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Abstract
Within the framework of the Peierls± Nabarro model we present an analytical

model for several of the quantities characterizing the mobility of a dislocation
line, which covers the whole range of possible values of dislocation width. These
quantities include the ® rst-order Peierls stress ¼1P (the minimum stress required to
move a straight segment of dislocation), the kink pro® le, the kink pair activation
energy Hkp and the second-order Peierls stress ¼2P (the minimum stress required
to move a kink in the dislocation line). These quantities are expressed in terms of
fundamental properties of the material, and in particular the relevant generalized
stacking-fault surface segment.

} 1. Introduction
The dislocation is a topological line defect which winds its way through the

lattice. The singularity in the displacement ® eld that it creates aŒects the crystal

on several length scales in quite a unique way. The study of this defect has therefore

to be approached in a number of ways. To gain insight into its varied behaviour it is

helpful, in our mind, to have an analytical link between its properties and the

fundamental properties of the material. The Peierls (1940) ± Nabarro (1947) (PN)
model still oŒers probably the only possible starting point. The insight that this

model can provide to dislocation properties has recently been investigated by a

number of workers, in particular as to its predictions concerning the core structure,

with some degree of success (JooÂ s et al. 1994, 1996, Ren et al. 1995, 1996, JooÂ s and

Duesbery 1997a, Bulatov and Kaxiras 1997, Schoeck 1998, 1999a,b, Ngan 1999). In
this paper we explore within the framework of the same model the properties of the

kinks. The physical picture that forms the basis of the study is that of a dislocation

line acting as an elastic string in a periodic potential (Dorn and Rajnak 1964, Guyot

and Dorn 1967).

The model in its present form is obviously limited to dislocations with planar

cores, a basic assumption of the PN model. The PN model is however, not in
principle limited to planar cores as discussed by Ngan (1999) .

The appeal of this formalism is the relatively simple direct link that it provides

between the generalized stacking-fault (GSF) surface and the properties of the

dislocation line. The formalism is not limited to wide dislocations and their
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corresponding wide kinks but extends to narrow dislocations and kinks. It may serve

as a basis for a phenomenological theory of the motion of the dislocation line by

focusing on the interconnectiveness of the relevant basic quantities.

} 2. The Peierls ± Nabarro potential and the first-order Peierls stress
With the core assumed spread within a plane known as the glide plane (see ® gure

1), the equilibrium con® guration within the core is obtained by balancing the elastic

forces due to deformations in the upper and lower half-planes with the restoring
forces at the interface leading to the well known integrodiŒerential equation. In this

paper for simplicity we assume Volterra-type dislocations, that is displacements f
along the Burgers vector direction b. Hence

K
2p

‡1

¡1

1

y ¡ y 0
dfb…y 0†

dy 0 dy 0 ˆ Fb… fb…y†† ˆ ¡ q®

qf
· b; …1†

where y is the distance from the dislocation line. ®…f† is the GSF energy surface. It is

generated by cutting the crystal into two halves along the glide plane, displacing the

top part with respect to the lower part by f and letting the atoms relax perpendicu-
larly to the glide plane. It has been suggested a while ago (Vitek 1968, Christian and

Vitek 1970) that the GSF surface would provide a better restoring force than the

restoring force predicted by elasticity theory. Recent examples of GSF surfaces were

given by Kaxiras and Duesbery (1993), Medvedeva et al. (1996), Hartford et al.

(1998) and Mryasov et al. (1998).
With the further assumption that the appropriate cut in the GSF surface can be

approximated by a sinusoidal function, the restoring force can be written as

Fb… fb…y†† ˆ ½max sin
2pfb…y†

b
: …2†
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Figure 1. Schematic representation of a glide plane and a dislocation line. The x- y plane is
the glide plane, the x axis a minimum-energy dislocation line, and the y axis the glide
direction. A dislocation density pro® le qf=qy is shown assumed to be directed along a
Burgers vector direction b, and a kink of width ¶ is pro® led. The `atomic plane’
periodicities along the dislocation line and glide directions are a and a 0.



