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Elastic properties of randomly cross-linked polymers
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We have carried out extensive molecular-dynamics simulations of randomly cross-linked polymers and
studied the onset of rigidity as the number of cross-links is increased. We find that for our systems, consisting
of chains of lengtiN=10, 20, 30, and 50, the shear modukiganishes at a concentration of cross-links that
is well above the geometric percolation threshold and that it seems to approach Eer¢ras n.)f, where the
exponentf is considerably smaller than either the classical v&a@ or the corresponding exponednrt 2.0 of
the conductivity of random resistor network§1063-651X96)07711-3

PACS numbe(s): 82.70.Gg, 78.30.Ly, 64.60.Ak

I. INTRODUCTION To investigate these and other issues, we have simulated
systems consisting of polymers of lendtl+ 10, 20, 30, and
In the process of vulcanizatiofl] cross-links between 50 monomers with up to 100 chains for the three shorter
molecules on different polymers in a melt convert the systenpolymers and 60 chains for the system wih+ 50. The
from a fluid to an amorphous solid if the density of cross-polymers were first equilibrated as a melt at a temperature
links is high enough. The nature of this solid phase with itsand density equal to those used by Kremer and Grest
unusual elastic properties, as well as the transition from th#vhose data provided a useful check on our procedures and
melt, is of considerable interest. In particular, the past fewesults. Once an equilibrated melt had been obtained, a fixed
years have seen the development of a replica theory of theumber of cross-links was added to the system in the follow-
vulcanization transitior{2—5]. In addition, continuing ad- ing way. A monomer was selected at random and all other
vances in computational power now make it possible to carrparticles within a given distance of this particle were identi-
out nontrivial simulations of such complicated systems.  fied. One of these particles was selected at random and con-
In a previous article[6] two of us have reported on nected to the first particle by the same pair potential used to
molecular-dynamics simulations that were designed to studgonstruct the chains, subject to the following exclusidis:
the variation of the order parameter and the distribution ofwo particles were not permitted to be linked to each other
localization lengths in the solid phase. These simulationsiore than once(ji) cross-links between nearest neighbors on
which involved rather short chains and small system sizeghe same chain were forbidden, afiid) no particle was per-
nevertheless convincingly demonstrated the existence of ®iitted to have more than six cross-links. The last of these
universal functionP(¢) that describes the distribution of lo- restrictions in fact was never used: for our cross-link densi-
calization lengths for a wide range of cross-link density. Inties, the functionality of all the particles was always less than
the present work we extend these simulations to longer polythe maximum. It is worth noting that particles were allowed
mers and larger systems and focus, in particular, on the shet@ cross-link to others on the same chain as long as the dis-
modulusE(n) as function of the density of cross-links  tance along the backbone was at least two units. Further
The classical theory of rubber elasticity, based on an analoggetails regarding the potentials and other parameters are
with percolation on Bethe lattices[7,8], predicts given in Sec. Il.
E~(n—ny)f, with f=3 asn—n,, where the critical con- Once the cross-links had been imposed, the system was
centration of cross-links, is, in this model, the percolation again equilibrated before the calculation of the shear modu-
concentration. Later, de Genr{€§ drew an analogy between lus and other quantities of interest. There are several methods
the elastic modulu€ of a gel and the conductance of a (discussed in Sec. for the calculation of elastic constants
random resistor network and argued that the expohe¢hat ~and we have tested a number of these for efficiency and
describes the form df near the percolation transition should accuracy. Most of our results are obtained for a constant
be the same as that of the conductance, te.2.0. As €nergy fixed strain ensemble and thus yield an adiabatic
pointed out by Feng and Sen in another conféx], this s_hge}r mo_dulus. We expeqt tha}t the behavior near the onset of
analogy strictly holds only if the interparticle potenti@h  rigidity will not depend significantly on the choice of en-
our case, the cross-linking potenjias “separable,” e.g., semble. The bulk of our results are presented in Sec. IV and
that of a zero-length spring. In the more general case of aW€ conclude this article with a brief discussion in Sec. V.
arbitrary spherically symmetric pair potential, the onset of
rigidity generically occurs at a larger concentration than does
percolation and, moreover, there is no longer a reason to
believe that the rigidity exponent is the same as the conduc- We denote the number of polymers in the systemivby
tance exponent. the number of monomers on each chainNyand the cross-

