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We have carried out extensive molecular-dynamics simulations of randomly cross-linked polymers and
studied the onset of rigidity as the number of cross-links is increased. We find that for our systems, consisting
of chains of lengthN510, 20, 30, and 50, the shear modulusE vanishes at a concentration of cross-links that
is well above the geometric percolation threshold and that it seems to approach zero asE;(n2nc)

f , where the
exponentf is considerably smaller than either the classical valuef53 or the corresponding exponentt'2.0 of
the conductivity of random resistor networks.@S1063-651X~96!07711-2#

PACS number~s!: 82.70.Gg, 78.30.Ly, 64.60.Ak

I. INTRODUCTION

In the process of vulcanization@1# cross-links between
molecules on different polymers in a melt convert the system
from a fluid to an amorphous solid if the density of cross-
links is high enough. The nature of this solid phase with its
unusual elastic properties, as well as the transition from the
melt, is of considerable interest. In particular, the past few
years have seen the development of a replica theory of the
vulcanization transition@2–5#. In addition, continuing ad-
vances in computational power now make it possible to carry
out nontrivial simulations of such complicated systems.

In a previous article@6# two of us have reported on
molecular-dynamics simulations that were designed to study
the variation of the order parameter and the distribution of
localization lengths in the solid phase. These simulations,
which involved rather short chains and small system sizes,
nevertheless convincingly demonstrated the existence of a
universal functionP(j) that describes the distribution of lo-
calization lengths for a wide range of cross-link density. In
the present work we extend these simulations to longer poly-
mers and larger systems and focus, in particular, on the shear
modulusE(n) as function of the density of cross-linksn.
The classical theory of rubber elasticity, based on an analogy
with percolation on Bethe lattices@7,8#, predicts
E;(n2nc)

f , with f53 asn→nc , where the critical con-
centration of cross-linksnc is, in this model, the percolation
concentration. Later, de Gennes@9# drew an analogy between
the elastic modulusE of a gel and the conductance of a
random resistor network and argued that the exponentf that
describes the form ofE near the percolation transition should
be the same as that of the conductance, i.e.,t'2.0. As
pointed out by Feng and Sen in another context@10#, this
analogy strictly holds only if the interparticle potential~in
our case, the cross-linking potential! is ‘‘separable,’’ e.g.,
that of a zero-length spring. In the more general case of an
arbitrary spherically symmetric pair potential, the onset of
rigidity generically occurs at a larger concentration than does
percolation and, moreover, there is no longer a reason to
believe that the rigidity exponent is the same as the conduc-
tance exponent.

To investigate these and other issues, we have simulated
systems consisting of polymers of lengthN5 10, 20, 30, and
50 monomers with up to 100 chains for the three shorter
polymers and 60 chains for the system withN5 50. The
polymers were first equilibrated as a melt at a temperature
and density equal to those used by Kremer and Grest@11#,
whose data provided a useful check on our procedures and
results. Once an equilibrated melt had been obtained, a fixed
number of cross-links was added to the system in the follow-
ing way. A monomer was selected at random and all other
particles within a given distance of this particle were identi-
fied. One of these particles was selected at random and con-
nected to the first particle by the same pair potential used to
construct the chains, subject to the following exclusions:~i!
two particles were not permitted to be linked to each other
more than once,~ii ! cross-links between nearest neighbors on
the same chain were forbidden, and~iii ! no particle was per-
mitted to have more than six cross-links. The last of these
restrictions in fact was never used: for our cross-link densi-
ties, the functionality of all the particles was always less than
the maximum. It is worth noting that particles were allowed
to cross-link to others on the same chain as long as the dis-
tance along the backbone was at least two units. Further
details regarding the potentials and other parameters are
given in Sec. II.

Once the cross-links had been imposed, the system was
again equilibrated before the calculation of the shear modu-
lus and other quantities of interest. There are several methods
~discussed in Sec. III! for the calculation of elastic constants
and we have tested a number of these for efficiency and
accuracy. Most of our results are obtained for a constant
energy fixed strain ensemble and thus yield an adiabatic
shear modulus. We expect that the behavior near the onset of
rigidity will not depend significantly on the choice of en-
semble. The bulk of our results are presented in Sec. IV and
we conclude this article with a brief discussion in Sec. V.

