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INTRODUCTION

There is now, as evidenced by several papers in this conference proceedings, a significant
body of work devoted to the mechanical rigidity of networks. We define rigidity as the ability
of a system to resist shear. The results that have been obtained apply to diluted central force
networks, glasses, and tensegrity networks, and they focus on rigidity criteria and the nature
of the transition from the floppy to the rigid phase.

One important result is that the onset of mechanical rigidity in diluted central force net-
works does not occur at either the site or bond connectivity percolation concentration but at
a higher concentration. Mechanical rigidity in such systems requires multiple connectivity.
Other results are mean field predictions on the minimum coordination number of bonds re-
quired to have rigidity in glasses. Discussions of these issues have so far been in terms of
arguments based on geometrical and mechanical considerations. They are intrinsically zero
temperature theories and they measure the part of the rigidity whose origin can be said to be
energetically derived.

Temperature can qualitatively change the picture. Temperature introduces vibrations in
the network. These can modify the existing elasticity in two ways. Firstly, the force constants
have to be redefined according to the new average separation between interacting components
of the system. Moreover, it produces a second component that has an intrinsically different
origin than the one so far discussed: one that could be called a thermodynamic rigidity. It
arises from the change in entropy of the system upon deformation. It is usually small in
mechanically rigid systems but can be significant in soft materials and even dominant, as in
the case of rubber where the energetic part of the shear modulus is insignificant in comparison
with the entropic part!.

Entropically derived rigidity differs from energetically derived rigidity in several ways.
It is strongly dependent on temperature, i.e., the leading term is linear in T. It seems to
be scalar in nature, rather than vectorial as will be discussed further below. It is similar in
nature to springs of zero length and therefore the entropic solid behaves like a material under
tension. The first and third points lead to a negative contribution to the coefficient of thermal
expansion.

Random networks in the neighborhood of their mechanical rigidity point are soft materials
with high entropies. We show below that an entropically derived rigidity exists in these
networks and that its onset occurs at the connectivity percolation point, significantly below
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the mechanical rigidity point. It dominates the elasticity up to the mechanical rigidity point,
where a crossover occurs to energetically derived elasticity.

After a brief summary of findings on mechanical rigidity, we introduce entropic rigidity
through a few examples and show that it is a measurable quantity that can be extracted from
the temperature dependence of the elastic constants. Then we present and discuss previously
published and some new results on entropic rigidity in model diluted central force networks.
These results, and some models used to explain them, form the basis of a further discussion
of entropic rigidity and its relevance to glasses and other materials.

A number of issues are of interest in the subject of entropic rigidity. One is an argument by
de Gennes? who predicted that the elastic constants should vanish at the percolation threshold
pe as ju ~ (p— pc)f, where f is the exponent describing the conductance of a random resistor
network near percolation, and p is the concentration of bonds or sites. Although this is known
not to be true for mechanical rigidity?, it seems to apply to the case of entropic rigidity.

MECHANICAL RIGIDITY

A typical rigid body at T = 0 will settle into a ground state configuration which minimizes
its internal energy. Deformation away from this equilibrium leads, for infinitesimal or small
displacements, to linear restoring forces. This is what is understood as energetically derived
elasticity. The conditions that determine whether or not a network is actually rigid form a
subject matter that has been studied extensively by mathematicians and physicists, in models
where temperature effects are absent. These theories focus on mechanical rigidity.

‘For our purposes we focus on systems with no bond bending forces. These require multiple
connectivity for the existence of a mechanically rigid network. For this reason, the onset of
rigidity in diluted networks occurs above the percolation threshold. The nature of this onset
has been discussed by a number of authors in the context of central force networks at zero
temperature45,

Feng and Sen* were the first to point out that randomly diluted central force networks are
incapable of withstanding shear or compression below a concentration of particles p, — the
rigidity percolation concentration — that is considerably higher than the concentration p,
at which an infinite connected cluster first appears. In the extreme case of the simple cubic
lattice, p, = 1, and even the perfect lattice has no resistance to shear. At the simplest level,
this result can be understood in terms of the number of constraints imposed on the system of
particles by the nearest neighbor forces. When this number becomes less than the remaining
number of degrees of freedom, a soft mode appears. A straightforward mean field theory®
produces the remarkably accurate result p, = 2d/z where d is the spatial dimensionality and
z the coordination number of the network. For a cubic lattice,d =3,z =6,andp, = 1. It
is important to state immediately that these results only apply to unstressed materials. The
perfect cubic lattice, for instance, under hydrostatic expansion pressure, has a non-zero shear
modulus which is proportional to the applied pressure.

