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Extrusion of small vesicles through nanochannels: A model for experiments
and molecular dynamics simulations
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We propose a model that predicts the final sizes of lipid bilayer vesicles produced by pressure extrusion through
nanochannels and we conduct large-scale coarse-grained molecular dynamics simulations of the phenomenon. We
show that, to a first approximation independent of pressure, vesicle size can be predicted by a simple geometrical
argument that considers an invariable inner vesicle volume enclosed by a finitely extensible lipid bilayer. The
pressure dependence is then incorporated in our model by arguing that the effective channel radius decreases with
increasing pressure due to a thickening of the lubrication layer between the vesicles and the channel wall. We
fit our model to the experimental data of Patty and Frisken [Biophys. J. 85, 996 (2003)]. We predict that at high
pressure, vesicle size significantly depends on channel length and, therefore, flow rate. The CGMD simulations
reproduce the physical principles of the model. They also show the build-up of the stress in the vesicle, and
typical rupture scenarios as the pressure gradient is increased.
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I. INTRODUCTION

Small unilamellar lipid bilayer vesicles (SUVs), or lipo-
somes, are often synthesized for research and pharmacological
applications [1–3]. One of the most popular techniques to
produce such soft objects is the pressure extrusion of a vesicle
suspension through an array of nanochannels [2,4–7]. Related
to this procedure, a long-standing goal has been to be able
to predict the average final size of the extruded liposomes
given the parameters of the system, which are: lipid nature,
concentration of lipids in suspension, temperature, applied
pressure, and radius of the nanochannels. Two models have
been proposed: the first by Clerc and Thompson [8] refers
to the Rayleigh instability [9] and predicts a final vesicle size
larger than observed [5–7] and mostly independent of pressure;
the second by Patty and Frisken [7] uses the analogy of blowing
a bubble through a hole to describe the initial entry of large
vesicles in the smaller nanochannels and derives a prediction
from an analysis of the system in static equilibrium. Although
this second model successfully fits their data, it requires two
free parameters that are not clearly linked to the physics of
vesicle pressure extrusion and looks at the problem from
a static viewpoint. In contrast to this static description our
model includes a dynamic (i.e., rheological) description of the
extrusion.

Pressure extrusion involves multiple passages through
nanochannels, and we can assume that in the final passages,
vesicles mostly unilamellar, flow in and out without breaking
and their shape goes back and forth between a spheroid
outside of the channels and a spherocylinder inside. The
spherocylinder has a greater area than the sphere of equal
volume. The final vesicles are of a size such that the lipid
bilayer can tolerate this area difference. We show that to a first
approximation, this prediction is valid. We then incorporate the
effects of pressure in our simple geometrical argument using
elements of a model of spherocylindrical vesicles flowing
in narrow channels developed by Bruinsma [10] to predict
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the final sizes of extruded vesicles as pressure is increased.
This idea was mentioned by Hunter and Frisken [5] but not
exploited. Flow being involved here, it is expected that the
length of the channels would be an important parameter in the
process. Frisken et al. [6] find that at low pressure, doubling
the length of the channels does not significantly influence the
final sizes of the produced vesicles. Our model corroborates
experimental evidence at lower pressures but predicts that there
is a length dependence at high pressure, which suggests further
experimental investigation. Our model can also explain the
small dependence in lipid concentration observed [6].

In addition to the rheological model, we performed out of
equilibrium coarse-grained molecular dynamics simulations
of vesicle extrusion to confirm our geometrical argument,
to corroborate some main elements of Bruinsma’s theory
[10], and to describe the initial entry of a large vesicle
in a nanochannel and its subsequent rupture. Although the
extrusion of vesicles [11] and erythrocytes [12] has been
simulated in the past, to the best of our knowledge, no true
bilayer vesicle in an explicit solvent has ever been simulated in
such a context. We leverage the computing power of graphical
processing units (GPUs) to make this feasible in a relatively
short time frame.

Our model and study should be useful to experimentalists
considering pressure extrusion as a means to produce lipo-
somes, but also to the large community studying the flow of
diverse cells in and out of narrow channels such as red blood
and plasma cells flowing in narrow capillaries.

II. EXTRUSION MODEL

The production of liposomes or SUVs through pressure
extrusion consists in starting with a suspension of large
and possibly multilamellar vesicles (MLVs) that is pushed
by a pressure drop �P multiple times through an array of
nanochannels of average radius Rp and length Lp as seen in
Fig. 1 (typically 10–15 times [5–7]). For every passage through
the extruder there is an ever-diminishing drop in the average
vesicle size (see Fig. 1 in the article by Frisken et al. [6]).
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FIG. 1. (Color online) In the final passages, vesicles flow through
the extruder back and forth going from a roughly spherical shape
outside to a spherocylindrical shape inside. Some key variables are
highlighted.

Toward the end of the entire extrusion procedure, most vesicles
in suspension are unilamellar [7] and flow in and out of the
nanochannels without rupturing. To a first approximation, we
assume that in these last passages they transition from a nearly
spherical shape outside the nanochannels to a spherocylindri-
cal shape inside and back again while conserving volume as
depicted in Fig. 1. Let us develop this argument.