II. MODEL

We denote the number of polymers in the system byM ,
the number of monomers on each chain byN, and the cross-
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link density, i.e., the number of cross-links per chain, byn.
In our model, all particles in the system interact through a
purely repulsive truncated Lennard-Jones potential

ULJ~r i j !5H 4eF S s

r i j
D 122S s

r i j
D 61 1

4G , r i j,21/6s

0 , r i j>21/6s,
~2.1!

which ensures self-avoidance. On a given chain, there is an
added attractive potential@12# between nearest neighbors

Unn~r i j !5H 2
1

2
kR0

2lnF12S r i jR0
D 2G , r i j,R0

`, r i j>R0 ,

~2.2!

with R051.5s and k530e/s2. The combination of these
two potentials, with the parameters given here, prevents
polymers from passing through each other.

Each system was first equilibrated at a density of
rs350.85 and an average temperaturekBT/e51.0. This
was done with a constant energy molecular-dynamics code
using a standard velocity Verlet algorithm@13# and periodic
boundary conditions. A time stepdt50.005Ams2/e was
used in the integration of the equations of motion and energy
was conserved to at least one part in 104. Various properties
of the melt such as the eigenvalues of the inertia tensor of the
chains and the mean square end-to-end distance were moni-
tored and found to be consistent with those in the literature
@11#.

The cross-links were then imposed on the system accord-
ing to the following procedure. A particle was selected at
random and a list of other particles within a distance of
1.25s was compiled. One of these particles was then se-
lected at random and tethered to the first particle through the
combination of potentials~2.2! and ~2.1!. Cross-linking be-
tween nearest neighbors on the same chain was not allowed
nor was more than one link between any pair of particles
allowed. This procedure has the virtue that the equilibrium
properties of the melt~entanglements and pair correlations!
are properly reflected in the statistics of the cross-linking.

In order to further characterize the cross-linked samples,
we have calculated a number of geometrical properties of the
system. Figure 1 shows the fraction of samples in which the
largest cluster percolates in all three directions for
N510,20 withM5100 and forN550 andM560 plotted as
a function of number of cross-links per chain. The data
clearly show that the probability of percolation is essentially
independent of chain length but strongly depends on the total
number of chains. Similar results have been previously re-
ported by Grest and Kremer@14#. While the data are too
scanty to perform a proper finite-size analysis, it is clear that
percolation occurs for systems of this size forn<0.75 @15#.
Other quantities of interest in connection with rigidity are the
number of elastically active segments and the average strand
length. An elastically active segment is defined to be any
section of a chain between cross-linking points. The strand
length is simply the average contour length of such elasti-
cally active segments. For all the systems studied, the num-
ber of elastically active segments increases more or less lin-
early with the number of cross-links, as one would expect.

The average strand length, on the other hand, does not vary a
great deal in the region of interest. Typically, it lies between
N/3 andN/4, which indicates that even in heavily cross-
linked systems, most polymers have only two or three linked
monomers. It is also worth noting that the average strand
length is, in all cases, considerably smaller than the entangle-
ment length, which for these densities was estimated to be
Ne'35 @11,16#.

We note that the cross-linking process introduces a set of
quenched random variables, namely the location of the cross-
links, into the system. Randomly cross-linked polymers
therefore have some of the features of spin glasses and some
of the same issues and difficulties with simulations can be
expected to arise. For example, it is conceivable that there
could be ergodicity breaking or sectioning of phase space.
We have partially addressed this in a previous article@6#
using an approach of Thirumalaiet al. @17#. To date we have
seen no evidence of sectioning of phase space for a system
with a particular realization of cross-links. On the other
hand, two samples with the same number of cross-links but
with nonidentical realizations clearly access different regions
of phase space. It is conceivable that systems with longer
chains and longer strand lengths may display ergodicity
breaking even for a given cross-linking, but, as mentioned
above, we have as yet no evidence for this.