One parameter determines the magnitude of the sinusoidal restoring force.

Traditionally the elastic limit obtained with fb=b ½ 1 has been used but, since the

PN model is a model for the core structure, we ® nd that it is more appropriate that
Fb be properly represented for the large values of fb; so the amplitude is being

determined by the maximum value of …q®=qf†· b, ½max . This choice has a much better

chance of giving realistic estimates of the core structure as discussed by JooÂ s and

Duesbery (1997a). b can be the Burgers vector magnitude for a full or partial dis-

location. To satisfy both limits a more complex potential is required, at least two
terms in the Fourier expansion of the restoring stress (Schoeck 1997).

The solution to equation (1) with the above approximation is

fb…y† ˆ b
p

tan¡1 y
±

‡ b
2

; …3†

where ± ˆ Kb=4p½max is the half-width of the dislocation. With a general restoring
force, good solutions can be obtained with a linear combination of functions of the

form (3) (JooÂ s et al. 1994). ± measures the relative strength of bulk and interface

forces. K is equal to the shear modulus for screw dislocations and to ·=…1 ¡ ¸† for

pure edge dislocations and takes on a range of intermediate values for other disloca-

tions.
With a solution of the above form the potential barrier that a dislocation has to

overcome to move by an atomic site per unit length is given by the potential (JooÂ s

and Duesbery 1997a) :

WPN…y† ˆ
‡1

mˆ¡1

Kb2¬ 0

4p2

±

±2 ‡ …ma 0 ¡ y†2

ˆ Kb2

4p
sinh …2p±=a 0†

cosh …2p±=a 0† ¡ cos …2py=a 0† : …4†

The minimum in WPN…y† is equal to

WPN

a 0

2
ˆ Kb2

4p
sinh …2p±=a 0†

cosh …2p±=a 0† ‡ 1
: …5†

This is the core energy within the PN model. Rewriting WPN…y† so that the minimum

is zero and located at y ˆ 0, we obtain

W 0
PN…y† ˆ W 0

0

4

1 ¡ cos …2py=a 0†
cosh …2p±=a 0† ‡ cos …2py=a 0† ; …6†

where W 0
0 ˆ 4EPN…a 0=2†. The amplitude of this periodic potential is not W 0

0 but what

we call the PN potential barrier:

WP ˆ Kb2

2p
1

sinh …2p±=a 0† : …7†

The periodic part of WPN evolves from a sinusoid to a series of equally spaced ¯
functions as ±=a 0 narrows. In the limit ±=a 0 > 1, W 0

PN is well represented by

W 0
PN…y† ˆ W0

2
1 ¡ cos

2py
a 0 ; …8†

where W0 ˆ …Kb2=p† exp …¡2p±=a 0†. In the opposite limit ±=a 0 ! 0,
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W 0
PN…y† ˆ Kb2a 0

4p
¯ y ¡ a 0

2
: …9†

To obtain the Peierls stress (PS), the minimum stress required to move a straight
segment of dislocation over the potential barrier, we ® rst have to compute the stress

associated with the mis® t energy variation:

¼…y† ˆ ¡
1

b
dWPN

dy

ˆ Kb
2a 0

sinh …2p±=a 0† sin …2py=a 0†
‰cosh …2p±=a 0† ¡ cos …2py=a 0†Š2

: …10†

Maximizing this quantity yields the PS

¼P ˆ ¼…yM†;

where

ym ˆ a 0

2p
cos¡1 1

2
¡ cosh

2p±

a 0 ‡ 8 ‡ cosh2 2p±

a 0

1=2

: …11†

In the range ±=a 0 < 0:2, ¼P is well represented by

¼P ˆ 3
p

3

8

Kb
a 0

a 0

2p±

2

…12†

and for ±=a 0 > 0:2 by the expression

¼P ˆ Kb
a 0 exp ¡ 2p±

a 0 1 ‡ 5 exp ¡ 4p±

a 0 : …13†

These are the ® rst two terms in the expansion of ¼P in terms of exp …¡2p±=a 0†. When

±=a 0 > 0:5, this reduces to the well known expression

¼P ˆ Kb
a 0 exp ¡ 2p±

a 0 : …14†

This model assumes a rigid translation of the dislocation as it moves in the lattice. It

is a simpli® ed model and here are a few factors that can aŒect these results; relaxa-

tion of the pro® le, atomic scale averaging due to the distribution of the electronic

cloud around each atom, and departure of the mis® t vector f from the direction of b.