A. Surface and volume conservation

We start with a vesicle of apparent initial spherical area
A0 = 4πR2

0 enclosing a volume V0 = 4πR3
0/3. The mem-

brane tension γ is related to its fractional surface expansion
α = �A/A0 by:

α = kbT

8πkc

ln

(
1 + c

γA

kc

)
+ γ

KA

, (1)

where KA is the area compression modulus, kc, the bending
rigidity, and c � 0.1 is a constant related to surface undulations
[13]. For high enough tension, γ ∼= KAα. Let us assume that in
the extrusion process the vesicle volume stays constant while
its area expands. Then there exists a critical value αc where the
vesicle ruptures. This critical surface expansion αc can have
two contributions: (1) αA related to the flattening of the excess
area in the membrane; (2) αγ related to the lysis tension in the
bilayer which depends on the nature of the lipids [see Eq. (1)].
Thus, αc = αA + αγ .

If the vesicle is pushed almost quasistatically in a nanochan-
nel of radius Rp, it will do so without breaking as long as the

surface expansion remains below a threshold characterized by
αc. Assuming the steady-state shape in the channel to be that
of a spherocylinder of side length Lc and radius Rp (see Fig. 1
with h = 0), we can find the critical vesicle to channel radius
ratio R = R0/Rp for which the vesicle barely remains intact
by solving the following derived polynomial:

V0 = 4πR3
0

3
= πLcR

2
p + 4πR3

p

3
= Vf , (2)

(1 + αc)A0 = (1 + αc)4πR2
0 = 2πLcRp + 4πR2

p = Af ,

(3)

2R3 − 3(1 + αc)R2 + 1 = 0. (4)

Equation (2) accounts for volume conservation and Eq. (3)
accounts for surface expansion, here assumed equal over the
entire deformed vesicle. Combining Eqs. (2) and (3) leads to
Eq. (4). It will be shown in Sec. III that Eq. (4) alone gives
a rough approximation of the final size vesicles obtained by
pressure extrusion. The next subsection extends our model to
account for the pressure dependence.

B. Pressure dependence

Between the surface of a spherocylindrical vesicle and the
surface of the channel it is flowing through, there is a relatively
thin lubrication layer of thickness h (see Fig. 1 and inset of
Fig. 5 for a close-up in simulations) that grows with increasing
vesicle velocity U . The vesicle essentially travels in a channel
of effective radius Reff = Rp − h that decreases with U and
solving Eq. (4) in this case gives the ratio R′ = R0/Reff . Thus,
if we wish to get the corrected ratio R = R0/Rp for a given
applied pressure �P we first need to calculate h. Bruinsma
has given an expression for h as a function of U [10]:

h ∼= 2.05Rp

(
ηU

γf

)2/3

, (5)

where η is the solvent’s viscosity and γf is the frontal
membrane tension of the vesicle. The membrane tension γ

is predicted to be linearly decreasing along the cylindrical part
of the traveling spherocylindrical vesicle going from γf at the
front cap (z = 0) to γr at the rear cap (z = Lc), such that

γ (z) = γf − ηU

h(U )
z. (6)

However, we will assume a uniform mean tension γ̄ along
the length of vesicle to simplify our calculations such that
γf

∼= γ̄ in Eq. (5). Bruinsma also developed a Darcy-type law
to describe the flow of spherocylindrical vesicles in narrow
channels. First, he assumed that each of the N vesicles in a
channel of length Lp at a given time diminishes the pressure
drop �P across the whole channel by an amount �P ∗(U ),
such that Poiseuille’s law becomes

ηU = R2

8

(
�P

Lp

− n�P ∗(U )

)
, (7)

where n = N/Lp is the linear density of vesicles in the chan-
nel. He then equated the energy dissipated in the lubrication
layer to the work done by the pressure differential to drive the
system and obtained a Darcy-like equation with an effective
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channel permeability K ′, which depends on the velocity U :

ηU = K ′ �P

Lp

= R2
p/8

1 + nRpLc/4h(U )

�P

Lp

. (8)

Since the mean flow velocity inside a channel is roughly equal

to U , the above can be converted to a flow rate Q ∼= πR2
pK ′

η
�P
Lp

.
Supposing the vesicles flowing back and forth in the extruder
can only barely support it without rupturing, we can make
γ̄ = γl , the lysis tension, and calculate the ratio R = R0/Rp

at a given pressure �P iteratively until the solution converges
using Eq. (8) for the velocity U :

R(Rp,�P,αc) = {
(1) Calculate R′ by solving Eq. (4) for a given αc

(2) Estimate Lc using Eq. (2)

(3) Estimate h using Eqs. (5) and (8)

(4) Calculate Reff = Rp − h

(5) Improve Lc using Rp = Reff with R′ in Eq. (3)

(6) Improve h using the new value of Lc

(7) Repeat steps 3 to 5 until h and Lc converge

(8) Get R from h and R′} (9)

This is our complete model to predict the final size of
extruded vesicles. Let us now discuss its agreement with
experimental results.

