sample are substantial and it is neces
sary to average the results over a large number of differen
realizations for each concentration of sites, especially in -4
the critical region. For lattices of dimensié2 X 32 we
have typically obtained well converged results from 100
to 200 samples whereas for lattices of si28 X 128 we
have found 30 to 50 samples to be sufficient.

In Fig. 1 we display the shear modulus as function -6+
of concentration for diluted lattices of siA2 X 32 and
64 X 64 for temperaturesT = 0.01krd/kg and T = -7
0.005kr3 /kz and as function of system siZefor several
values ofp at these same two temperatures. Part (a) of this L
figure shows the WeII-knovyn_ d_ecrease to aIr_nost zero of the 0.64 » 0.66 0.58
shear modulus near the rigidity concentratjpn= 0.71. L

Abpve th|s concentratiory is essentially independent of -5 1 The dimensionless shear modulug’k plotted as
lattice size and not very strongly dependent on tempergunction of concentratiop of particles for lattices of sizé —
ture—the internal energy provides the dominant contri32 and L = 64 for reduced temperatures = 0.005kr; /ks
bution tox. In part (b) of this figure, we have replotted and T = 0.01krj/ks. Part (a) contains data over the entire
the data for the range, < p < p, and both thermal and concentration rangge. < p = 1.0 whereas part (b) focuses on
finite-size effects are clearly visible. Inthe thermodynamich® regimep. < p < p,. Part(c): The logarithm of the shear

. _ odulus plotted as function ot ™! for T = 0.01kr§/k3 for
limit L — o one expects that the shear modulus should;: 0.65 (circles).p = 0.55 (squares)p = 0.515 (diamonds),

vanish according to a power 1aw(7. p) = (p = po)’  ang 7 = 0.005kri/ky for p — 0.6 (X), p — 0.52 (crosses),
but this behavior is masked for systems of our size byandp = 0.51 (triangles). The values of are 16, 32, 64, and

these finite-size effects [12]. In particular, since for any128. Note that all concentrations are belpyw
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sample, whether percolating or not, the shear modulu
is positive semidefinite, it is not surprising thatseems
to approach a finite limit ap — p.. Indeed, precisely
at p. the percolation probability for any finite size is
0.5 and therefore half the samples presumably make
positive contribution to the estimate qf whereas the

$he piece of the shear modulus due to the internal energy
ME = m — ws is much smaller thapeg for p < p, and
should be at least second order in the temperafurdn
any case, subtracting off this piece of the shear modulus
laas a smoothing effect on the data and improves the scaling
analysis. Although the data are rather noisy, the collapse

nonpercolating ones serve only to reduce the mean valueaecomes noticeably worse if the expongnis increased

Part (c) of Fig. 1 shows thé dependence of the shear
modulus forT = 0.01kr3 /kz andT = 0.005kr3 /kg for a
selection of concentrations in the rangep. < p < p,.

or decreased by more than 0.1. We therefore conclude
that f = 1.33 £ 0.10. The expected power law for the
asymptotic form ofP (x) ~ x//* is also shown in the form

Although there is a significant size dependence, it i©f the solid line in Fig. 2 again fof = v. Itis clear that

clear from the data that the shear modulus approaches
finite limit as L — oo even for the smallest concentration
p=051aT= 0.005kr3 /ks. We therefore conclude

the data are at least consistent with this behavior.
One can construct a simple theory for the entropic
elasticity of diluted networks in close analogy with the

that at finite temperature the onset of rigidity coincidesclassical theory of rubber elasticity. We begin with the

with geometric percolation.
Having established the existence of entropic rigidity for
p > pc, We attempt to estimate the expongnby carry-

blobs, links, and nodes picture [13,14] of a diluted network
near the percolation concentration. The nodes at which
different links or filaments are joined are the analog of

ing out a finite-size scaling analysis. The relevant lengtlpermanent cross-links in a system of randomly cross-

scales are reasonably assumed toLbend the correla-
tion length &, which approaches infinity at percolation as
(p — pec)~". These choices lead to the anspl@., p) =
L~//"®(L/&(p)), where for largex, the scaling function
®(x) ~ x//*. Fortunately, the percolation concentration
p. and correlation length exponemt are known to be
pe = 0.5 andv = 4/3 exactly. This fact allows a finite-
size scaling analysis in which only the expong¢nheeds

linked macromolecules. The links themselves consist in
part of single strands and in part of more rigid blobs. If
such a tenuous system is deformed, one expects that the
principal effect will be to lengthen (shorten) the distance
between nodes and thus to modify the entropy of the fila-
ments. Consider two nodés; with relative positionX;;,

