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PHILOSOPHICAL MAGAZINE LETTERS, 1996, VOL. 74, NO. 4, 253± 258

Dislocation motion in silicon: the shuffle± glide
controversy

By M. S. DUESBERY

Fairfax Materials Research Inc., 7305 Beechwood Drive, Springfield, Virginia
22153-2336, USA

and B. JOOÂ S

Department of Physics, University of Ottawa, 150 rue Louis Pasteur, Ottawa ON
K1N 6N5, Canada

[Received 31 May 1996 and accepted 13 June 1996]

ABSTRACT
A simple explanation, in terms of the dislocation line energy, for the

preference for dislocation motion on glide rather than shuƒ e planes in silicon
and other diamond cubic materials is advanced.

Silicon and other diamond cubic (dc) structured materials form part of the
essential infrastructure of the modern electronics industry. The presence and move-
ment of dislocations in microelectronic devices can severely impair their perfor-
mance. It is surprising, therefore, that one of the simplest and most fundamental
questions relating to dislocation motion in the dc lattice, namely whether disloca-
tions move on the widely spaced shuƒ e planes or the narrowly spaced glide planes,
remains without an unequivocal answer. Theoretical arguments, without exception,
predict that slip should occur on the shuƒ e planes. With equal unanimity, experi-
mental observations indicate that slip does occur on the glide planes. This letter will
suggest that there is a simple resolution to this problem.

The silicon (from here on the discussion will centre on silicon as a paradigm for
the dc structure) crystal structure is built from two interpenetrant fcc cells with a
mutual displacement vector of (a/ 4) k 111l . The glide dislocations are closely related
to those found in fcc crystals, with a perfect dislocation Burgers vector of (a/ 2) k 110l
and slip plane {111}. However, there are two types of {111} plane in silicon, as
shown in the k 110l lattice projection in ® g. 1. The {111} planes lying between the
narrowly spaced ((a/ 12) k 111l ) planes of atoms in ® g. 1 are known as the glide
planes; this terminology was introduced by Hirth and Lothe (1982) as a reminder
that Shockley partial dislocation pairs can move freely on these planes. The intrinsic
stacking fault which binds the partial pair can exist only on the glide planes. Those
{111} planes situated between the widely spaced ((a/ 4) k 111l ) atom planes are called
the shuƒ e planes. There are no stable stacking faults on these planes (Kaxiras and
Duesbery 1993), so that dislocation dissociation into partial dislocations lying on the
shuƒ e planes is not possible. Shockley partial dislocation pairs, which must lie on the
glide planes, cannot move on the shuƒ e planes without the (di� usive) dragging of a
row of vacancies (the so-called shuƒ e) (Hornstra 1958, Amelinckx 1979). It is impor-
tant to recognize that this distinction applies only to Shockley partial dislocation
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pairs; perfect dislocations are geometrically free to move on either type of plane
without the need for atom shuƒ ing.

Elementary theoretical considerations suggest strongly that dislocation motion
on the shuƒ e planes should be easier than on glide planes (Shockley 1953). For
example, movement through one repeat distance on a shuƒ e plane breaks one
covalent bond per atomic length of dislocation (® g. 1). The equivalent step on a
glide plane involves the breaking of three bonds, a higher-energy process which
implies greater resistance to motion. More detailed theoretical work dramatically
con® rms this hypothesis. Calculations of the Peierls stress for shuƒ e and glide dis-
locations using the Peierls± Nabarro (PN) model (JooÂ s, Ren and Duesbery 1994) with
generalized stacking-fault energies determined by density functional methods
(Kaxiras and Duesbery 1993) indicate values nearly an order of magnitude higher
for glide partial dislocations than for shuƒ e dislocations (perfect glide dislocations
show a Peierls stress more than two orders of magnitude larger still, and therefore
these will be ignored). For example, the Peierls stresses for the 30ë glide partial and
the shuƒ e screw dislocations are calculated by the PN method to be 0 5́61¹ (¹ is the
k 110l {111} shear modulus) and 0 1́03¹ respectively (JooÂ s et al. 1994). Atomistic
calculations are in fair agreement with these numbers; using the empirical
Stillinger± Weber (1985) interatomic potential, comparative values of 0 3́3¹ (30ë