III. MODEL AGREEMENT WITH EXPERIMENT

Let us consider vesicles made of POPC lipids such as in
Patty and Frisken’s study [7] with KA

∼= 234 mN/m, kc
∼=

1.43 × 10−19J, γl
∼= 7.4 mN/m, Rp = [25,50] nm, and Lp =

6 μm. Using Eq. (1) we find αγ
∼= 0.04. Solving Eq. (4) with

this value for αc gives R = 1.23 regardless of channel radius or
applied pressure. In Fig. 2 we reproduced data that originated
from pressure extrusion experiments performed by Patty and
Frisken on POPC lipid vesicles [7]. Our value of R predicts
the smallest vesicle sizes obtained by extrusion under strong
pressure gradients, whereas we would have expected a better
prediction for the final sizes under the weakest pressures. With
αc

∼= 0.10 we achieve this. Consequently, the final vesicles
must be deflated with an excess area accounting for roughly
6% of the observed expansion (αA � 0.06), which is confirmed
by the swelling they undergo at the end of the extrusion runs
[14]. Although quite simplistic, we are convinced that our
geometrical argument shows that to predict the final sizes of
extruded vesicles one needs to describe how these objects flow
through nanochannels.

Let us now include the pressure dependence. We fitted
Eq. (9) to data from Patty and Frisken’s paper [7]. We let
αc be a free parameter and used all other parameters therein
except n that we fix to a value of 1/Lp

∼= 1.67 × 10−7m−1,
a single vesicle per channel, which would correspond to a
low lipid concentration. The model only weakly depends on n.
Figure 2 shows the best fits and Table I gives the values for αc as
a function of the channel radius. The fits are in good agreement
with the data. All expansion coefficients compare favorably
with one another and are close to the upper limit αc = 0.10
considered in the geometrical argument for vesicles slightly
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Rp = 40nm

Rp = 50nm

Flow model
ΔV ∝ ΔP−1

FIG. 2. (Color online) Experimental data of final vesicle sizes
expressed in terms of the ratio R = R0/Rp as a function of the
pressure drop �P for three different channel sizes are reproduced
from Patty and Frisken’s paper [7]. The horizontal gray dot-dashed
lines are those for αc = 0.04 at R = 1.23 and αc = 0.10 at R = 1.39.
The blue dashed lines represent the fits of our flow model, while the
green dot-dashed lines are those with the volume relaxation argument
included.

deflated with some excess area. Our model does not predict
correctly the ratio R for the very lowest pressures especially for
Rp = 40 nm. We think this is where one needs to pay careful
attention to the first few passages in the extruder. It is quite
possible that at lower pressures, the probability of forming
large deflated vesicles with much excess area and reduced
volume is greater. To account for this in our model we can
potentially relax the volume by introducing a �V ∝ �P −1,
which allows to better fit the data, but by doing so we need to
introduce a free parameter hard to relate to the actual physics
in the system. We show the resulting fits in Fig. 2 for the sake
of completeness, although we will not further use this volume
relaxation argument in the following discussion.

We took our flow model with the values of αc we obtained
and doubled the channel length Lp as in the paper by Frisken
et al. [6], where they report no significant change in the final
vesicle sizes at low pressure. Given the apparent experimental
uncertainties, we show in Fig. 3 (top plot) that our model
recovers that result since all curves seem to converge at low
pressure. Indeed, in this limit where the flow rate is weakest,
vesicle size is mostly defined by the geometrical constraints.

TABLE I. The mean critical surface expansion αc obtained while
fitting data from Patty and Frisken’s paper [7] is roughly 0.10.

Channel radius Rp (nm) Critical surface expansion αc

25 0.083 ± 0.002
40 0.111 ± 0.005
50 0.105 ± 0.003
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MARTIN BERTRAND AND BÉLA JOÓS PHYSICAL REVIEW E 85, 051910 (2012)

Rp = 50nm

2Lp

4Lp

n = 0.167μm−1

n = 3.34μm−1

Rp = 50nm

ΔP (Psi)

R
0
/R

p

Lp = 6μm

n = 0.167μm−1

Lp = 6μm

FIG. 3. (Color online) Top plot: compared to the reference
(bottom blue line), doubling (middle red line), or even quadrupling
(top green line) the channel length does not change much the final
vesicle sizes at lower pressures, which corroborates previous findings
[6]. The difference is much more important at higher pressures.
Bottom plot: increasing the initial lipid concentration inevitably
increases the number of vesicles in a given channel and reduces the
flow rate, which results in slightly bigger final vesicles as previously
observed [6].

However, we predict that at higher pressures the final mean
vesicle size strongly depends on channel length or flow rate if
one prefers as they are related. In fact, if the reduced vesicle
size R is plotted as a function of the flow rate Q proportional
to the pressure gradient �P/(channellength), the theoretical
predictions in Fig. 3 collapse unto a single curve (not shown).
We therefore suggest revisiting the channel length doubling
experiment at a higher pressure to test the validity of our
prediction.

Interestingly, the flow rate dependence can also explain
a result reported in the same paper [6], which is vesicle
size weakly increases with lipid concentration. A higher lipid
concentration results in an increase in n, the vesicle density in
the channel, thus decreasing the flow rate Q. By increasing n

twentyfold, roughly the limit density of vesicles in a channel
before they start interacting, our model predicts a slight
increase in the average vesicle size, which is coherent with
experimental observations (see Fig. 3, bottom plot). However,
the increase is more significant in Ref. [6]. This is most
probably due to our approximation of a constant n for all
pressure drops �P . Indeed, as �P increases, the size of
vesicles traveling in the channel without rupturing decreases,
which could lead to a slight increase in n.