The fact that percolation and rigidity have separate onsets in dilute systems is particular
to central force networks: If there are bond-bending forces present, rigidity sets in at the
percolation point®.

ENTROPICALLY DERIVED RIGIDITY

Entropy is a concept central to thermodynamics. In the microcanonical ensemble of
statistical mechanics it is defined as S = kg In) where Q is the number of configurations
available to a system at fixed energy. The equilibrium state is the state of maximum entropy
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consistent with the constraints imposed on the system and thus the state in which the maximum
number of microscopic configurations are available to the system. For systems kept at fixed
temperature, the relevant thermodynamic potential is the Helmholtz free energy A =U —T'S
where U is the internal energy (kinetic and potential) of the system. The equilibrium state
in this situation is the state of minimum A. In an isothermal process, e.g., one in which the
system is deformed, the amount of work necessary is AW = AU — TAS.

In rigid bodies with energetically derived elasticity AU is typically by far the dominant
term in this expression, at least at moderate temperatures. There are however systems whose
internal energy changes little upon deformation. These usually have a large space of available
configurations of nearly identical energy, and hence high entropy. Their equilibrium state,
even at fixed T, is thus the state of maximum S. If deformations which decrease the entropy
are imposed on these systems, there is a restoring force, which can be far from negligible.
To show that entropically derived restoring forces can be significant and to illustrate their
character, we will discuss three examples: the ideal gas, a polymer chain, and a crosslinked
polymer network (or vulcanized rubber).

The first of these is obviously not a rigid material, but what makes it an interesting example
is that its one nonzero modulus, the bulk modulus, is entirely entropic in origin. In an ideal
gas, the molecules are non-interacting and the internal energy depends only on temperature,
U= %N kgT'. Upon compression at fixed T', there is an increase in pressure due to the increase
in the frequency of collisions with the walls of the container. This increase in collision rate
is the result of the decrease in entropy. The entropy S = Nkg In(V/N3) where \(T) is the
thermal wavelength”. The pressure or restoring force upon volume change is given by:

_o4
v

the well-known ideal gas law.

NkgT

P= —%(U ~TS) = %(TNICB In(V/NX3) = % (1)
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Figure 1. A polymer in two configurations: left-hand side, unstretched (high
entropy), and right-hand side, stretched (Iow entropy). This is the archetypal example
of an entropic spring. This figure, as well as Fig. 2 and 3 are inspired by similar
drawings in Ref. 8.

The second is the polymer chain, which is the basic elemental component of rubber, and
the simplest example of what is known as an entropic spring. A polymer may be modeled as
a long flexible chain (see Fig. 1). In dilute solution it has, on a coarse-grained level, many
of the properties of a self-avoiding random walk, e.g., its end-to-end distance (R2,)/2 scales
as N”l, where N is essentially the number of independent units, each of microscopic length
I, of the chain ([, is the persistence length of the polymer chain, the length over which the
polymer loses its orientational memory, and N1, the total length of the chain)®. The exponent
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v = 0.6 for a polymer in a ‘good solvent’ but in the relevant case of a dense melt, the same
power-law behavior is seen but with » = 0.5, the Gaussian or ideal random walk exponent®.
For such an ideal N-step random walk, one can calculate the probability P(R, N) that the
separation between end points is R:

3/2
PRV = (o) o0 (~3RZ/2NE) = exp (ISR, N) - SN /ba}, (2

3
2rNI2
where we have related this probability to the entropy S(R, N) of this ensemble of walks.
Ignoring the internal energy, we therefore obtain a Helmholtz free energy

3kpTR?