Il. MODEL
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link density, i.e., the number of cross-links per chain,rby 1— XS
In our model, all particles in the system interact through a I oé&z?
purely repulsive truncated Lennard-Jones potential 075 i © %
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g g X
€ (—) —(— +—, rij<21/60' L éja x
Upa(rij) = i i 4 0.5 & ©
0, r;=2Y% . o & O N=50,M=60
’ ij ’ i <& N=10, M=100
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which ensures self-avoidance. On a given chain, there is an i OoO %%
added attractive potentifl2] between nearest neighbors Oy 0
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1, (r”-)z
—5kRgIn 1= 5= |, rij<Rg
2 Ro (2.2 FIG. 1. Plot of the probability that the system of cross-linked
®, rj=Ry, polymers percolates in all three directions as a function of the num-
ber of cross-links per polymaer.
with Ry=1.50 and k=30e/0. The combination of these
two potentials, with the parameters given here, prevent3he average strand length, on the other hand, does not vary a
polymers from passing through each other. great deal in the region of interest. Typically, it lies between
Each system was first equilibrated at a density ofN/3 and N/4, which indicates that even in heavily cross-
po=0.85 and an average temperatlgl/e=1.0. This linked systems, most polymers have only two or three linked
was done with a constant energy molecular-dynamics codmonomers. It is also worth noting that the average strand
using a standard velocity Verlet algorithih3] and periodic  length is, in all cases, considerably smaller than the entangle-
boundary conditions. A time stept=0.005/mc?/e was ment length, which for these densities was estimated to be
used in the integration of the equations of motion and energi.~35[11,16.
was conserved to at least one part irf.10arious properties We note that the cross-linking process introduces a set of
of the melt such as the eigenvalues of the inertia tensor of thguenched random variables, namely the location of the cross-
chains and the mean square end-to-end distance were motiiks, into the system. Randomly cross-linked polymers
tored and found to be consistent with those in the literaturéherefore have some of the features of spin glasses and some
[11]. of the same issues and difficulties with simulations can be
The cross-links were then imposed on the system accordxpected to arise. For example, it is conceivable that there
ing to the following procedure. A particle was selected atcould be ergodicity breaking or sectioning of phase space.
random and a list of other particles within a distance ofWe have partially addressed this in a previous art[@g
1.25r was compiled. One of these particles was then seusing an approach of Thirumalet al.[17]. To date we have
lected at random and tethered to the first particle through theeen no evidence of sectioning of phase space for a system
combination of potential§2.2) and (2.1). Cross-linking be- with a particular realization of cross-links. On the other
tween nearest neighbors on the same chain was not allowdnd, two samples with the same number of cross-links but
nor was more than one link between any pair of particlesvith nonidentical realizations clearly access different regions
allowed. This procedure has the virtue that the equilibriumof phase space. It is conceivable that systems with longer
properties of the meltentanglements and pair correlatipns chains and longer strand lengths may display ergodicity
are properly reflected in the statistics of the cross-linking. breaking even for a given cross-linking, but, as mentioned
In order to further characterize the cross-linked samplesabove, we have as yet no evidence for this.
we have calculated a number of geometrical properties of the From the perspective of the present calculations, the most
system. Figure 1 shows the fraction of samples in which thémportant effect of the quenched random variables is that it
largest cluster percolates in all three directions foris necessary to average measured quantities over different
N= 10,20 withM =100 and folN=50 andM =60 plotted as  realizations of the same number of cross-links. This makes
a function of number of cross-links per chain. The datathe computations extremely time consumifif8]. For the
clearly show that the probability of percolation is essentiallyshorter chains=10,20) we have typically averaged over
independent of chain length but strongly depends on the totdl00 different cross-linkings for each value mfwhereas for
number of chains. Similar results have been previously reN=50 we have generally obtained our results for 50—60
ported by Grest and Kremgd4]. While the data are too samples in the vicinity of the transition and for 20 samples in
scanty to perform a proper finite-size analysis, it is clear thathe heavily cross-linked regime. We note also that before a
percolation occurs for systems of this size foe0.75[15]. new set of cross-links was imposed on the system, the parent
Other quantities of interest in connection with rigidity are themelt was allowed to evolve for several hundred time steps in
number of elastically active segments and the average strarmtder to change the configuration of the liquid at least some-
length. An elastically active segment is defined to be anywhat.
section of a chain between cross-linking points. The strand
length is_ simply the average contour length of_ such elasti- IIl. CALCULATION OF ELASTIC CONSTANTS
cally active segments. For all the systems studied, the num-
ber of elastically active segments increases more or less lin- A number of different computational techniques have
early with the number of cross-links, as one would expectbeen used in the past for the calculation of elastic properties
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of various condensed systems, most frequently solids. These 1 -8
methods can be broadly divided into fluctuation methods, L