IV. CGMD SIMULATIONS OF THE EXTRUSION PROCESS

Our flow model presented in Sec. II predicts the final sizes of
extruded vesicles based on an analysis of the last few passages
in a pressure extrusion run where size is expected to vary only
marginally. It combines a geometrical argument (Sec. II A)
to elements of Bruinsma’s description of spherocylindrical
vesicles flowing down narrow channels (Sec. II B). Using a
coarse-grained molecular dynamics (CGMD) model, we thus
decided to simulate small inflated and spherical lipid bilayer

vesicles being pressure extruded in channels of different sizes
to corroborate qualitatively if not quantitatively the various
components of our model (Sec. IV B). We also simulated
larger vesicles extruded in the same narrow channels to
give a qualitative description of the initial extrusion passages
(Sec. IV C).

A. Simulation details

1. Model

We first performed CGMD simulations of planar lipid
bilayer systems. We modeled all interactions using Goetz
and Lipowsky’s set of potentials [15] where σ is the unit of
length, ε, of energy, τ , of time, and m, of mass. We chose
a thermal energy kBT = 1.0ε for all our simulations. We
used lipids with one bead for the hydrophilic head and two
beads for the hydrophobic tail. The lipids are fully flexible
with no bending potential along their length. The hydrophilic
solvent is of the Lennard-Jones (LJ) type with a density
of 0.8σ−3 and shear viscosity η = 1.98 ± 0.16σ−2√mε as
calculated using Green-Kubo’s formulation [16], in agreement
with Ref. [17]. We characterized flat bilayers made of these
short lipids and immersed in such a solvent. From the
calculation of the microscopic stress tensor [15], we found
a0

∼= 1.9σ 2, the area per lipid at which the stress is zero
with a bilayer thickness lBM

∼= 4.8σ , and an area compression
modulus KA = 8.84 ± 0.76ε/σ 2. We then calculated the
bending rigidity using its relation to the area compression
modulus [18] kc = KAl2

BM/48 = 4.24 ± 0.36ε. As expected,
our membranes are softer than those studied by Goetz and
Lipowsky made of lipids with longer tails in a solvent of lower
density at a slightly higher temperature [15,18].

2. Vesicles

We then prepared lipid bilayer vesicles made of our lipids
suspended in the same LJ fluid using the ESPResSo package
[19] with the included mbtools toolbox for lipid bilayer
systems. Vesicles were all initially set up artificially such that
the bilayer was under no stress due to a pressure difference
between the inside and the outside [Fig. 4(a)]. No lipid flips
were observed. Pressures were calculated using the diagonal
components of the stress tensor. In this state, the lipid bead
density across the membrane was found to be close to that
of the fluid ρlip = 0.8σ−3 with a profile in accordance with
realistic simulations of vesicle self-assembly conducted by
Marrink and Mark [20].

3. Extrusion through narrow channels

Finally, each vesicle was inserted in a large system made
of two reservoirs linked by a channel of radius Rp and length
Lp in a box periodic in all three directions. Each vesicle was
pressure extruded through the narrow channel whose walls
consisted in solvent beads laid out on an FCC lattice with
density 1.0σ−3 and anchored in space with stiff harmonic
springs [21]. We used the nonconservative part of dissipative
particle dynamics (DPD) interactions to thermostat the system
to a thermal energy kBT = 1.0ε as they allow for momentum
propagation [22], an essential feature to study flows (out of
equilibrium dynamics). The anchored particles making up
the wall interact with the rest of the system through DPD
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FIG. 4. (Color online) Slices from 3D simulations of the pressure extrusion of vesicles in nanochannels. (a) The initial shape of the vesicle
for reference. (b) A spherocylindrical vesicle flowing in the channel. (c) A spherocylindrical vesicle breaking in a channel while pushed by a
strong pressure difference. (d) The typical shape of a vesicle as it is entering the channel. (e) The rupture of a large vesicle at the entrance of a
small channel.

interactions such that friction is reproduced in their vicinity.
Indeed, simulations of the LJ fluid alone flowing under a
pressure gradient yields a Poiseuille flow inside the channel
with a negligible slip length, the velocity being essentially zero
at the wall (data not shown). Pressure extrusion simulations
were executed on graphical processing units (GPUs) using a
customized version of the very fast and optimized HOOMD-
Blue package [23,24] with an implementation of DPD [25].
Simulations ran on Sharcnet’s Angel cluster, which contains
44 NVIDIA Tesla 1070 GPUs. Of course, even with a decent
amount of computation power it always remained beyond our
ability to simulate a suspension of multiple vesicles pressure
extruded multiple times. But we can learn much from the study
of the extrusion of a single vesicle.

4. Units

The SI units corresponding to the dimensionless quantities
we use are not well defined as mentioned in Ref. [15]. Hence,
the following only serves as a guide. We assume that our
lipids are very crude approximations of two tails lipids: each
tail bead is twice five CH2 groups, which defines a length
scale of σ ∼= 0.6 nm and a mass scale NAm ∼= 140 g/mol
according to Ref. [26]. The energy scale is fixed at NAε ∼=
NAkB 310 K = 2.6 kJ/mol. This gives a time scale τ = 4.4 ps
such that the duration of extrusion events in our short channels
is on the tens of nanosecond scale. Other typical values are:
�P = [290,2300] psi, U ∼ 2 m/s, and Q ∼ 4 × 10−10 ml/s
(Rp

∼= 8 nm and Lp
∼= 60 nm). For comparison, in the studies

conducted by Frisken et al. [5–7], �P = [0,700] psi, U ∼
0.3 m/s, and Q ∼ 10−10 − 10−9 ml/s, which means we would
be in the right range.