From the perspective of the present calculations, the most
important effect of the quenched random variables is that it
is necessary to average measured quantities over different
realizations of the same number of cross-links. This makes
the computations extremely time consuming@18#. For the
shorter chains (N510,20) we have typically averaged over
100 different cross-linkings for each value ofn, whereas for
N550 we have generally obtained our results for 50–60
samples in the vicinity of the transition and for 20 samples in
the heavily cross-linked regime. We note also that before a
new set of cross-links was imposed on the system, the parent
melt was allowed to evolve for several hundred time steps in
order to change the configuration of the liquid at least some-
what.

III. CALCULATION OF ELASTIC CONSTANTS

A number of different computational techniques have
been used in the past for the calculation of elastic properties

FIG. 1. Plot of the probabilityp that the system of cross-linked
polymers percolates in all three directions as a function of the num-
ber of cross-links per polymern.
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of various condensed systems, most frequently solids. These
methods can be broadly divided into fluctuation methods,
first introduced by Squireet al. @19# and recently discussed
in detail by Zhou and Joo´s @20# and strain methods@1,21#.
Most of our results have been obtained by the second of
these approaches and we describe it first. In the classical
theory of rubber elasticity, the change in free energy of a
system undergoing a deformationLa→laLa is assumed to
be essentially due to the change in entropy of the elastically
active strands. Under the further assumption that the defor-
mation of each strand is affine and that the entropy scales
with the square of the strand length~Gaussian chains! one
obtains an expression of the form

DF5
G

2
$lx

21ly
21lz

223%, ~3.1!

where, in this approximation, the modulusG is
G52NelkBTb

2^r 2&/3, whereNel is the number of strands,
b a microscopic length scale, and̂r 2& the mean-square
strand length. Equating this expression to the work done to
deform the block, one finds a relation between the modulus
G and the stresses applied to the material. For the special
case of a pure shearlxlylz[1 the quantityG is propor-
tional to the shear modulus, which we denote byE and for
lx[l, ly5lz51/Al is given by@1#

E5
3

2
G52

3

2

FPxx~l!2
1

3
trP~l!G

l22l21 , ~3.2!

whereP is the pressure tensor of the system. For the case of
ideal Gaussian chains this expression reduces to
E5NelkBT/V. We note that under the less restrictive as-
sumption that the system is an isotropic elastic material, de-
scribed by elasticity theory with two Lame´ coefficients@22#,
one can show that the shear modulus is given by~3.2! in the
limit l→1 @see Eq.~3.6!#. As has been shown by Everaers
et al. @21# for a different system and verified by us for spe-
cial cases of our cross-linked systems, the right-hand side of
~3.2! is essentially independent ofl for values as large as
l51.8.

Thus, in this formalism, the calculation of the shear
modulus is reduced to the calculation of the diagonal ele-
ments of the pressure tensor. This can be straightforwardly
done in molecular dynamics~MD! by use of the virial theo-
rem, which yields the expression

Paa5
1

V(
i
mv ia

2 1
1

2V (
iÞ j

Fi j ,a~r ia2r ja!, ~3.3!

whereFi j ,a is thea component of the force exerted by par-
ticle j on particle i . While each of these components is
readily calculated, the final expression~3.2! involves the dif-
ference between quantities of the same order of magnitude
and the utility of this formula therefore depends on the re-
laxation time of the components of the pressure tensor. In
Fig. 2 we plot the autocorrelation functions

Caa~t!5
^@Paa~ t1t!2 P̄aa#@Paa~ t !2 P̄aa#&

^@Paa~ t !2 P̄aa#2&
, ~3.4!

