
VOLUME 80, NUMBER 22 P H Y S I C A L R E V I E W L E T T E R S 1 JUNE 1998

N5

at a
tric
re

pic

.
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At zero temperature, the elastic constants of diluted central force networks are known to vanish
concentrationpr (of either sites or bonds) that is substantially higher than the corresponding geome
percolation concentrationpc. We study such diluted lattices at finite temperatures and show that the
is an entropic contribution to the moduli similar to that in cross-linked polymer networks. This entro
elasticity vanishes atpc and increases linearly withT for pc , p , pr . We also find that the shear
modulus at fixedT vanishes asm , sp 2 pcdf with an exponentf that is, within numerical uncer-
tainty, the same as the exponentt that describes the conductivity of randomly diluted resistor networks
[S0031-9007(98)06270-X]
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In systems with no bond bending forces, multiple con
nectivity is required for the existence of a mechanicall
rigid network. For this reason, the onset of rigidity in
diluted networks occurs above the percolation thresho
The nature of this onset has been discussed by a numbe
authors in the context of central force networks at zero tem
perature [1–3]. There are, however, classes of systems
particular, microscopic ones, where temperature throu
the collisions it produces, introduces an additional com
ponent to the rigidity, entropic in nature. We show tha
the onset for this component in a randomly diluted cen
tral force network does occur at the percolation threshol
Near the zero temperature rigidity onset there is a crosso
from the entropically to the energetically derived elasti
response.

From a larger perspective, systems with no bond ben
ing forces are the most economical structures in Natur
hence their importance in large scale engineering stru
tures and their prevalence in living organisms [4].

Feng and Sen [1] were the first to point out that, a
zero temperature, randomly diluted central force networ
are incapable of withstanding shear or compression belo
a concentration of particlespr —the rigidity percolation
concentration—that isconsiderablyhigher than the con-
centrationpc at which an infinite connected cluster firs
appears. In the extreme case of the simple cubic lattic
pr ­ 1 and even the perfect lattice has no resistance
shear. At the simplest level, this result can be understo
in terms of the number of constraints imposed on the sy
tem of particles by the nearest neighbor forces. When th
number becomes less than the remaining number of d
grees of freedom, a soft mode appears. A straightforwa
mean field theory [2] produces the remarkably accurate r
sult pr ­ 2dyz, whered is the spatial dimensionality and
z the coordination number of the network. For a cubi
lattice, d ­ 3, z ­ 6, andpr ­ 1. The fact that perco-
lation and rigidity have separate onsets in dilute system
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is particular to central force networks: If there are bon
bending forces present, rigidity sets in at the percolat
point [5].

One of the issues that has generated much work is the
ture of the rigidity transition. Some years ago, de Genn
[6] argued that the elastic constants should vanish at
percolation point assp 2 pcdf with an exponentf that is
identical to the exponentt that describes the conductanc
of a random resistor network near the percolation poi
His argument technically does not apply to either a gene
central force network or to a network in which there a
bond-bending forces and, indeed, although the exponef
has not been accurately determined until recently [3], it
clear thatf fi t at T ­ 0.

In this Letter, we consider the problem of elasticity o
disordered lattices from a different point of view. In pa
ticular, we address the following questions: (i) Do dilute
systems have nonzero elastic constants belowpr at finite
temperatures due to entropic effects? (ii) If so, do they va
ish atpc or at some intermediate concentration? (iii) Wh
is the exponentf? We are motivated in this work in par
by some puzzling aspects of our computer simulations
randomly cross-linked polymers [7,8]. In this work whic
is, because of the time consuming nature of the calcu
tions, restricted to rather small systems we found a sign
cant gap between the density of cross-links at which
order parameter of the amorphous phase vanishes and
at which percolation occurs. This result—which may be
finite-size effect—is counterintuitive and violates the bas
assumptions of the theory of rubber elasticity. Rigidity
cross-linked macromolecules (rubber) is entropic in orig
[9] and to obtain some insight into this complicated sy
tem, it is of interest to study other purely entropic system
especially if more extensive simulations are feasible. P
sumably, if the finite temperature elastic constants in o
central force networks vanish at the percolation point th
the same should occur in cross-linked polymers.
© 1998 The American Physical Society 4907
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In this Letter, we report on molecular dynamics (MD
simulations of site-diluted triangular lattices in which
nearest neighbors interact via the circularly symmetric p
tential Vnnsrijd ­ 1