B. Final passages simulated

The extrusion in nanochannels of small vesicles made of
nl = 3000 lipids was simulated. Once setup and equilibrated,
the vesicles were composed of an outer layer made of
nout = 1841 lipids with a mean area per lipid head aout =
1.86σ 2, which corresponds to a radius of R0,out = 16.5σ ,
while the corresponding values of the inner layer nin = 1159,
ain = 1.68σ 2, and R0,in = 11.5σ . The inner heads are more

compressed than the outer heads, which is characteristic of
self-assembled SUVs [20]. Overall the area per lipid of our
vesicles is smaller than a0 = 1.9σ 2 found for flat bilayer
membranes. This is mainly due to the difference in geometry
and the finite size of our systems.

1. Geometrical argument

We tracked multiple observables throughout our simula-
tions, one of the most important being the local area per lipid
a, which is directly related to the stress in the bilayer. It was
calculated from the triangulation of both the outer and inner
layers using the Crust surface reconstruction algorithm [27]
while accounting for lipid flips from one layer to the other.
Following a and its mean ā permitted us to determine both
the time and the spatial coordinates of a rupture event. The
observation of many such events [Fig. 4(c)] leads to values
of the expansion coefficient for both layers very close to
one another: αc,out

∼= αc,in ≡ αc
∼= 0.21. Feeding this αc into

Eq. (4) gives a ratio R = R0/Rp = 1.62. Taking R0 = R0,in,
we find Rp,crit = 10.2σ , the smallest channel radius into which
the vesicle can penetrate and travel without breaking. Now
in our simulations, even at the lowest pressures, there is a
lubrication layer between the vesicle and the channel wall of
minimal thickness close to the size of a LJ bead hmin

∼= 1.1σ .
We thus need to compare the predicted critical radius with
the minimal effective radius Reff = Rp − hmin. Because our
walls were set up on a lattice to maximize impermeability,
we could not fine tune the radius to a very specific value,
but when Rp = 12.0σ , that is Reff = 10.9σ , we could barely
push vesicles in without breaking them while for Rp = 11.5σ ,
Reff = 10.4σ , it appeared impossible on the time scale of our
simulations. Thus, the true size limit is most probably very
close to the one predicted by the geometrical argument.

2. The lubrication layer

We measured the thickness of the lubrication layer h and
can assert that it does increase with the mean flow velocity U

as predicted by Bruinsma [10]. To our knowledge, this is the
first direct measurement of h for a vesicle flowing in a narrow
channel. We show in Fig. 5 the cumulative data for vesicles
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hmin = 1.0 ± 0.2σ

FIG. 5. (Color online) The lubrication layer’s thickness h grows
with ηU/γf as predicted by Bruinsma [10]. Here we used αf , the
frontal area per lipid expansion of the outer layer of the membrane of
our spherocylindrical vesicles traveling in channels that we assume
goes like γf , the frontal tension in the membrane.

flowing in channels of radii Rp = {13.0,13.5,14.0}σ plotted
using nondimensional axes (h − hmin)/Rp versus ηU/αf (U ),
where αf is the frontal area per lipid expansion of the vesicles,
η = 1.98σ−2√mε is the shear viscosity of the surrounding LJ
fluid, and hmin = 1.0 ± 0.2 is the minimum thickness of the
lubrication layer whose value was extracted by fitting the data.
One can see that the expected power law behavior with an
exponent of 2/3 agrees well with our data. Furthermore, the
minimal thickness hmin found corresponds to the approximate
value we can directly extract from simulations at the lowest
pressures (see Sec. IV B1). Fluid particles within a distance
hmin away from the channel wall move with a velocity roughly
an order of magnitude slower than the vesicle and close to
zero such that they essentially create a no-slip layer. This is in
agreement with what we found for a simple LJ fluid flow.

3. Darcy’s law

The actual relationship between flow velocity and pressure
may be written as ηU = K ′(�P − �Pmin)/Lp [6] where
�Pmin is the minimum pressure to push a vesicle of given
size in the channel and K ′ is defined in Eq. (8). We plotted,
in Fig. 6, �P as a function of ULp/K ′ for data from
simulations of small vesicles made of nl = 3000 lipids pushed
in channels of radii Rp = {13.0,13.5,14.0}σ and extracted the
shear viscosity η of the fluid in the lubrication layer and a
mean minimum pressure �Pmin.

The table at the top of Fig. 6 summarizes the results.
The shear viscosities reported in Fig. 6 are all within the
margins of uncertainty of the expected value (see Sec. IV A 1),
a remarkable result given the number of physical quantities
entering the calculation. Any small change to these produces
important deviations in the value of η. As for the minimal
pressure, one would expect it to decrease as the radius of the
channel increases, and this is what we observe: it is harder to
push a vesicle of a given size in a smaller channel. However, we
were not able to directly verify the accuracy of these predicted
values in our simulations due to time constraints (very long
and multiple massive simulations necessary).