AR, N) = =
Y4

+ const. 3)

This leads to an elastic restoring force equivalent to that of a spring of zero equilibrium length.
The ‘effective spring constant’ 3kgT /2N lg is a thermodynamic quantity in this case. The fact
that it is proportional to T ensures that the radius of gyration R, of the polymer is independent
of T'. The radius of gyration is the most probable spatial extent of the polymer. Its probability
distribution is obtained by integrating over the angular degrees of freedom of the polymer.
One finds that B, < v/N in both two and three dimensions.

Figure 2. Sketch of a crosslinked polymer melt: The model for vulcanized rubber.
(1) indicates an entanglement and (2) a permanent crosslink.

Rubber, our last example, is produced from a dense melt of polymer chains, that are
substantially entangled with each other. At some instant, a number of permanent crosslinks
that connect previously uncoupled monomers is imposed on the system by a chemical reaction
or by radiation. These crosslinks convert the melt at least partially into a network, with chain
segments of various contour lengths between the crosslinks (see Fig. 2). This is the unstressed
state of the gel with the conformations of the subchains reflecting the Gaussian distribution
of the melt. If this gel is distorted, e.g., by stretching, the free energy of segments between
two crosslinks will generically increase as the separation of the crosslinks increases and this
increase is proportional to kgT (see Fig. 3). This is the qualitative explanation for the entropic
elasticity of rubber. '

We will now present a simple quantitative model to put this notion on a slightly more
formal basis. Consider a sample of dimension L, L,, L, with Ny, elastically active chain
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segments, i.e., segments of a given polymer between two crosslinks. Let the vector connecting
the crosslinks of segment ¢ in the undistorted state be R;. Suppose now that a macroscopic
distortion L, — AyL, is imposed on the system. In the affine distortion model that is
commonly used'®, the individual elastically active segments follow this distortion so that
R;, — Ao Rio. The change in free energy of segment ¢ is then given by

3ksT R2({Xa}) — R2(1)
O ©

AA’!'(A:C» Aya /\2) =

where N; is the number of monomers in segment i. Using the Gaussian distribution (2) for
the unperturbed separation R; and averaging, we obtain

AA(g, My, A:)  3kgT Ny
1% 2V

3kgT
&3
where £ = (V/Ng)/? characterizes the mesh size of the network. AA is proportional to a

combination of the elastic constants of the network (which combination depends on the choice
of A\,) and we see the classical form of the theory of rubber elasticity E o< kgT'/€3.

A2+ A+ A2 =-3)= A2+ X2+X2-3) (5)
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Figure 3. Schematic view of a typical crosslinked polymer melt, (a) in an isotropic
state (f=0), and (b) extended (£>0). Note the increased ordering upon extension.

Experimental observation shows very little volume change under elongation. Therefore,
if we assume a volume preserving(A; Ay A, = 1) stretch along a given direction, say z (A, =
My=A=1/ \/X), the restoring stress, the force per unit area, is given by

AV

AOAA _ 6ksT (v_%)' ©

The above simple free energies already contain three essential features of entropic mate-
rials. First the strength of the spring constant increases linearly with temperature. Secondly,
because of the zero equilibrium length of the entropic springs, the potential is separable and
the restoring forces act as scalar forces. And thirdly, from an elasticity point of view, the
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Figure 4. Typical behavior of rubber under stress: (a) Stress as function of fractional elongation separated into entropic and energetic contributions. (b) Stress as function of
temperature at fixed elongation. Figure taken from Ref. 1.
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materials behave as materials under tension. The third point ensures that rigidity in these
networks sets in at connectivity percolation.

Lastly, vulcanized rubber shrinks upon heating for the same reason that an ideal gas will
expand at constant pressure. When heat is added, the entropy is increased and it is clear from
Eq. (2) that increasing the entropy implies decreasing the end-to-end distance of elastically
active segments.