where the angular brackets denote averaging overt, for the
system of 60 polymers of length 50 with 100 cross-links. The
time scale is in units of elementary MD steps. It is clear that
the relaxation time of these functions is of the order of
10dt. Thus a typical MD run of 300 000dt yields of the
order of 30 000 independent samples forE. Separate from
the relaxation time in the steady state, there is a characteristic
decay time of the initial configuration. This relaxation in the
initial regime is shown for the shear modulus for two differ-
ent samples in Fig. 3, from which we see that the greater part
of this transient lasts for roughly 1000dt. The fact that at
t52000dt the two shear moduli are essentially the same in-
dicates that there are longer time scales that depend on the
number of cross-links that control the decay of the transient.
At t55000dt the difference between the two samples is fully
apparent. Despite the fact that these characteristic times are
quite short, the error bars on the shear modulus are large.
Typical values of the components of the pressure tensor for
N550 andM560 arebPaas3'10.0, essentially indepen-

FIG. 2. Plot of the pressure tensor autocorrelation function~3.4!
for 60 polymers of lengthN550 andNcl5100 cross-links. The unit
of time is the basic MD time stepdt.

FIG. 3. Time dependence of the dimensionless shear modulus
bEs3 for early times in a MD run for two numbers of cross-links
Ncl5100 and 145, for theN550,M560 system. The solid curves
are fits to the functional formE(t)5E`1De2t/t0 and the data are
obtained from an average over 50 different realizations of each
cross-linking.
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dent of the number of cross-links. On the other hand,
bEs3;0.1, so that one needs three-figure accuracy inP in
order to obtain essentially one significant figure inE. Exam-
ining the distribution of values ofE over the course of a MD
run, one sees that the width of the distribution is roughly 3–4
times the size of the mean.

We note that there are a number of other potential diffi-
culties with the strain method. First, although we expect the
liquid to be simply characterized by an isotropic presssure,
the imposition of cross-links could produce an internal pres-
sure or some frozen-in stresses that, for small systems, need
not be isotropic. One way to reduce the effect of anisotropic
frozen-in stresses is to perform the deformation of the system
in the three Cartesian directions in turn for each cross-
linking. This has the effect of subtracting the contribution
from internal stresses from the final result forE for a given
cross-linking. It turns out that averaging over a large number
of different cross-linkings has the same effect, but the fluc-
tuations in this case are considerably larger. We have also
found that the results for a given set of cross-links are quite
strongly affected by the initial velocities of the particles,
even for our larger systems. This rather surprising effect
again disappears when one averages over a large number of
initial conditions. Finally, in the derivation of formula~3.2!
one assumes that there are no off-diagonal components of the
pressure tensor. We have checked this for a number of spe-
cific cross-linkings and verified that these terms are essen-
tially zero.

There are two kinds of fluctuation methods: strain-strain
fluctuation methods, where the elastic constants are extracted
from the fluctuations in the shape of the simulation cell, and
the ‘‘equilibrium’’ fluctuation method. It is this second one
that has been applied to our cross-linked polymer melt. In
this method, a formal expression is derived for the elastic
constants from the second derivative of the free energy. The
elastic constants are directly obtained from the microscopic

fluctuations within the system. The method has the advan-
tage that no actual deformations are made, so no symmetry
breaking occurs, and all elastic constants can be obtained
from a single run. The derivatives are taken with respect to a
reference configuration, the one on which virtual deforma-
tions are applied for the purpose of calculating the elastic
constants. At every step of a computer run, the reference
configuration and the volume are the instantaneous ones.

In continuum elasticity theory, the stress-strain relations
are @23,24#

2Pab~h!52Pab~0!1cabsthab , ~3.5!

where cabst are elastic stiffness coefficients andhab the
Lagrangian strain tensor. In our model,h11522h22
522h33'l21 for small deformation andhab50 other-
wise. Therefore,

2mh11[2FPxx~h!2
1

3
trP~h!2S Pxx~0!2

1

3
trP~0! D G

5
1

3 F2c112c122c132c212c31

1
1

2
~c221c231c321c33!Gh11. ~3.6!