0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 0.22

0.2

0.3

0.4

0.5

0.6

ULp/K

Δ
P

Rp (σ) η (σ−2
√

mε) ΔPmin(εσ−3)
13.0 2.01 ± 0.07 0.120 ± 0.008
13.5 2.04 ± 0.12 0.097 ± 0.014
14.0 1.96 ± 0.11 0.033 ± 0.017

FIG. 6. (Color online) Verifying that Darcy’s law of the form
ηU = K ′(�P − �Pmin)/Lp holds for our simulated vesicles. We
here show linear plots of �P as a function of ULp/K ′ for
various channel radii Rp = {13.0,13.5,14.0}σ . The slope is the shear
viscosity η and the intercept, the minimum pressure �Pmin.

4. Tension profile along the vesicle

Figure 7(b) gives a visual representation of the shape and
tension map of a spherocylindrical vesicle traveling down a
narrow channel. The tension corresponds to the mean area
expansion averaged over the two leaflets. A quick look clearly
shows that the most probable location for pore nucleation is
just behind the frontal cap where the cylindrical part starts.
Our observation of multiple rupture events inside the channel
at high pressures confirm this. In the cylindrical portion,
the tension is observed to decrease from front to back as
predicted by Bruinsma [10]. To directly test the relationship
between tension γ and distance z along the vesicle expressed
in Eq. (6), we plotted the area expansion factor profiles α(z)

FIG. 7. (Color online) Vesicle shapes and colors mapped accord-
ing to the total tension in the bilayer calculated from the mean area
expansion as it enters the nanochannel (a) and as it travels inside
in a spherocylindrical shape (b). When at the entrance, the stress
is greatest in the neck region where pore nucleation and subsequent
rupture is most probable, while it appears this maximum is just behind
the frontal part when inside.
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FIG. 8. (Color online) Average tension profiles for the outer and
inner layers of the membrane inferred from the change in area per
lipid α as the spherocylindrical vesicles travel down the channel. The
z coordinate along the length of the objects has been renormalized for
ease of calculation and clarity. One can clearly observe, in the outer
layer, the linear decrease of tension going from the frontal cap of the
vesicle to its back.

as measured at both the inner and outer head groups in Fig. 8.
Assuming we are in a linear regime where γ ∼= KAα we find
that the profile for the outer layer of the membrane αout(z)
corroborates Eq. (6), that is the tension decreases linearly along
the cylindrical part of the vesicle in the channel going from
the front to the back. The slope of the linear part should be,
according to the same equation, ∼ηU/KA(h − hmin). We thus
extracted from our data an approximate value for the area
compressibility modulus KA = 6.95 ± 0.29ε/σ 2. Although
this value is not exactly equal to KA = 8.84 ± 0.76ε/σ 2 found
for a flat bilayer (Sec. IV), it is of the same order of magnitude
and still quite close. Our use of αout in Eq. (6) is justified by
the finite thickness of our membrane and the direct contact
between the outer heads and the lubrication layer. If Bruinsma
considered the full tension in the membrane, he did so while
assuming a negligible thickness which we cannot.

Interestingly, the area expansion profile for the inner layer
αin(z) of the membrane does not follow its outer counterpart
αout(z). Indeed, αin is roughly constant along the cylindrical
part of the vesicle which means the hydrodynamic shear
stresses the outer membrane is subjected to get damped in the
bilayer and do not propagate to the inner heads. At the back of
the vesicle, the hydrodynamic stress on the outer layer is at its
lowest and the stresses on the two layers are comparable. As for
the frontal part, the high curvature spaces out the outer heads
while it compresses the inner heads, which enhances the differ-
ence in area expansion between the two leaflets. This effect will
diminish with increasing vesicle size. It is not clear whether it
will impact the expected location of the rupture point.

C. Initial passages simulated

To produce small vesicles by pressure extrusion, one starts
with a suspension of rather large vesicles that break into
smaller and smaller pieces with each passage through the
extruder until the size stabilizes. Until now one could only

guess the true mechanics of rupture of these large initial
vesicles. For instance, it has been proposed that rupture occurs
at the neck of the channel in an axisymmetric fashion such
that small hemispherical vesicles are expressed from the larger
ones (“blowing a bubble” model of Patty and Frisken [7]). We
show that, in the initial passages, the neck is indeed the most
probable location for a rupture event via pore nucleation [see
Fig. 7(a)] but that it often occurs in multiple sites at the same
time [see Fig. 4(e)].