Experimentally, the entropic contribution can be extracted from the data if the temperature
variation of the restoring force is known. - Simple thermodynamic relations can be used to
separate the entropic from the energetic contribution. We start from the differential form of
the first law:

dA(L,T) = fdL — SdT (7)
where f is the tension in the material. Therefore, at fixed 7" we have
OE 85\
f-—fE‘*“fs— (3_L>T—T(5I—J)T ) (8)

where the first term fg corresponds to the energetic contribution to the stress, and the second
fs to the entropic contribution. Using

__p(95\ _p0 (94) _ 9 (04 _,(of
Js = T<6L>T_T8L(6T>L_T8T(6L> T(GT)L’ (©)

T

These two equations are quite general. For rubber, the energetic and entropic contributions
are plotted in figure 4(a) and the latter clearly dominates for all but the smallest strains.
Similarly, we see from figure 4(b), for reasonably large strains, the characteristic linear increase
of the stress with temperature, again an indicator of the preeminence of the entropy in the
process.

we obtain

ELASTICITY OF THE DILUTED CENTRAL FORCE NETWORK

As already mentioned in the introduction, diluted central force networks at T' = 0 are
soft for p < p,, the rigidity percolation concentration. It is therefore of interest to investigate
whether or not there is entropic rigidity at finite T in the concentration range (of bonds or
sites) p. < p < pr. In a previous article!! we reported the results of extensive molecular
dynamics (MD) simulations for site-diluted triangular lattices. The conclusions of that study
were that these systems are rigid for all nonzero temperatures in the entire range p. < p < p,
and that the shear modulus x ~ (p — p.) where the value of the exponent f ~ t where t is
the corresponding exponent for the conductivity of a diluted resistor network, consistent with
the prediction of de Gennes?. In this article, we display some of these results and include, as
well, some preliminary results for bond-diluted triangular networks and site-diluted square
networks.

In this section, we first present some details regarding the models that we have used and
some computational techniques. This is followed by a presentation of results and a simple
theory similar to the affine theory for rubber.
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The models

Our models are two-dimensional networks of particles joined by unbreakable bonds, with
linear central restoring forces when deformed from an equilibrium length r,. These bonds
join nearest neighbours only and have the functional form V,,,(r;;) = %k(rij —79)2. Most of
our results are for the site diluted triangular lattice, where we start from a perfect triangular
lattice with six-fold coordination at each site and remove sites at random (for a picture see Fig.
6 in Ref. 12). This system has connectivity percolation at a probability of site occupation
p = p. = 0.5. Rigidity percolation (at T = 0) occurs at p{™9 ~ 0.71 for non-generic
networks. For generic networks, p{9) = 0.6975 °. Since we remove sites randomly without
checking whether the resulting network is generic or not, at 7' = 0 we may have non-generic
networks. At finite temperatures thermal vibrations presumably make most configurations
generic. There is therefore some uncertainty as to which p, applies. This is however not of
much concern for this paper since the onset of entropic rigidity occurs at p,.

We will also report on some simulations for bond dilution in the triangular lattice for
which p, = 2sin(m/18) = 0.34729, p{"9) ~ 0.641'3 and p{¥) =~ 0.66°.

Molecular dynamics simulations are done on finite size lattices with periodic boundary
conditions and with the area kept constant. The starting perfect lattice is unstressed, but as
sites or bonds are removed an effective tensile stress holds it at the same area. These being
networks we need not worry about the generation of defects, or any topological changes.

Bonds cannot break and reform.
Methods of calculation of the shear modulus

When calculating the shear modulus of soft inhomogeneous materials some care is required
in the application of standard methods, in particular when, as is the case here, we are interested
in the behaviour at high temperature. A direct approach is a stress-strain method (method 1)
where a deformation of some kind is imposed on the computational box and the macroscopic
restoring force is measured. For isotropic materials, one may impose a pure shear deformation,
i.e., an area preserving stretch/compression on the two sides of the computational box of
dimensions L, x L,. Within linear elasticity theory, the shear modulus y is then given by
B = (Pyy — Pzz)/4€ for adistortion in which L, — (1+€)L,, L, — (1 —¢€)L,. Here p,z, pyy
are the diagonal elements of the pressure tensor. If the system is not isotropic, as in the case
of square networks, one may impose a simple shear, for example by shifting the boundaries
of the computational box t0 Zmin(¥) = €Y, Tmax(y) = €y + L where the undeformed box is
an L x L square. In this situation, the shear modulus is given by p1 = p,,/e.