Y;;. If a distortion characterized by stretching factars

A, is applied to the system and if the nodes follow this

to be varied. The results of such an analysis are showdistortion in an affine manner, we expect that the entropy

in Fig. 2 whereL!/” ug(L, p)/k is plotted as function of
L(p — p.)” for f = v =4/3. The quantityus is the
entropiccontribution to the shear modulus which is given
by [9]
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change of the filament connecting these nodes due to this
distortion will be

AS,']' =
: N

(2)

a? ’
wherea is the nearest neighbor distancé,the number

of links (single bonds) between the nodes, aRtl=

X,z, + Y,%. This expression is obtained by treating the

filament as a Gaussian random walk as is usually done in
the classical theories of rubber elasticity. Averaging over
all pairs of nodes fon, = 1 + €, A, = 1 — € we obtain

the estimate
(£02),

2€2A

where N, is the number of strands} the area of the
system, andAF the change in Helmholtz free energy
obtained by ignoring any changes in internal energy.

From studies of percolation clusters [14,15], we have
Ny/A ~ €72~ (p — p.)*” and (R*/N) ~ ¢*/N ~
(p — pe)'7?” [15]. Therefore, on the basis of this very
simple picture, we obtainu ~ p — p., ie., f =1
which isnot consistent with the results of our simulations.

_ksTAS _ ksT Ny,
224 24> A
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N

s

FIG. 2. Finite-size scaling analysis of the entropic piece ofOf course, there are at least two aspects of the above

the shear modulus for lattices of siZe= 32, 64, and 128.
The scaling ansatz igs(L, p) = L~//"®((p — p.)’L). The
choice f = v = 4/3 produces a very reasonable collapse of

argument that are suspect. First, the assumption that the
deformation of the system is affine clearly ignores fluctu-

the data. As well, the straight line is the expected form of theations in density and therefore of local rigidity. Second

scaling functiond® (x) ~ x//” asx — o with f = ».

and probably more important is the fact that we have
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ignored the self-similarity of percolation clusters [16] ably. The finite-size effects in the present study are much
and modeled the known fractal structure by a networksmaller than in the polymeric systems and we now believe
of nodes that effectively has fractal dimensidn= 2. that in the thermodynamic limit percolation and rigidity
It is perhaps worth noting that an analogous calculatioralso coincide in cross-linked polymers.
[5,6] of the conductivity of random resistor networks As far as future work is concerned, it would clearly be
near the percolation point also prediets~ p — p. [17]  of interest to investigate three dimensional central force
which is similarly inconsistent with the corresponding networks, i.e., the fcc lattice where the conductivity expo-
simulation data. nentr = 2 with » = 0.88. This would help to rule out
We also note that our estimate~= v = 4/3 = 0.1  or support the possibility’ = v left open by the present
is consistent with de Gennes’s argument [6] thlat=  Letter. As well, it may be advantageous to study the bond-
t = 1.3 [18], wheret describes the critical behavior of diluted triangular lattice since the gap between rigidity per-
the conductivity of the aforementioned random resistorcolation and geometric percolation is almost 2 times as
networks near percolation. This argument, which failslarge as it is for site dilution, which means that crossover
for energetic elasticity a' = 0 may be correct for the effects should be less important than in the present case.
entropic elasticity considered here. The crucial point is thé&such work is presently under way [19].
Gaussian (random walk) expression for the entropy change We thank B. Schmittmann and Z. Zhou for helpful con-
of the links [Eqg. (2)] which puts the elasticity problem into versations. This research was supported by the NSERC
the scalar rather than vector class [5]. We conjecture thaif Canada.
this part of the argument will survive a more sophisticated
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