2 ksrij 2 r0d2 and where more distant
neighbors are noninteracting. For this system, geome
percolation occurs atpc ­ 0.5 and rigidity percolation
(at T ­ 0) at pr ø 0.71. Our simulations are constan
temperature, constant volume MD [10] with a time ste
dt ­ 0.0016

p
kym, and have been carried out for tem

peratures fromkBT ­ 0.001 25kr2
0 to kBT ­ 0.01kr2

0 .
The perfect system is unstressed. Although our poten
conserves the connectivity of the particles, it is worth no
ing that for a piecewise linear force function of the sam
strength but of finite range, the latter temperature is ve
close to the melting point [11]. We have studied lattic
sizes from16 3 16 to 128 3 128, for the smaller systems
over the entire concentration range0.5 , p # 1.0 of
interest and for the larger systems primarily in the range
concentrations close to geometric percolation. For a giv
p, the largest cluster was identified and all smaller cluste
discarded. The equations of motion were then integra
for either106 or 2 3 106 time steps. Periodic boundary
conditions were used in all cases.

To obtain the shear modulus we imposed a pure sh
deformation, i.e., an area preserving stretch/compress
of 1% on the two sides of the computational box. Withi
linear elasticity theory, the shear modulusm is then given
by m ­ spyy 2 pxxdy4e for a distortion in whichLx !
s1 1 edLx , Ly ! s1 2 edLy . Herepxx, pyy are the di-
agonal elements of the pressure tensor. In practice,
have stretched each sample in both directions and av
aged the results of the two simulations. As in the case
cross-linked polymers, the fluctuations of the shear mod
lus from sample to sample are substantial and it is nec
sary to average the results over a large number of differ
realizations for each concentration of sites, especially
the critical region. For lattices of dimension32 3 32 we
have typically obtained well converged results from 10
to 200 samples whereas for lattices of size128 3 128 we
have found 30 to 50 samples to be sufficient.

In Fig. 1 we display the shear modulus as functio
of concentration for diluted lattices of size32 3 32 and
64 3 64 for temperaturesT ­ 0.01kr2

0 ykB and T ­
0.005kr2

0 ykB and as function of system sizeL for several
values ofp at these same two temperatures. Part (a) of t
figure shows the well-known decrease to almost zero of t
shear modulus near the rigidity concentrationpr ø 0.71.
Above this concentration,m is essentially independent of
lattice size and not very strongly dependent on tempe
ture—the internal energy provides the dominant cont
bution tom. In part (b) of this figure, we have replotted
the data for the rangepc , p , pr and both thermal and
finite-size effects are clearly visible. In the thermodynam
limit L ! ` one expects that the shear modulus shou
vanish according to a power lawmsT , pd ~ sp 2 pcdf

but this behavior is masked for systems of our size
these finite-size effects [12]. In particular, since for an
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FIG. 1. The dimensionless shear modulusmyk plotted as
function of concentrationp of particles for lattices of sizeL ­
32 and L ­ 64 for reduced temperaturesT ­ 0.005kr2

0 ykB

and T ­ 0.01kr2
0 ykB. Part (a) contains data over the entire

concentration rangepc , p # 1.0 whereas part (b) focuses on
the regimepc , p , pr . Part (c): The logarithm of the shear
modulus plotted as function ofL21 for T ­ 0.01kr2

0 ykB for
p ­ 0.65 (circles),p ­ 0.55 (squares),p ­ 0.515 (diamonds),
and T ­ 0.005kr2

0 ykB for p ­ 0.6 (3), p ­ 0.52 (crosses),
andp ­ 0.51 (triangles). The values ofL are 16, 32, 64, and
128. Note that all concentrations are belowpr .
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sample, whether percolating or not, the shear modul
is positive semidefinite, it is not surprising thatm seems
to approach a finite limit asp ! pc. Indeed, precisely
at pc the percolation probability for any finite sizeL is
0.5 and therefore half the samples presumably make
positive contribution to the estimate ofm whereas the
nonpercolating ones serve only to reduce the mean valu