A second method would be to determine the ground state configuration of the unstressed
system, calculate the dynamical matrix, and then determine the elastic constants using standard
harmonic theory from an appropriate sum in terms of phonon frequencies. This method is
inappropriate for soft entropically rigid materials. In such systems, there are floppy regions
that undoubtedly give rise to zero-frequency soft modes. The elastic constants determined
in this way correspond to the zero temperature elastic constants and would vanish below p;.
Even if there are no floppy modes, only soft modes, at temperatures of interest the amplitudes
of oscillations of the modes will be most likely out of the harmonic regime, and essentially
act as floppy modes.

The third method, known as equilibrium fluctuation method also starts from the unde-
formed system. The elastic constants are obtained directly from the microscopic fluctuations,
using a formal expression of the second derivative of the free energy4.

The first and third methods are suitable for molecular dynamics simulations. The first
method calculates the changes in the pressure tensor upon deformation. Since these changes
are only a small percentage of the total, this method is not the most accurate for energetically
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Figure 5. The dimensionless shear modulus (£ / & plotted as function of concen-
tration p of particles for site-diluted triangular lattices of size L = 32 and L = 64
for reduced temperatures T = .005kr3/ks and T = .01kr2/ks. Part (a) contains
data over the entire concentration range p_ < p < 1 whereas part (b) focuses on the
regime p, < p < p,. Part (c): The logarithm of the shear modulus of the site-diluted
triangular network plotted as function of L™! for T = .01kr2/ks for p = 0.65 (cir-
cles), p = 0.55 (squares), p = 0.515 (diamonds) and T = .005kr2/ks for p = 0.6
(X), p = 0.52 (crosses) and p = 0.51 (triangles). The values of L are 16, 32, 64,
and 128. Note that all concentrations are below p,.. (From Ref. 11)
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rigid materials. In addition deformations for identical regions may depend on the size of the
computational cell within which they are imbedded, leading to noticeable finite size effects.
But it is a very robust method since it measures a macroscopic average quantity which is
a direct sum of measurables, force and velocity terms. The third method which is based
on a fluctuation - dissipation theorem is the most acurate for rigid materials, because no
deformations are made to the system and averaging is done at the microscopic level. This has
the added advantage of reducing finite size effects. There are, however, intrinsic difficulties
in applying it to soft inhomogeneous materials; if the ground state of the system is not unique,
fluctuations are large and convergence is very slow!S. In this paper we report the results from
the first method, the stress-strain method.

The shear modulus of finite size-samples

As mentioned above, most of the calculations were done on the site diluted triangular
network. With MD simulations at constant volume the changes in the stress tensor were
calculated for samples of varying sizes, ranging from 16 x 16 to 128 x 128. For the smaller
systems the entire concentration range 0.5 < p < 1.0 of interest was studied and for the larger
systems primarily in the range of concentrations close to geometric percolation. Fora given p,
the largest cluster was identified and all smaller clusters discarded. The equations of motion
were then integrated for either 10% or 2 x 10° time steps. A time step of 6t = 0.00164/k/m
was chosen and simulations have been carried out for temperatures from kT = 0.00125k73
to kgT = 0.01kr2. Although our potential conserves the connectivity of the particles, it is
worth noting that for a piecewise linear force function of the same strength but of range about
15% larger than ro, the latter temperature is very close to the melting point 16,

Results for the shear modulus as a function of concentration are displayed in Fig. 5
for diluted lattices of size 32 x 32 and 64 x 64 for temperatures T = 0.01kr}/kp and
T = 0.005kr?/kp. Fig 5a shows the full range of p. Clearly at p = p, the shear modulus
has not reached zero. Above p, there is little dependence on temperature or lattice size.
Fig. 5b focuses on the region close to p. where both variables have a significant impact on
u, sufficiently so that it is still clearly visible in a logarithm plot. Since for any sample,
percolating or not, the shear modulus is positive definite, u should approach a finite limit
as p — p.. Indeed, precisely at p, the percolation probability for any finite size L is 0.5
and therefore half the samples presumably make a positive contribution to the estimate of x
whereas the non-percolating ones serve only to reduce the mean value.