first introduced by Squiret al. [19] and recently discussed PR
in detail by Zhou and J®[20] and strain methodgl,21]. PR
Most of our results have been obtained by the second of
these approaches and we describe it first. In the classical
theory of rubber elasticity, the change in free energy of a X
system undergoing a deformatidn,—A L, is assumed to 0+
be essentially due to the change in entropy of the elastically g
active strands. Under the further assumption that the defor- E
mation of each strand is affine and that the entropy scales 05T e b

with the square of the strand lengt@aussian chainsone 0 10 20 30 40 50
obtains an expression of the form

0.5-
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1
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FIG. 2. Plot of the pressure tensor autocorrelation funatgod)
AE = E{)\2+ N2+ \2— 3} (3.1) for 60 polymers of lengttN=50 andN= 100 cross-links. The unit
2V % 7y e ’ ' of time is the basic MD time stept.

where, in this approximation, the modulu$ is ([Paa(t+ T)—P_w][Pw(t)—P_aaD
G=2NkgTh?(r2)/3, whereN, is the number of strands, Coal7)= [P —P. 1%

b a microscopic length scale, an@?) the mean-square o o
strand length. Equating this expression to the work done t(\)/vhere the angular brackets denote averaging byéor the

deform the block, one finds a relation between the mOdUIugystem of 60 polymers of length 50 with 100 cross-links. The

CGa_:l:%ftr;e sut::siﬁg ;p})\pl}l\ei tlo ttr?: sztnetﬂag '?sr t:)e O‘Q’rF_)ec'ﬁme scale is in units of elementary MD steps. It is clear that
P xytzT q y Prop the relaxation time of these functions is of the order of

tional to the shear modulus, which we denotetbynd for 106t. Thus a typical MD run of 300 00R yields of the

MEN Ay=R,= 1/ is given by[1] order of 30 000 independent samples Er Separate from
the relaxation time in the steady state, there is a characteristic

, (3.9

decay time of the initial configuration. This relaxation in the
3 3 Pxx()‘)_§trp()‘) initial regime is shown for the shear modulus for two differ-
E=5G=-3 N2 -1 : (3.2  entsamples in Fig. 3, from which we see that the greater part

of this transient lasts for roughly 1060 The fact that at

_ t=20005t the two shear moduli are essentially the same in-
whereP is the pressure tensor of the system. For the case Qficates that there are longer time scales that depend on the
ideal Gaussian chains this expression reduces t@umper of cross-links that control the decay of the transient.
E=NkgT/V. We note that under the less restrictive as-att=50005t the difference between the two samples is fully
sumption that the system is an isotropic elastic material, deapparent. Despite the fact that these characteristic times are
scribed by elasticity theory with two Lanmoefficients[22],  quite short, the error bars on the shear modulus are large.
one can show that the shear modulus is giveridg) inthe  Typical values of the components of the pressure tensor for