glide partial) and 0 0́91¹ (shuƒ e screw) are found (Ren, JooÂ s and Duesbery 1995).
On the other hand, in-situ transmission electron miscroscopy obervations (Alexander
1986) demonstrate unequivocally that dislocations in silicon are dissociated into
Shockley partial pairs which move without the need for di� usion. This experimental
evidence indicates that dislocation motion occurs exclusively on glide planes.
Samuels and Roberts (1989) have made detailed measurements of the temperature
dependence of the Peierls stress in silicon. The Peierls stress at the ductile± brittle
transition temperature of 820K is 0 0́073¹ . Linear extrapolation of their results to
0K, the appropriate limit for rigid-dislocation calculations, gives a value of 0 1́5¹ ,
roughly midway between the atomistic shuƒ e and glide values cited above. This
lends some credence to the theoretical calculations but further emphasizes the
shuƒ e± glide discrepancy. The observed free motion of Shockley partials leads
naturally to the hypothesis that it is the dislocation dissociation itself which is
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Fig. 1

Glide and shuffle planes in silicon.
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responsible for the discrepancy, but no physical reason has yet been advanced to
support this speculation.

A resolution to the question comes via recognition that, in materials which
exhibit signi® cant dislocation± lattice coupling, the dislocations do not move by
rigid translation, except in the strict zero-temperature limit, but rather by the nuclea-
tion and propagation of kink pairs. This mechanism is illustrated in ® g. 2. A dis-
location lying along a low-energy direction (the broken lines in ® g. 2) develops a
thermally activated bulge (® g. 2 (a)) which under suitable conditions may reach the
adjacent low-energy site (® g. 2 (b)), at which point the high-energy arms of the bulge,
known as kinks, can move apart (® g. 2 (c)), dragging the entire dislocation through a
unit translation. While a full treatment of kink pair activation at the atomistic level is
complex (Duesbery 1983), the demonstrated success of the quasi-elastic PN model in
the treatment of dislocations in silicon (Hansen et al. 1995) suggests that a similar
but simpli® ed approach might serve the purpose. A suitable approach is to treat the
dislocation as a linear elastic string with energy C per unit length lying in a periodic
Peierls potential WPN(y) (see ® g. 2) (Dorn and Rajnak 1964, Guyot and Dorn 1967).
This is permissible, even though the con® gurations in ® gs. 2 (b) and (c) are of atomic
dimensions in the y-direction, because almost all the energy of a dislocation resides
in its long-range linear elastic ® eld. Therefore the energy perturbation introduced by
the bulge in the dislocation, which is due principally to the increased line length, can
be approximated well by a linear elastic model.

In the presence of an applied stress ¿ the enthalpy of the bulged dislocation in
excess of that of the straight dislocation is

U = ò
¥

- ¥
W (y) 1 +

dy
dx( ) 2[ ]1/ 2

- W (y0) - ¿b(y - y0)
ì
í
î

ü
ý
þ

dx, (1)
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Fig. 2

The kink pair mechanism for dislocation motion.
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in which the total line energy W (y) is the sum of the elastic line energy C and the
Peierls energy WPN(y), b is the Burgers vector and y0 is the position of the straight
dislocation in equilibrium with the Peierls potential and the applied stress. The ® rst
two terms in the integrand of eqn. (1) represent the increase in line energy, and the
third term is the work done by the applied stress. Equation (1) neglects the linear
elastic interaction energy of the kinks and will therefore be a better approximation
when the kinks are widely separated. Also neglected is any change in the dislocation
core energy; this is expected to be small in comparison, as noted above. The integral
in eqn. (1) can be minimized with respect to the shape y(x) using Euler’s equations.
After some manipulation, an expression for the kink pair activation enthalpy can be
obtained as follows (Dorn and Rajnak 1964):