In our simulations, a rather large vesicle (nl = 10,000)
approaching a small channel (Rp = 12.0σ ) in a converging
flow field eventually gets sucked-in due to the hydrodynamic
friction with fluid particles speeding by as they enter the
channel. Figure 4(d) shows the vesicle as it is squeezing in
the channel. Then one of two scenarios can happen: (1) the
pressure is too weak and the vesicle reaches an equilibrium
state; (2) the pressure is strong enough leading to rupture.
When the vesicle ruptures, it always does so through pore
nucleation whose probability is greater in the neck region,
as shown in Fig. 7(a). However, the cylindrical portion of
the vesicle in the channel is also under considerable stress.
Thus, pores often nucleate in multiple sites at the same time,
which gives rise to flowing lipid sheets along the channel as
shown in Fig. 4(e). The sheets can then rip apart into smaller
pieces in the channel and drift toward the other end where
they fold again into floppy, partly deflated smaller vesicles.
We think that the slightly higher than expected values of the
critical surface expansion coefficient αc that we found while
analyzing results from Patty and Frisken [7] are in part due to
that loss of total internal volume or, equivalently, the creation
of excess area. The polydispersity observed in the final sizes of
vesicles produced by pressure extrusion [5–7] is most probably
a direct consequence of the stochastic nature of the rupture of
large vesicles penetrating into channels of small opening.

V. CONCLUSION

In the first part of this article, we have shown that the mean
final size of vesicles produced by pressure extrusion depends
on two elements: the geometrical constraints imposed on the
vesicles due to volume conservation and finite extensibility,
and the flow rate. It is known that beyond a critical area
expansion αc, a lipid bilayer vesicle ruptures and that the
transition from a spherical shape outside the channel to a
spherocylindrical shape inside is one that inevitably stretches
its membrane if volume is to be conserved: a narrower
channel results in greater area expansion. In addition, the
faster a spherocylindrical vesicle travels inside the channel
the more its membrane stretches since the channel appears
smaller as a result of the thickening of the lubrication layer
surrounding it [10]. Hence, as the flow rate increases, the
size of vesicles that can go through a given channel without
breaking decreases. Our model captures this behavior and
predicts the mean final size of vesicles obtained by pressure
extrusion given the lysis tension γl and related approximate
critical area expansion αc of a lipid bilayer, the radius Rp and
length Lp of the extruder’s channels, and the applied pressure
�P . Flow rate can be varied in multiple ways, the easiest
being a change in either the pressure gradient �P/Lp or the
channel radius Rp. More subtly, Eq. (8) shows that an increase
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in lipid concentration results in a greater density of vesicles per
channel, which decreases the flow rate and produces slightly
larger final vesicles. To test our model and in particular the
flow rate dependence, we propose that the simple channel
length doubling experiment performed at low pressure in the
paper by Frisken et al. [6], where they observed no significant
difference in the mean final size of extruded vesicles, should
be repeated at high pressure, where we predict a large vesicle
size difference.

Fitting experimental data yields an effective critical ex-
pansion parameter αc of the bilayer, which includes both the
unfolding component αA and the expansion component αγ .
αγ is usually known, so the fitting will yield αA a measure of
the degree of floppiness of the vesicle. αA can then be used to
estimate the content loss through the entire extrusion process,
as volume loss is an important generator of excess area. This
could potentially be useful in the context of drug encapsulation
prior to extrusion.

In our model, we assumed a uniform tension along the
length of the spherocylindrical vesicle to be able to derive a
set of equations that we could numerically solve. Although to
us it appears like the appropriate thing to do given the context,
we know it is not true from both the theory and our simulations.
It would be interesting to see if a model that can account for a
linear tension gradient can be constructed.

The second part of our paper presents results from large
scale nonequilibrium coarse-grained molecular dynamics
simulations of nanosized vesicles being extruded in narrow
channels. Both lipids and solvent were explicitly included in
the simulations, which to our knowledge is a first. Simulation
costs in time and/or computing facilities has always been a
major deterrent for doing so, but with the introduction of
GPU-optimized code, it is now feasible on a reasonable time

scale with moderate resources. Ideally, a suspension of vesicles
extruded multiple times through an array of channels would
have been simulated to directly compare with our model. But
this was too expensive in time and resources. Thus, only single
vesicles being extruded were simulated to corroborate the
elements of the model developed in the first part. The results of
our simulations agree exceptionally well with Bruinsma’s [10]
description of a spherocylindrical vesicle flowing in a narrow
channel and our own geometrical argument. We also used our
simulations to try and give a qualitative description of the
initial passages of large vesicles in the extruder. We showed
that large vesicles did not rupture cleanly at the entrance of
the channel but heterogeneously along the cylindrical part
of the vesicle that is within the channel and with a greater
probability in the neck region. The fragments would then flow
down the channel to close again into smaller and floppier
vesicles.

Rupture in the channel of small extruded vesicles was
frequently observed near the critical size. It always occurs
close to the front cap, which a careful analysis of the tension
profile can explain, and it is always accompanied by content
loss and eventual closure of nucleated pores. A detailed
study of this phenomenon will be presented in a subsequent
paper. It should appeal to those interested in the encapsulation
and release of drugs in the body and to those studying the
flow-induced rupture of red blood cells in small capillaries,
since vesicles have similar rheological properties.

ACKNOWLEDGMENTS

The work has been funded in part by the Natural Sciences
and Engineering Research Council (Canada). The authors
thank C. E. Morris for a critical reading of the manuscript.

[1] A. Jesorka and O. Orwar, Annu. Rev. Anal. Chem. 1, 801
(2008).

[2] D. Fenske, A. Chonn, and P. Cullis, Toxicol. Pathol. 36, 21
(2008).

[3] B. Maherani, E. Arab-Tehrany, R. Mozafari, C. Gaiani, and
M. Linder, Current Nanoscience 7, 436 (2011).