limit A\—1 [see Eq(3.6)]. As has been shown by Everaers N=50 andM =60 are 8P,,a3~10.0, essentially indepen-
et al. [21] for a different system and verified by us for spe-

cial cases of our cross-linked systems, the right-hand side of

(3.2) is essentially independent af for values as large as 14

A=138. —e—N_=100, N=50, M=60, 1=430
Thus, in this formalism, the calculation of the shear 08 —o—N_=145, N=50, M=60, 1=470

modulus is reduced to the calculation of the diagonal ele- 06 I \,\ o

ments of the pressure tensor. This can be straightforwardly
done in molecular dynamid®/D) by use of the virial theo-

BE(t)o®

rem, which yields the expression 04
02+
P, =S mul 4= S F (=), (33 ;
aa Vi la 2Vi¢j ],a la Ja/ . 0 Lo I L I L } T I
0 50 100 150 200

whereF;; , is the @ component of the force exerted by par-

ticle j on particlei. While each of these components is  FiG. 3. Time dependence of the dimensionless shear modulus
readily calculated, the final expressi@2) involves the dif-  gE 43 for early times in a MD run for two numbers of cross-links
ference between quantities of the same order of magnitudg_ =100 and 145, for th&l=50, M =60 system. The solid curves
and the utility of this formula therefore depends on the re-are fits to the functional fornk(t)=E..+Ae ¥ and the data are
laxation time of the components of the pressure tensor. Ilbtained from an average over 50 different realizations of each
Fig. 2 we plot the autocorrelation functions cross-linking.
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dent of the number of cross-links. On the other handfluctuations within the system. The method has the advan-
BEa3~0.1, so that one needs three-figure accuracl in  tage that no actual deformations are made, so no symmetry
order to obtain essentially one significant figureEinExam-  breaking occurs, and all elastic constants can be obtained
ining the distribution of values dt over the course of a MD from a single run. The derivatives are taken with respect to a
run, one sees that the width of the distribution is roughly 3—4eference configuration, the one on which virtual deforma-
times the size of the mean. tions are applied for the purpose of calculating the elastic
We note that there are a number of other potential diffi-constants. At every step of a computer run, the reference
culties with the strain method. First, although we expect theconfiguration and the volume are the instantaneous ones.
liguid to be simply characterized by an isotropic presssure, In continuum elasticity theory, the stress-strain relations
the imposition of cross-links could produce an internal presare[23,24
sure or some frozen-in stresses that, for small systems, need
not be isotropic. One way to reduce the effect of anisotropic —Pap(n)=—=Pap(0)+CoporMap, (3.9
frozen-in stresses is to perform the deformation of the system
in the three Cartesian directions in turn for each crosswherec,g,. are elastic stiffness coefficients ang,z the
linking. This has the effect of subtracting the contributionLagrangian strain tensor. In our modeby;;=—27;,
from internal stresses from the final result #rfor a given = —2733~\—1 for small deformation and,z=0 other-
cross-linking. It turns out that averaging over a large numbelvise. Therefore,
of different cross-linkings has the same effect, but the fluc-
tuations in this case are considerably larger. We have also > _
found that the results for a given set of cross-links are quite K=
strongly affected by the initial velocities of the particles,
even for our larger systems. This rather surprising effect :1
again disappears when one averages over a large number of 3
initial conditions. Finally, in the derivation of formulés.2)
one assumes that there are no off-diagonal components of the
pressure tensor. We have checked this for a number of spe-
cific cross-linkings and verified that these terms are essen-
tially zero. If the reference state were isotropia;,;=Cyy=Css,
There are two kinds of fluctuation methods: strain-strainCio=Cy;=C13=C31=Cp3=C3zp, and C;;—C1,=2C4, and
fluctuation methods, where the elastic constants are extractéd@#nce u=c,4, or u=E, the shear modulus, in the limit
from the fluctuations in the shape of the simulation cell, and\— 1. The frozen-in stresses create a small anisotropy and
the “equilibrium” fluctuation method. It is this second one the above equalities will not be exactly satisfied. For the
that has been applied to our cross-linked polymer melt. Irsame reasorP,,(0) cannot be assumed to be equal to
this method, a formal expression is derived for the elastictrP(0).
constants from the second derivative of the free energy. The For a central force system, the expressionscfgy,,. can
elastic constants are directly obtained from the microscopibe written[20]