Schoeck considered all these eŒects. Concerning the ® rst, the relaxation seems
noticeable but a cancellation eŒect between the elastic and mis® t contributions

means that ¼P is not signi® cantly aŒected (Schoeck 1999a). The averaging due to

the spread of the electronic cloud could lower ¼P considerably (Schoeck 1999b).

Finally for simple dislocations the displacement does seem to be dominantly along

b, although rigorously so only for pure edge or pure screw dislocations (Schoeck
1998). What the two-dimensional PN model allows is the study of dissociation

processes (Mryasov et al. 1998). This model leads to coupled diŒerential equations

which have no simple solutions. Equations (12) an (14) have been shown to be good

approximants for existing full and partial dislocations in Si and some metals with

simple pro® les (JooÂ s and Duesbery 1997a). Equation (13) has not been published
previously.
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} 3. Kinks
In materials with signi® cant PS, dislocations at ® nite temperatures do not move

by rigid translation, but rather by the nucleation and propagation of kink pairs. A
kink pair is created when part of the dislocation line is activated to a neighbouring

low-energy channel (see ® gure 1) over the PN energy barrier WPN. As is well known

(Hirth and Lothe 1982), the kink pair mechanism for dislocation motion admits two

limiting cases. At high stresses, the rate-controlling mechanism is the nucleation of

kink pairs. At low stresses, the periodic potential through which an individual kink
must move may be large enough to control the process; this is referred to as the kink

migration regime and its resistive stress at 0 K is commonly termed the second-order

Peierls stress ¼2P.

If we view the dislocation line as a string, its energy, for a shape y…x†, is simply

given at each location within the PN potential by

G…y† ˆ G0 ‡ W 0
PN‰y…x†Š: …15†

G0 is the dislocation line energy and W 0
PN…y†, the potential barrier that the kink has

to overcome, has been de® ned above (see equation (6)).

G0 is dominantly elastic in origin:

G0 ˆ Kb2

4p
ln

R
b

ˆ ²
Kb2

4p
: …16†

R depends on the screening length of the interactions in the material. We de® ne a

constant ² ˆ ln …R=b† to characterize the screening. Conventionally, for metals with

signi® cant screening, ² is taken to be 1
2

whereas, for semiconductors where there is
less screening, a value of 1 is used. There is obviously a great deal of uncertainty in

this quantity. It is not clear either what contribution the core energy makes to G0.

Within the PN model, the core contribution equals WPN…a 0=2† (see equation (5)).

The Hamiltonian of a kink can be written as the excess energy resulting from the

departure of the dislocation line from its minimum-energy con® guration:

H ˆ
1

¡1
G…y† 1 ‡

dy
dx

2 1=2

¡G0 dx; …17†

where y0 is the equilibrium position of the dislocation. Assuming (dy=dx†2 much

smaller than one leads to the simpler form known as the Frenkel± Kontorowa (FK)
Hamiltonian when WPN is sinusoidal:

H ˆ
1

¡1

1

2
G0

dy
dx

2

‡W 0
PN…y† dx: …18†

This is the approximation considered by JooÂ s and Duesbery (1997b). We shall

actually solve equation (17). Using Euler’s equation, the functional H …y; x 0; y† in

equation (17) is minimized when

1 ‡ dy
dx

2

ˆ G…y†
G0

2

: …19†
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The minimum value of the functional H …y; y 0; x† is then