Part (c) of Fig. 1 shows theL dependence of the shea
modulus forT ­ 0.01kr2

0 ykB andT ­ 0.005kr2
0 ykB for a

selection of concentrationsp in the rangepc , p , pr .
Although there is a significant size dependence, it
clear from the data that the shear modulus approache
finite limit as L ! ` even for the smallest concentration
p ­ 0.51 at T ­ 0.005kr2

0 ykB. We therefore conclude
that at finite temperature the onset of rigidity coincide
with geometric percolation.

Having established the existence of entropic rigidity fo
p . pc, we attempt to estimate the exponentf by carry-
ing out a finite-size scaling analysis. The relevant leng
scales are reasonably assumed to beL, and the correla-
tion lengthj, which approaches infinity at percolation a
sp 2 pcd2n . These choices lead to the ansatzmsL, pd ­
L2fynFsssLyjspdddd, where for largex, the scaling function
Fsxd , xfyn . Fortunately, the percolation concentratio
pc and correlation length exponentn are known to be
pc ­ 0.5 andn ­ 4y3 exactly. This fact allows a finite-
size scaling analysis in which only the exponentf needs
to be varied. The results of such an analysis are sho
in Fig. 2 whereLfynmSsL, pdyk is plotted as function of
Lsp 2 pcdn for f ­ n ­ 4y3. The quantitymS is the
entropiccontribution to the shear modulus which is give
by [9]

mSsL, pd ­ T

µ
≠m

≠T

∂
p,L

. (1)

FIG. 2. Finite-size scaling analysis of the entropic piece
the shear modulus for lattices of sizeL ­ 32, 64, and 128.
The scaling ansatz ismSsL, pd ­ L2fynFssssp 2 pcdnLddd. The
choice f ­ n ­ 4y3 produces a very reasonable collapse o
the data. As well, the straight line is the expected form of th
scaling functionFsxd , xfyn asx ! ` with f ­ n.
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The piece of the shear modulus due to the internal energ
mE ­ m 2 mS is much smaller thanmS for p , pr and
should be at least second order in the temperatureT . In
any case, subtracting off this piece of the shear modulu
has a smoothing effect on the data and improves the scalin
analysis. Although the data are rather noisy, the collaps
becomes noticeably worse if the exponentf is increased
or decreased by more than 0.1. We therefore conclud
that f ­ 1.33 6 0.10. The expected power law for the
asymptotic form ofFsxd , xfyn is also shown in the form
of the solid line in Fig. 2 again forf ­ n. It is clear that
the data are at least consistent with this behavior.

One can construct a simple theory for the entropic
elasticity of diluted networks in close analogy with the
classical theory of rubber elasticity. We begin with the
blobs, links, and nodes picture [13,14] of a diluted network
near the percolation concentration. The nodes at whic
different links or filaments are joined are the analog o
permanent cross-links in a system of randomly cross
linked macromolecules. The links themselves consist i
part of single strands and in part of more rigid blobs. If
such a tenuous system is deformed, one expects that t
principal effect will be to lengthen (shorten) the distance
between nodes and thus to modify the entropy of the fila
ments. Consider two nodesi, j with relative positionXij ,
Yij . If a distortion characterized by stretching factorslx ,
ly is applied to the system and if the nodes follow this
distortion in an affine manner, we expect that the entrop
change of the filament connecting these nodes due to th
distortion will be

DSij ­ 2
kB

a2

R2
ijslx , lyd 2 R2

ijs1, 1d
N

, (2)

wherea is the nearest neighbor distance,N the number
of links (single bonds) between the nodes, andR2 ­
X2

ij 1 Y 2
ij . This expression is obtained by treating the

filament as a Gaussian random walk as is usually done
the classical theories of rubber elasticity. Averaging ove
all pairs of nodes forlx ­ 1 1 e, ly ­ 1 2 e we obtain
the estimate

m ­
DF

2e2A
­ 2

kBTDS
2e2A

­
kBT
2a2

Nst

A

ø
R2s1, 1d

N

¿
, (3)

where Nst is the number of strands,A the area of the
system, andDF the change in Helmholtz free energy
obtained by ignoring any changes in internal energy.