The shear modulus in the thermodynamic limit

The logarithm of the shear modulus plotted as a function of L~! shows a non-zero limit
for L = oo for all concentrations studied, the closest to p. being p = 0.51 (see Fig. 5c). This
fact alone strongly suggests that at finite temperature the rigidity onset coincides with the
geometric or connectivity percolation. Physical arguments can also be made to support that
assertion. The network near percolation can be viewed as a system of blobs, links and nodes
with the overall symmetry of the original lattice!™!8. Its elastic response is that of a network
of entropic springs, which respond as discussed earlier as a lattice under tension. Therefore
as a simple calculation using a stretched string shows, simple connectivity suffices to have a
non-zero response to a simple shear, which is proportional to the tension in the string. It is
therefore very natural to take p, as the onset of entropic rigidity.

With this fact established, the behaviour of u in the neighborhood of p. can be more
conveniently studied. One expects some power law dependence u(T,p) « (p — pc)’. This
behaviour is masked in our data by finite size effects. With the availability of data for several
sizes, a scaling argument can be used to obtain y in the thermodynamic limit. The relevant
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length scales are reasonably assumed to be L, and the correlation length &, which approaches
infinity at percolation as (p—p.) . These choices lead to the ansatz u(L, p) = L=2®(L/¢(p))
where for large z, the scaling function ®(x) ~ 2P, with o and J3 constants to be determined.
Requiring that at large L, u(T',p)  (p — pc), leads to p(L, p) = L~*®(L/¢(p)) and the
asymptotic behaviour for &(z) ~ /.
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Figure 6.  Finite-size scaling analysis of the entropic piece of the shear mod-
ulus for lattices of size L = 32, 64, and 128. The scaling ansatz is [ig(L,p)=
L~7*® ((p-p,)L*’*). The choice f = v'=4/3 produces a very reasonable collapse
of the data. As well, the straight line is the expected form of the scaling function
® (z) ~ 27 as 2 — 0o with f=v. (From Ref. 11)

Since p. = 0.5 and v = 4/3 exactly, the finite size scaling analysis requires only the expo-
nent f to be varied. The results of such an analysis are shown in Fig. 6 where LI ug(L,p)/k
is plotted as function of L(p — p.)” for f = v = 4/3. The quantity pg is the entropic
contribution to the shear modulus which is given by ! '

us(Lp) =T (%)L . (11)

The piece of the shear modulus due to the internal energy pg = p — ps is much smaller
than pg for p < p, and should be at least second order in the temperature T'. In any case,
subtracting off this piece of the shear modulus has a smoothing effect on the data and improves
the scaling analysis. Although the data are rather noisy, the collapse of the data in Fig. 6
becomes noticeably worse if the exponent f is increased or decreased by more than 0.1. We

therefore conclude that f = 1.33 £ 0.10. The expected power law for the asymptotic form

of &(x) ~ z//¥ is also shown in the form of the solid line again for f = v. Itis clear that the
data are at least consistent with this behavior. We note, however, that the currently accepted
value of the exponent ¢ for the conductivity of two-dimensional random resistor networks
is ¢ =~ 1.3 and our data clearly cannot distinguish between the alternatives f = v or the de
Gennes prediction f = t.

As further evidence for the conclusion that entropic rigidity persists to p = p., we display
the shear modulus of triangular bond-diluted networks. These data come from work in
progress'® and are not yet extensive or well converged enough to permit the finite size scaling
analysis discussed above. However, it is clear from Fig. 7 that there is entropic elasticity for

D > Pe-
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Theoretical models

One can construct a simple theory for the entropic elasticity of diluted networks in close
analogy with the classical theory of rubber elasticity. One ingredient is the blobs, links and
nodes picture 1718 of a diluted network near the percolation concentration. The nodes are
connected by strands made of blobs separated by links of single bonds. The network of nodes
has on average the symmetry of the original lattice. A second ingredient is that the entropic
springs behave as springs of zero length, and hence the forces are separable. This turns it
into a one-dimensional problem, or a scalar problem. These two aspects link the entropic
elasticity problem to the random resistor problem. Here we will discuss the elasticity of the
diluted network within the affine approximation of the classical theory of rubber elasticity.
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Figure 7. Shear modulus for the bond diluted triangular lattice as a function of
bond concentration p for two lattice sizes, 32 x 32 and 64 x 64 at the temperature
T = .005kr2 /ks.