H ˆ
1

G0

1

¡1
‰G…y†2 ¡ G2

0Š dx

ˆ G0

1

¡1

dy
dx

2

dx: …20†

For a simple kink, y can be chosen to increase monotonically from 0 to a 0, so that
dy=dx > 0 and H can be rewritten entirely in terms of y as

H ˆ
y0‡a 0

y0

‰G…y†2 ¡ G2
0Š1=2 dy

ˆ G
y0‡a 0

y0

dy
dx

dy

ˆ G0a
02

a

1

0

d³

dn
d³; …21†

where ³ and n are the dimensionless units y=a 0 and x=a respectively. To obtain the

activation energy of a kink pair, one considers the growth of a bulge for which y
increases monotonically from a minimum value y0 to a maximum ym and then

decreases back to the minimum. In the absence of stress its energy is simply twice
the kink energy, since ym, the value at which the integrand above becomes

imaginary, is y0.

Equation (21) shows that the key quantity is d³=dn de® ned by equation (19). It

gives the kink pro® le. Using the PN potential in the expression for the dislocation

line energy equation (15), d³=dn is given in the dimensionless units by

d³

dn
ˆ 1

¶

sin …p³†
1 ¡ m sin2 …p³†

‰1 ¡ …m ¡ g2† sin2 …p³†Š1=2; …22†

where we have de® ned a number of quantities: r ˆ a 0=a is the ratio of the periodi-
cities in the atomic planes along the dislocation line and perpendicular to it,

¶2 ˆ G0a 02‰cosh …2p±=a 0† ‡ 1Š=W 0
0a2, m ˆ 2=‰cosh …2º±=a 0† ‡ 1Š and g ˆ r=2¶. The

most important of these quantities is ¶ related to the kink width. It can be written,

in terms of the screening factor ² (de® ned in equation (16)) as

¶ ˆ ²1=2 r
2

cosh …2p±=a 0† ‡ 1

‰sinh …2p±=a 0†Š1=2
: …23†

Equation (22) serves as the starting point for three approximations or models.

(i) Model A. In this model, both m and g are assumed to be negligible. This is

the approximation made in the FK model. It is the wide-kink limit.

(ii) Model B. In this model, m is neglected, but g is kept. This is what is obtained

when solving the full Hamiltonian given by equation (17) with a sinusoidal

potential. It is very similar to model A except that it does not assume that
‰1 ‡ …dy=dy†2Š1=2 can be replaced by 1 ‡ 1

2
…dy=dx†2.

(iii) Model C. This model uses the full form in equation (22) with the PN

potential (20).

We shall now see what properties for the kinks they each predict.
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3.1. Kink width

Solving for ³ as a function of n in equation (22) would yield the kink solutions. A

simple kink solution as sketched in ® gure 1 is obtained for instance with a solution
with the boundary conditions ³ ˆ 0 at n ˆ ¡1; and ³ ˆ 1 at n ˆ 1, and by sym-

metry at n ˆ 0, ³ ˆ 1
2
.

Before considering the speci® c form of the pro® le, we can easily calculate a width

for the kink. A convenient de® nition of the kink width is

w ˆ d³

dn

¡1

³ˆ1=2

: …24†

dn=d³ measured in the middle of the kink gives the maximum slope in the kink
pro® le. The straight line de® ned by that slope and passing at the centre of the

kink cuts the nearest-neighbour potential wells in which the asymptotic parts of

the dislocation line lie at points apart by wa ¢³ sites. Since ¢³ ˆ 1, dn=d³ is the

width in number of sites.

In the limit ± > a 0 (model A), m ! 0, g ! 0, this is equal to ¶, which itself tends
to

w ˆ ¶ º
r
2

²

2

1=2

exp
p±

A
: …25†

We see the exponential growth of the kink width with ±.