1 1
~| Pam) = 3tP(m) ( Pl 0)~ §UP(O)”

2C13—C1p—C13—Cp1— C31

1
+ E(C22+ Co3t C3otCa3) [ 7711 (3.6

1 1 u’ 1 U’
caﬁw=v<2ra<ij>rﬁ<ij>rg<ij>r7<ij>;(U"——)> kTV< (2 FONFUNE= )

i<j r

1<j

U/
> r(ij)r (IJ)—)>— ( < (Ij)rﬁ(lj)—> <|2<] ra(ij)rg(ij)7>5ﬁr

NkgT
T T 5&,850'7 ’

U u’ u’
—<Z ra<ij>rf<ij>7>5ﬁg—<2 (i u>7>5w—<;j rﬁ<ij>rg<ij>7>a

1< <

(3.7)

wherer ,(ij)=ri,— ., 8(A)=A—(A), andU is the total number of cross-links is less than 90. It is only when the
interaction between two particles. The first term in E27) system becomes more homogeneous and its elasticity is the
is the Born term, giving the zero-temperature elastic confesult of the vibrations of the particles about some equilib-
stants, the second is the fluctuation term, the third the strestum position thatu/E increases. For the same system as
term, and the last the kinetic term. above for 280 cross-linkgy/E=0.836; for 320 cross-links,

A brute-force application of this method in the entropic u/E=0.906; and for 360 cross-linkg,/E=0.974, close to
regime givesu~0 andu/E~0, whereE is determined by the expected value of 1. We note that the critical number of
the strain method described above. For instance, in a systeanoss-links for this system, determined from the point at
of 30 chains of 20 monomers each, this is the case when thghich the order parameter vanishesNig~52[6].
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FIG. 4. Plot of the shear modulus determined from the strain FIG. 5. Plot of the shear modulus f# =100 andN=10,20 as
method for three different elongations of the computational cell fora function of the number of cross-links per chain. The solid lines
N=10 andM =100. are fits of the data to the functioBEo>=b(n—n.), with b and

f fitting parameters. The critical value of the cross-link density is

Why we fail to measure a finite shear modulus even aftethat determined ifi6] from the behavior of the order parameter. The
10° time steps, when the strain method shows a rigid solid, igxponents are 1.11 foiN=10 and 1.29 foN=20.
due to the large fluctuations in the second term of Bd7),
known as the “fluctuation term.” This negative term is in !N Fig. 5 we compare the shear modulus of two systems
fact comparable in size to the sum of the other terms, whictgach withM=100 chains andN=10,20. We see that the
are very stable and add up to a positive quantity. This reflectgfitical cross-link density is quite similar in the two systems,
the large amplitude oscillations of the chains at low crossalthough a study of the order parameitef indicates that for
link densities. The obstacles to the oscillations of the chain® =20, nc~1.01 as compared to the value f~1.17 for
generate the rigidity of the melt. Determining how to dealN=10. The most striking feature is the substantial decrease
with the fluctuation term holds the key to the application ofof E with chain length for a given number of cross-links. The
this method to soft materials of this kind. classical theory of rubber elasticifyt] predictsE~kgT/£>,
where ¢ is a measure of the mesh size of the system. If we
take this mesh size to be the mean strand length, i.e., the
mean length of elastically active segments, we obtain