[4] M. Hope, M. Bally, G. Webb, and P. Cullis, Biochim. Biophys.
Acta 812, 55 (1985).

[5] D. Hunter and B. Frisken, Biophys. J. 74, 2996 (1998).
[6] B. Frisken, C. Asman, and P. Patty, Langmuir 16, 928 (2000).
[7] P. Patty and B. Frisken, Biophys. J. 85, 996 (2003).
[8] S. Clerc and T. Thompson, Biophys. J. 67, 475 (1994).
[9] L. Rayleigh, Proceedings of the London Mathematical Society

1, 4 (1878).
[10] R. Bruinsma, Physica A: Stat. Theor. Phys. 234, 249 (1996).
[11] G. Gompper and D. M. Kroll, Phys. Rev. E 52, 4198 (1995).
[12] D. Quinn, I. Pivkin, S. Wong, K. Chiam, M. Dao, G. Karniadakis,

and S. Suresh, Ann. Biomed. Eng. 1 (2011).
[13] W. Rawicz, K. Olbrich, T. McIntosh, D. Needham, and E. Evans,

Biophys. J. 79, 328 (2000).
[14] B. Mui, P. Cullis, E. Evans, and T. Madden, Biophys. J. 64, 443

(1993).

[15] R. Goetz and R. Lipowsky, J. Chem. Phys. 108, 7397 (1998).
[16] M. Kenward and G. Slater, Eur. Phys. J. E 14, 55 (2004).
[17] K. Meier, A. Laesecke, and S. Kabelac, J. Chem. Phys. 121,

3671 (2004).
[18] R. Goetz, G. Gompper, and R. Lipowsky, Phys. Rev. Lett. 82,

221 (1999).
[19] H. Limbach, A. Arnold, B. Mann, and C. Holm, Comput. Phys.

Commun. 174, 704 (2006).
[20] S. Marrink and A. Mark, J. Am. Chem. Soc. 125, 15233 (2003).
[21] F. Tessier and G. Slater, Macromolecules 38, 6752 (2005).
[22] T. Soddemann, B. Dünweg, and K. Kremer, Phys. Rev. E 68,

046702 (2003).
[23] J. Anderson, C. Lorenz, and A. Travesset, J. Comput. Phys. 227,

5342 (2008).
[24] A. Anderson and A. Travesset, Comput. Sci. Eng. 10 (2008).
[25] C. Phillips, J. Anderson, and S. Glotzer, J. Comput. Phys. 230,

7191 (2011).
[26] E. Egberts and H. J. C. Berendsen, J. Chem. Phys. 89, 3718

(1988).
[27] N. Amenta, M. Bern, and M. Kamvysselis, Proceedings of the

25th Annual Conference on Computer Graphics and Interactive
Techniques, 415 (1998).

051910-8

http://dx.doi.org/10.1146/annurev.anchem.1.031207.112747
http://dx.doi.org/10.1146/annurev.anchem.1.031207.112747
http://dx.doi.org/10.1177/0192623307310960
http://dx.doi.org/10.1177/0192623307310960
http://dx.doi.org/10.2174/157341311795542453
http://dx.doi.org/10.1016/0005-2736(85)90521-8
http://dx.doi.org/10.1016/0005-2736(85)90521-8
http://dx.doi.org/10.1016/S0006-3495(98)78006-3
http://dx.doi.org/10.1021/la9905113
http://dx.doi.org/10.1016/S0006-3495(03)74538-X
http://dx.doi.org/10.1016/S0006-3495(94)80503-X
http://dx.doi.org/10.1112/plms/s1-10.1.4
http://dx.doi.org/10.1112/plms/s1-10.1.4
http://dx.doi.org/10.1112/plms/s1-10.1.4
http://dx.doi.org/10.1016/S0378-4371(96)00358-5
http://dx.doi.org/10.1103/PhysRevE.52.4198
http://dx.doi.org/10.1016/S0006-3495(00)76295-3
http://dx.doi.org/10.1016/S0006-3495(93)81385-7
http://dx.doi.org/10.1016/S0006-3495(93)81385-7
http://dx.doi.org/10.1063/1.476160
http://dx.doi.org/10.1140/epje/i2004-10006-4
http://dx.doi.org/10.1063/1.1770695
http://dx.doi.org/10.1063/1.1770695
http://dx.doi.org/10.1103/PhysRevLett.82.221
http://dx.doi.org/10.1103/PhysRevLett.82.221
http://dx.doi.org/10.1016/j.cpc.2005.10.005
http://dx.doi.org/10.1016/j.cpc.2005.10.005
http://dx.doi.org/10.1021/ja0352092
http://dx.doi.org/10.1021/ma0508404
http://dx.doi.org/10.1103/PhysRevE.68.046702
http://dx.doi.org/10.1103/PhysRevE.68.046702
http://dx.doi.org/10.1016/j.jcp.2008.01.047
http://dx.doi.org/10.1016/j.jcp.2008.01.047
http://dx.doi.org/10.1109/MCSE.2008.80
http://dx.doi.org/10.1016/j.jcp.2011.05.021
http://dx.doi.org/10.1016/j.jcp.2011.05.021
http://dx.doi.org/10.1063/1.454893
http://dx.doi.org/10.1063/1.454893