Model B, which more rigorously takes into account the change in length of the

dislocation as the kink is created, yields a narrowed width

w ˆ ¶

…1 ‡ g2†1=2
: …26†

Model C, which replaces the sinusoidal potential in model B by the full PN
potential predicts a width

w ˆ ¶
1 ¡ m

…1 ¡ m ‡ g2†1=2
: …27†

Model C is the only model which allows investigation of kinks in narrow disloca-

tions. In the limit ± ! 0,

w ! p²r
±

a 0 ˆ p²±

a
; …28†

an approximate form surprisingly valid up to ±=a 0 ˆ 0:5 for ² º 1.

3.2. Kink proWle

The kink pro® le for model A is the well known sine± Gordon soliton. Equation

(22) with m ˆ g ˆ 0 is

d³

sin …p³† ˆ
dn
¶

: …29†

Integrated it yields the single-kink solution usually written as

³ ˆ 1

p
cos¡1 tanh

pn
¶

: …30†
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Alternative forms are

³ ˆ
2

p
tan¡1 exp

pn
¶

ˆ 1

p
sin¡1 sech

pn
¶

: …31†

Model B yields a form very similar to the last above

³ ˆ 1

p
sin¡1 1

cosh2 …pn=¶† ‡ g2 sinh2 …pn=¶†

1=2

: …32†

The expression for the pro® le of the kink in model C is considerably more

involved but n as a function of ³ can be expressed in terms of elementary functions,

transcendental and algebraic.
As ±=a 0 approaches 0, ³ becomes a step function. For all values of ³ except 1

2
,

d³=dn is zero.

3.3. Kink energy and kink pair activation energy

In the absence of stress, which is the situation discussed here, the kink-pair
activation energy Ekp is simply twice the single-kink energy Ek since the maximum

value of the bulge reaches the next minimum-energy Peierls valley.

We shall use the reduced units G0a 02=a in the derivations distinguishing the

energies with a prime. So, using equations (21) and (22), the kink energy

Ek ˆ E 0
k…G0a

02=a† is given by

E 0
k ˆ 1

¶

1

0

sin …p³†
1 ¡ m sin2 …p³†

‰1 ¡ …m ¡ g2† sin2 …p³†Š1=2 d³: …33†

Model A has the trivial well known value of the FK model (JooÂ s 1982, JooÂ s and
Duesbery 1997b):

E 0
k ˆ 1

¶

1

0

sin …p³† d³ ˆ 2

p¶
: …34†

Model B introduces the eŒect of r ˆ a 0=a. In model A, it is as if the distance

between neighbouring PN potential wells a 0 is zero:

E 0
k ˆ 1

¶

1

0

sin …p³† ‰1 ‡ g2 sin2 …p³†Š1=2 d³; …35†

which with the change in variable u ˆ cos …p³† gives

E 0
k ˆ 1

p¶

1

¡1

du ‰…1 ‡ g2† ¡ g2u2Š1=2: …36†

This integral is equal to

E 0
k ˆ 1

¶p
1 ‡ …1 ‡ g2† tan¡1 g

g
: …37†

This case has been considered by Dorn and Rajnak (1964) previously.
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Model C yields

E 0
k ˆ 2

¶p
1

m
g

…1 ¡ m†1=2
tan¡1 g

…1 ¡ m†1=2
‡ …m ¡ g2†1=2 tanh¡1‰…m ¡ g2†1=2Š :

…38†

We always have m=g2 > 2². Since we expect ² 5 1
2
, usually m ¡ g2 > 0, and hence

the choice of tanh¡1 in the above equation. In the limit ±=a 0 ¾ 1, we recover the

result of model A while, in the limit ±=a 0 ! 0, E 0
k tends to

E 0
k ˆ 1

²r
: …39†

The excess energy in the dislocation line due to the kink is therefore simply in this
limit (for ±=a 0 < 2a 0†

Ek ˆ G0a
0

²
ˆ

Kb2

4p
a 0; …40†

an additional average mis® t energy corresponding to a length a 0. Note that

a 0

0

WPN…y† dy ˆ Kb2

4º
a 0: …41†

3.4. Kink migration energy and stress

To calculate the kink migration energy EM, we start from the expression for the

kink energy in equation (20):