The nodes at which different links or filaments are joined are the analog of permanent
crosslinks in a system of randomly crosslinked macromolecules. The links themselves consist
in part of single strands and in part of more rigid blobs. If such a tenuous system is deformed,
one expects that the principal effect will be to lengthen (shorten) the distance between nodes
and thus to modify the entropy of the filaments. Consider two nodes i, j with relative position
Xij, Yy;. If a distortion characterized by stretching factors ()., A,) is applied to the system
and if the nodes follow this distortion in an affine manner, we expect that the entropy change
of the filament connecting these nodes due to this distortion will be

k_Bthj(’\x) ’\y) - Rlz_y(l) 1)
a? N

ASy; = — (12)
where a is the nearest neighbor distance, N the number of links (single bonds) between the
nodes and R? = ij + Y,? This expression is obtained by treating the filament as a Gaussian
random walk as is usually done in the classical theories of rubber elasticity. Averaging over
all pairs of nodes for A\; = 1 + ¢, A\, = 1 — ¢, we obtain the estimate

o= 22A ~ 224 - 222 A (13)

AF _ ksTAS _ ksT Ny <R2(1, 1)>
N
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where N is the number of links, A the area of the system and AF the change in Helmholtz
free energy obtained by ignoring any changes in internal energy.

From studies of percolation clusters #2°, we have Ny/A ~ €72 ~ (p — p.)? and
< R%?/N >~ £2/N ~ (p—p,)}~% 20, Therefore, on the basis of this very simple picture, we
obtain u ~ (p — p.), i.e. f =1 which is not consistent with the results of our simulations.
Of course, there are at least two aspects of the above argument that are suspect. First, the
assumption that the deformation of the system is affine clearly ignores fluctuations in density
and therefore of local rigidity. Second and probably more important is the fact that we have
ignored the self-similarity of percolation clusters 2! and modeled the known fractal structure
by a network of nodes that effectively has fractal dimension D = 2. It is perhaps worth
noting that an analogous calculation 2¢ of the conductivity of random resistor networks near
the percolation point also predicts ¢ ~ (p — p.) which is similarly inconsistent with the
corresponding simulation data.

DISCUSSION AND CONCLUSION

In this paper we introduced a new dimension to the problem of the rigidity of random
networks, that brought about by the effects of temperature. These will be important in the
region between the connectivity percolation and the rigidity percolation, where the network
is soft, and its entropy is large. ,

The onset of entropic rigidity has to occur at the geometric percolation point. It is a
thermodynamic rigidity tied to the change in entropy upon deformation. The closest that
one can come to think in terms of mechanical rigidity is to note that entropic springs are
equivalent to stretched springs, and therefore a single spring under shear will have a lateral
linear restoring force. This is indeed quite contrary to the situation of an unstretched spring
— the whole issue of mechanical rigidity changes if the system is stressed 2.

The displacement of the critical point from p, to p, at finite temperature, raises a number
of interesting issue about the critical behaviour of this system. At finite temperature, there
will be a crossover from entropic to mechanical rigidity in the neighborhood of p;.

The models that we have studied to date are two-dimensional. Exploring three dimensional
equivalents would obviously help to distinguish between the possibilities f = v and f = ¢:
for the 3D f.c.c lattice, the conductivity exponent ¢t =~ 2 and v = 0.88.

Glasses are random networks, usually with bond-bending forces. Near percolation with
strands longer than the persistence length of connecting bonds, we will have a situation similar
to the one we studied, albeit three dimensional. The onset of entropic rigidity is therefore
expected to occur at the percolation threshold. If data was available on the temperature
variation of the elastic constants, the entropic contribution to the elastic constants could be
extracted, as discussed in the section titled Entropic Rigidity. The entropic contribution should
rise linearly with temperature, and will have an effect on the coefficient of thermal expansivity
which is expected to decrease with temperature. Temperature increases the force constant and
therefore for equal tension the elongation will be smaller: entropic solids like rubber shrink
with increasing temperature. ‘
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