Ukp = ò
ym

y0

W (y)2 - [W (y0) + ¿b(y - y0)]2{ }
1/ 2

dy, (2)

where ym is the point of maximum advance of the bulge. The integral in eqn. (2) is
easily evaluated numerically. This has been done for the shuƒ e screw and 30ë partial
dislocations in silicon, using the values for WPN(y) calculated from the PN model
(JooÂ s et al. 1994) and a representative value of ¹b2 per unit length for the elastic line
energy C . This comparison between total shuƒ e and partial glide dislocations is
justi® ed because the stacking-fault energy in silicon is su� ciently low (about
50mJm- 2) that the partials behave independently (Alexander 1986). The small e� ect
of the stacking fault on the activation process for the glide partial, the sign of which
depends on whether the fault leads or trails the partial, is neglected. The results are
shown in ® g. 3. The activation enthalpy for the 30ë glide partial is signi® cantly
smaller than that for the shuƒ e screw over the entire range of stresses up to that
operative at the ductile± brittle transition temperature. This means that slip on the

256 M. S. Duesbery and B. JooÂ s

Fig. 3

Kink pair activation enthalpies in silicon.
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glide planes is expected to be preferred, in agreement with experiment. The limiting
magnitudes of the calculated enthalpies at zero stress are comparable with the mea-
sured activation energy of 2 2́ eV in silicon (Alexander 1986).

While the calculations are approximate, the preference for kink pair activation
on the glide planes has a simple physical origin. The largest part of the activation
enthalpy (2) comes from the additional length of dislocation which must be gener-
ated to form the bulge. This term depends on the line energy C , which is proportional
to the square of the Burgers vector. Since the Burgers vector for shuƒ e dislocations
is larger than that for the glide partials by a factor of 31/ 2, the contribution of the line
energy term to the activation enthalpy is proportionately larger. The magnitude of
the line energy is an uncertain quantity. For straight dislocations, the line energy is
given by

C = A
¹b2

4p
ln

K

²( ) , (3)

where A is an elastic orientation factor of order unity, ² is an inner cut-o� radius of
the order of the lattice constant and K is the screening length of the dislocation
substructure. It is conventional to choose an average value for C of 0 5́¹b2 in metals,
which have dislocation densities of order 1011 m- 2 in the unworked state. In silicon
the corresponding density is of order 108 m- 2, implying a larger screening length, and
for this reason a value for C of ¹b2 has been used. The results shown in ® g. 3 are
sensitive to the value chosen for C only in magnitude. If the value of C appropriate
for metals is used, the enthalpies drop by about 0 5́ eV, but the preference for
nucleation on the glide plane remains.

This letter has advanced an elastic mechanism based on simple physical consid-
erations in explanation of the observed preference in silicon and other dc materials
for slip on the glide, rather than shuƒ e planes. To the best of the present authors’
knowledge, no other explanations have been put forward. There may be other fac-
tors involved in the kink mechanism for dislocation motion in silicon which have not
been considered here. For example, no consideration has been given to the role of the
kink migration energy, which has been implicitly assumed to be substantially smaller
than the nucleation mechanism. Detailed atomistic calculations (Bulatov, Yip and
Argon 1995) using the Stillinger± Weber potential have identi® ed a low-energy kink
migration mode with an activation energy of 0 2́2 eV, consistent with this assump-
tion. Electromechanical e� ects, including dislocation core reconstructions, have been
ignored. These are likely to play a greater part in doped material than in pure silicon
but may be of signi® cance. Core reconstructions are necessary only for glide partials
and would lower the ground-state energy, thereby favouring motion on the shuƒ e
planes.
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