H ˆ G0a 02

a

1

¡1

d³

dn

2

dn …42†

and rewrite it using the solution for the pro® le ³. For model A (g ˆ 0) and model B,

and in units of G0a
02=a, H 0 ˆ H =…G0a 02=a†, we have for the single-kink energy

H 0 ˆ 1 ‡ g2

¶2

1

¡1

cosh2 …pn=¶†
‰cosh2 …pn=¶† ‡ g2 sinh2 …pn=¶†Š2

dn: …43†

Viewed as a string with a continuous mass the kink can be displaced in the lattice

without any change in energy. To obtain the energy barrier to motion, the lattice

periodicity has to be included. Equation (43) then becomes

H 0 ˆ 1 ‡ g2

¶2

1

nˆ¡1

cosh2 …pn=¶†
‰cosh2 …pn=¶† ‡ g2 sinh2 …pn=¶†Š2

: …44†

To simulate the motion of the kink, we replace n by n ¡ ¬. ¬ indicates the location of

the kink. With this substitution, H 0…¬) becomes an even periodic function of period

1, whose cosine series has the form

H 0…¬† ˆ a0

2
‡

1

mˆ1

am cos …2pm¬†; …45†
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where

am ˆ 2
1

0

‡1

nˆ¡1

1 ‡ g2

¶2

cosh2 ‰p…n ¡ ¬†=¶Š cos …2pm¬†
fcosh2 ‰p…n ¡ ¬†=¶Š ‡ g2 sinh2 ‰p…n ¡ ¬†=¶Šg2

: …46†

With the change in variable t ˆ ¬ ¡ n, this becomes

am ˆ
2…1 ‡ g2†

¶2

1

¡1

cosh2 …pt=¶† cos …2pm¬†
‰cosh2 …pt=¶† ‡ g2 sinh2 …pt=¶†Š2

dt; …47†

which equals, recalling that g ˆ r=2¶,

am ˆ 2m
sinh …mp¶†

cosh 2m¶ tan¡1 r
2¶

‡ 1‡ r
2¶

2
sinh ‰2m¶ tan¡1 …r=2¶†Š

mr
:

…48†

This reduces to the FK model value (JooÂ s and Duesbery 1997b) in the limit

g ˆ r=2¶ ! 0, or more precisely r ! 0, with

am ˆ 4m
sinh …mp¶† : …49†

The migration energy E 0
M is the diŒerence between the maximum- and minimum-

energy con® gurations, ¬ ˆ 0 and 1
2

respectively, that is

E 0
M ˆ 2

1

m;odd

am: …50†

This is expected to be equal in most cases to 2a1, that is

E 0
M ˆ 4

sinh …¶†
cosh 2¶ tan¡1 r

2¶
‡ 1 ‡ r

2¶

2
sinh ‰2¶ tan¡1 …r=2¶†Š

r
:

…51†

When ¶ > 1, 2¶ tan¡1 …r=2¶† º r …for r < 2†, and sinh …p¶† º exp …p¶†=2,

EM ˆ 8 cosh r ‡ sinh r
r

exp …¡p¶† G0

a 02

a
: …52†

We have multiplied by G0a
02 to restore the units of energy. When ¶ < 0:5, the

departure from this form is signi® cant.

The stress corresponding to this migration energy is

¼2P ˆ 1

a 02

qH …¬†
q¬ max

ˆ 2p
1

mˆ1

mam
G0

a
: …53†

H …¬† departs from a sinusoidal form near ¶ ˆ 1. Down to that value, ¼2P is ade-

quately given by the leading term in equation (53):

¼2P ˆ 8p cosh r ‡ sinh r
r

exp …¡p¶† G0

a
: …54†

r ˆ a 0=a has a signi® cant eŒect on the pre-factor. Comparison between the discrete
model with relaxation and the rigid translation approximation used here revealed for
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the FK model …r ˆ 0† good agreement between the two calculations (JooÂ s and

Duesbery 1997b).