From studies of percolation clusters [14,15], we have
NstyA , j22 , sp 2 pcd2n and kR2yNl , j2yN ,
sp 2 pcd122n [15]. Therefore, on the basis of this very
simple picture, we obtainm , p 2 pc, i.e., f ­ 1
which isnot consistent with the results of our simulations.
Of course, there are at least two aspects of the abov
argument that are suspect. First, the assumption that t
deformation of the system is affine clearly ignores fluctu
ations in density and therefore of local rigidity. Second
and probably more important is the fact that we have
4909
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ignored the self-similarity of percolation clusters [16
and modeled the known fractal structure by a netwo
of nodes that effectively has fractal dimensionD ­ 2.
It is perhaps worth noting that an analogous calculati
[5,6] of the conductivity of random resistor network
near the percolation point also predictss , p 2 pc [17]
which is similarly inconsistent with the correspondin
simulation data.

We also note that our estimatef ø n ­ 4y3 6 0.1
is consistent with de Gennes’s argument [6] thatf ­
t ø 1.3 [18], where t describes the critical behavior of
the conductivity of the aforementioned random resist
networks near percolation. This argument, which fai
for energetic elasticity atT ­ 0 may be correct for the
entropic elasticity considered here. The crucial point is t
Gaussian (random walk) expression for the entropy chan
of the links [Eq. (2)] which puts the elasticity problem into
the scalar rather than vector class [5]. We conjecture t
this part of the argument will survive a more sophisticate
treatment of the geometry of the fractal structure and th
for T fi 0, f ­ t.

In summary, we have shown by numerical simulatio
that the finite-temperature behavior of the elastic consta
of central-force networks is controlled by geometric pe
colation rather than by rigidity percolation. The elast
constants remain finite, albeit small, for all concentratio
pr . p . pc, i.e., the rigidity percolation fixed point is
accessible only atT ­ 0. For any finite temperature, the
energetic part of the elastic constants becomes quite sm
for p ø pr but this is merely a crossover effect. It is in
teresting that central-force networks are nevertheless s
cial, even at finite temperatures: If there are bond-bend
forces, the energetic piece of the shear and bulk mod
presumably remains finite and at least of the same
der of magnitude as the entropic piece and therefore
de Gennes argument thatf ­ t may not apply to these
systems.

Finally, we comment briefly on the relation of these re
sults to our previous work on randomly cross-linked poly
mers [7,8]. Our initial work on both the order paramete
and shear modulus of the amorphous phase of these
tems seemed to indicate that there is a gap between
onset of geometric percolation and both order and rigi
ity. These early studies [7] were for systems containing
small number (#100) of chains. For these systems, ne
ther the percolation concentration nor the critical cross-lin
density at which the order parameter vanishes are kno
exactly. It is possible to force these two to coincide but
the cost of an unrealistically large order parameter exp
nentb $ 1.5. More recent simulations [8] have involved
considerably larger systems (up to 500 chains) and the g
between the percolation cross-link density and the critic
cross-link density, albeit still there, has narrowed conside
4910
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ably. The finite-size effects in the present study are mu
smaller than in the polymeric systems and we now belie
that in the thermodynamic limit percolation and rigidit
also coincide in cross-linked polymers.

As far as future work is concerned, it would clearly b
of interest to investigate three dimensional central for
networks, i.e., the fcc lattice where the conductivity exp
nent t ø 2 with n ø 0.88. This would help to rule out
or support the possibilityf ­ n left open by the present
Letter. As well, it may be advantageous to study the bon
diluted triangular lattice since the gap between rigidity pe
colation and geometric percolation is almost 2 times
large as it is for site dilution, which means that crossov
effects should be less important than in the present ca
Such work is presently under way [19].
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versations. This research was supported by the NSE
of Canada.
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