As mentioned above, we have primarily used the strairé(N=10)/£(N=20)~0.55 and therefore a predicted ratio
method described in the preceding section to calculate thE(n,N=20)/E(n,N=10)~0.17. This is too small by more
shear modulus for our cross-linked systems. In Fig. 4 wehan a factor of 2 at even the highest cross-link density. We
show the dimensionless shear moduEo® as a function have not displayed the shear modulus for the system with
of the cross-link density for the system of 100 polymers ofN=230 since it is too small to show much variation on the
length N=10 obtained from Eq(3.2) for A=1.1, 1.2, and scale of this figure, but its behavior is qualitatively the same
1.3. It is clear that there is no trend in the data: all threeas for the other two chain lengths.
elongations of the computational cell yield results that are In Fig. 6 we show the dimensionless shear modulus for
within the statistical errors of one another. However, thethe largest systemM =60 andN=50) for which we have
fluctuations in the data increase significantlydass made reasonably well-converged data. Again, the finite-size effects
smaller. Therefore, we have choser 1.2 as a compromise discussed above are clearly visible. The character of the data
between the desire for computational efficiency and the reehanges ah.~1.4 from a monotonic decrease to a slower,
guirement that\ be close to unity. We note that the shearrather noisy decrease. We again believe that this reflects the
modulus attains a value close to zero near1.15. In our
previous study of this systelf6], we found that the order
parameter of the amorphous phase vanishes at a critical num-
ber of cross-linksn,~1.17, consistent with this behavior. .
We note that for this finite systerk, is nonzero for a range - O N=50, M=60
of n belown,. We believe that this is a finite-size effect of b 01+f cox
the same kind as seen in Fig. 1, in which the probability that %_ ; OOOO
the system percolates increases from 0 to 1 over a range ; o
0.4<n=<0.8, whereas for an infinite system this function 0.05 L o8
would be a step function. We expect that “rigidity percola- : Q0
tion” will likely occur for some realizations of the cross- E ©
linkings for n<n.. We also note that the critical cross-link ’ L
density is a full 60% higher than the percolation probability. 0 05 1 15 2 25 3
While we have no proof that these two numbers will not n
converge toward each other in the thermodynamic limit, we
believe that the difference seen in these finite systems is so FIG. 6. Shear modulus favl =60 andN=50 as a function of
large that this is very unlikely. the density of cross-links.

IV. RESULTS

0.15
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broad transition in geometric percolation seen in Fig. 1. Untandom resistor networks and much less than the classical
fortunately, we do not have order parameter data for thipredictionf=3 that follows from a tree approximation. This
system and hence no independent determination of the critlast result is interesting from the following perspective. de
cal cross-link density. However, it is again clear that rigidity Genneg29] argued, on the basis of a Ginzburg criterion, that
percolation occurs at a much higher cross-link density tharin the limit N— o the vulcanization transition is described by
geometric percolation: fon=0.6 none of the samples dis- mean-field exponents. Of course, our chains are very short
played a finite shear modulus, whereas more than 50% ha@and our estimates dfin themselves do not refute his theory.
their largest cluster extend in all three directions through thélowever, de Gennes’s argument also explicitly assumes that
sample. the vulcanization transition occurs at the geometric percola-
One can also attempt to determine an exponent for théon point, something we believe will not be the case even in
variation of the shear modulus neay by fitting the data to  the thermodynamic limit. There is clearly a need for further
the form BEa*=b(n—n.)!. Such fits are shown in Fig. 5 to investigation of this issue. _ _
the data folN=10,20. Clearly the quality of the data and the  As far as future numerical simulations of such cross-
accuracy of; do not permit a particularly accurate determi- linked systems are concerned, we make the following com-
nation of the exponerft Both the data of Fig. 5 and those of Ments. If the object of the calculation is to obtain more ac-
Fig. 6 yield estimates consistent wift=1.2+0.3, a value curatt_a estimates of, and (_)f the relevant critical expongnts,
that is much smaller than those previously found for the casé1€n it probably pays to increase the number of chahs
of rigidity percolation in three-dimensional lattices with cen- rather than the chain leng. Figure 1 clearly shows that
tral forces between the particlE85]. However, even in that the geometric percolation transition is sharpened substan-
situation, where significantly larger systems can be studiedially in going from 60 chains to 100 chains and is essentially
there is considerable uncertainty in the value of the exponentnaffected by increasing the chain length. While we have
f and indeed it is not clear whether or not there is a universa®nly indirect evidence, it seems reasonable to suppose that
value that depends only on the spatial dimensionality, as de same effect will occur at rigidity percolatid@8] and
the geometric percolation exponents. What does seem to BBerefore larger systems of chains of, e.g., lengtn10 may
clear is thatf is different from the conductivity exponent Provide better data in the critical region. A drawback is that
t~2 of a random resistor netwof26] at the geometric per- with such short chains one cannot address the aforemen-