3.5. EVect of stress

When a constant stress ¼ is applied in the glide plane, it exerts a force ¼b per unit

length on the dislocation line, which adds a ¡¼bx potential energy term to the

dislocation energy. The stress displaces the position of the dislocation line to a

new equilibrium position y0. This will have a signi® cant eŒect on the kink pair
activation energy, which now can be written as

H kp ˆ
1

¡1
G…y† 1 ‡

dy
dx

2 1=2

¡ G…y0† ¡ ¼b…y ¡ y0† dx: …55†

The energy minimization can be carried out in a similar way to previously. Equation

(19) needs simply to be rewritten with G0 replaced by G…y0† ‡ ¼b…y ¡ y0†, yielding

Hkp ˆ 2
yM

y0

fG…y†2 ¡ ‰G…y0† ‡ ¼b…y ¡ y0†Š2g1=2 dy: …56†

Analytical integration with the inclusion of the stress becomes di� cult. The only

obvious result is that, with the application of stress, Hkp decreases monotonically

with increasing ¼ down to zero at ¼ ˆ ¼P (Dorn and Rajnak 1964, Guyot and Dorn
1967, Duesbery and JooÂ s 1996). Indeed, y0 is obtained by minimizing H kp with

dy=dx ˆ 0, or

¼b ˆ qG
qy yˆy0

; …57†

and ym is determined by the point where the integrand in equation (56) becomes

imaginary. At ¼P, qG=qy is a maximum; therefore G…y† ¡ G…y0† ¡ ¼b…y ¡ y0† changes

sign at y0 and hence also the integrand. So y0 ˆ ym, and Hkp ˆ 0.

With a sinusoidal G…y†,

y0 ˆ a 0

2p
sin¡1 ¼

¼P

…58†

and

G…y0† ˆ G0 ‡ W0

2
1 ¡ 1 ¡ ¼

¼P

2 1=2

: …59†

To leading order, equation (56) can be written as

Hkp ˆ 1

21=2¶p

G0a 02

a

um

u0

‰cos u0 ¡ cos u ¡ sin u0 …u ¡ u0†Š1=2 du …60†

where u ˆ 2py=a 0, sin u0 ˆ ¼=¼P and um is the maximum value of u de® ned as the

point where the integrand becomes imaginary. It is clear that, when ¼ ˆ ¼P,

u0 ˆ um ˆ p=2 and Hkp ˆ 0. Seeger (1984) discussed the dynamics of the kinks for

this latter case.

} 4. Discussion
To be able to start from a GSF barrier for atomic planes ®… f †, to generate the

`washboard-like’ potential ® eld WPN felt by the dislocation line and then to extract
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some fundamental properties for its motion is a satisfying feeling. It is certainly a

credit to the PN model that this is possible, but at this stage it can only be done on

the one-dimensional version of the model and not the more realistic two-dimensional
version. In this simpli® ed version, all quantities are related to an elastic constant K
which characterizes the response of the lattice to deformations along the Burgers

vector direction, and ½max which gives a measure of the intensity of restoring forces at

the interface. It gives the trends expected in the two-dimensional model. If dissocia-

tions occur, the one-dimensional model would be applied to the individual partials,
and not the full dislocation, as was done for partials in Si (JooÂ s et al. 1994, JooÂ s and

Duesbery 1997a). It is quite remarkable that down to ±=a 0 ˆ 0 there is no singular

behaviour. There are two limits. First the wide-dislocation limit (large ±=a 0) where

the kink width ¶ grows exponentially as exp …p±=a 0† and the PN barrier energy WP

and kink-pair activation energy Ekp decrease exponentially at the same rate
exp (¡p±=a 0† as expected. At the other limit where atomistic eŒects will be impor-

tant, and ±=a 0, and consequently ¶ also, approach zero, it is nevertheless interesting

to note that, in spite of the divergence of WP, the kink pair activation reaches a

limiting value related to the mis® t energy gain in creating the kink.
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