colation threshold, a conclusion also consistent with our refioned arguments of de Gennes. A further disadvantage of
sult. working with short chains is that the effects of entanglements

If, however, one fits the data of Figs. 5 and 6 to thewill certainly be quite minor. As mentioned above, the en-
function BEa*=b’(n—n*)f, wheren* is the percolation tanglement length of our systems is of the order of 35 mono-
concentration, estimated as described/15], one obtains Mers and therefore only the system of polymers with
larger values for the exponefit For the two systems with N=50is expected to have a significant number of entangle-
100 chains, the results ard~1.5 (N=20), f~1.9 Ments. Therefore, in the heavily cross-linked regime it is
(N=10), andf~1.3 for N=50 andM =60. However, the probably appropriate to study systems as functioN eéther
available data for the order paramef{€] are inconsistent thanM.

with the picture that these systems become amorphous solids AS mentioned in Sec. |, there have been recent develop-
at cross-link densities as small a&. ments in the analytic theory of the vulcanization transition

[2-5]. The variational approximation of Reff3], in which
the amorphous state is characterized by a single localization
V. DISCUSSION length ¢, predictsf=2. The more general theory ¢#,5],

In this work we have attempted to perform a SystematicWhich allows a distribution of localization lengths, has not

numerical study of the elastic properties of randomly crossyet yle!ded' results for.the shear modulus. In add|t|o'n,.the
linked macromolecules near and above the vulcanizatio pproxmgnon_s made in the_se approaches seem to limit the
transition. While much remains to be done, we believe thaE eory primarily to the regimeN>1 and (¢)>1, where

we have shown that the percolation theory of rubber elastic §) is the Tean Ioctaltl_zatlcin length of the monotr_rl}ers. \é\ll'trl[
ity is not valid. As in site- or bond-diluted central force lat- our présent computational resources, we are still unablé 1o

tices, the transition from a soft inelastic material to material2cceSS this region in parameter space. We note that there

that can withstand shear takes place at a higher concentrati({)}"ilve also been some experimental studies of the shear modu-

of cross-links than is necessary for geometric percolation.US in the context of gelatiof80]. These studies have yielded

However, in contrast to the diluted lattices in which rigidity mclc:)_nSﬁtent rehsults W|;[hdvtahlu%§ 0+2,3. : timat f1h
percolation and geometric percolation occur at the same con- inally, we have noted the discreépancy in estimates ot tne

centration if there are bond-bending forces, we believe tha?hear modu[us as obtained from s.tram and fl_qctpatlon meth-
our result is independent of the nature of the cross—linkingfds' It remains a challenge to devise an equ'“b_””m fluctua-
potential or of the potential that binds monomers into chainsH'o" methoq t_hat measures accurately the elasticity of a sys-
As long as the strand length, i.e., the typical distance ann(I]em entropic in nature.
the chains between cross-linking points, is longer than the
persistence lengtf27] of the chains, the effects of any an-
gular forces are lost. This research was supported by the NSERC of Canada.
We have also presented evidence that the expdnémdt  Two of us(S.J.B. and M.B.are grateful to Paul Goldbart
describes the increase of the shear modulus in the rigid phased G. S. Grest for helpful conversations and correspondence
is substantially different from the conductivity exponémtf ~ and to C. Homes for computer time.
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