If the reference state were isotropic,c115c225c33,
c125c215c135c315c235c32, and c112c1252c44 and
hencem5c44 or m5E, the shear modulus, in the limit
l→1. The frozen-in stresses create a small anisotropy and
the above equalities will not be exactly satisfied. For the
same reasonPxx(0) cannot be assumed to be equal to
1
3 trP(0).
For a central force system, the expressions forcabst can

be written@20#
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~3.7!

wherer a( i j )5r ia2r ja , d(A)5A2^A&, andU is the total
interaction between two particles. The first term in Eq.~3.7!
is the Born term, giving the zero-temperature elastic con-
stants, the second is the fluctuation term, the third the stress
term, and the last the kinetic term.

A brute-force application of this method in the entropic
regime givesm'0 andm/E'0, whereE is determined by
the strain method described above. For instance, in a system
of 30 chains of 20 monomers each, this is the case when the

number of cross-links is less than 90. It is only when the
system becomes more homogeneous and its elasticity is the
result of the vibrations of the particles about some equilib-
rium position thatm/E increases. For the same system as
above for 280 cross-links,m/E50.836; for 320 cross-links,
m/E50.906; and for 360 cross-links,m/E50.974, close to
the expected value of 1. We note that the critical number of
cross-links for this system, determined from the point at
which the order parameter vanishes, isNcl'52 @6#.
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Why we fail to measure a finite shear modulus even after
106 time steps, when the strain method shows a rigid solid, is
due to the large fluctuations in the second term of Eq.~3.7!,
known as the ‘‘fluctuation term.’’ This negative term is in
fact comparable in size to the sum of the other terms, which
are very stable and add up to a positive quantity. This reflects
the large amplitude oscillations of the chains at low cross-
link densities. The obstacles to the oscillations of the chains
generate the rigidity of the melt. Determining how to deal
with the fluctuation term holds the key to the application of
this method to soft materials of this kind.

IV. RESULTS

As mentioned above, we have primarily used the strain
method described in the preceding section to calculate the
shear modulus for our cross-linked systems. In Fig. 4 we
show the dimensionless shear modulusbEs3 as a function
of the cross-link density for the system of 100 polymers of
lengthN510 obtained from Eq.~3.2! for l51.1, 1.2, and
1.3. It is clear that there is no trend in the data: all three
elongations of the computational cell yield results that are
within the statistical errors of one another. However, the
fluctuations in the data increase significantly asl is made
smaller. Therefore, we have chosenl51.2 as a compromise
between the desire for computational efficiency and the re-
quirement thatl be close to unity. We note that the shear
modulus attains a value close to zero nearn'1.15. In our
previous study of this system@6#, we found that the order
parameter of the amorphous phase vanishes at a critical num-
ber of cross-linksnc'1.17, consistent with this behavior.
We note that for this finite system,E is nonzero for a range
of n belownc . We believe that this is a finite-size effect of
the same kind as seen in Fig. 1, in which the probability that
the system percolates increases from 0 to 1 over a range
0.4<n<0.8, whereas for an infinite system this function
would be a step function. We expect that ‘‘rigidity percola-
tion’’ will likely occur for some realizations of the cross-
linkings for n,nc . We also note that the critical cross-link
density is a full 60% higher than the percolation probability.
While we have no proof that these two numbers will not
converge toward each other in the thermodynamic limit, we
believe that the difference seen in these finite systems is so
large that this is very unlikely.

In Fig. 5 we compare the shear modulus of two systems
each withM5100 chains andN510,20. We see that the
critical cross-link density is quite similar in the two systems,
although a study of the order parameter@6# indicates that for
N520, nc'1.01 as compared to the value ofnc'1.17 for
N510. The most striking feature is the substantial decrease
of E with chain length for a given number of cross-links. The
classical theory of rubber elasticity@1# predictsE;kBT/j

3,
wherej is a measure of the mesh size of the system. If we
take this mesh size to be the mean strand length, i.e., the
mean length of elastically active segments, we obtain
j(N510)/j(N520)'0.55 and therefore a predicted ratio
E(n,N520)/E(n,N510)'0.17. This is too small by more
than a factor of 2 at even the highest cross-link density. We
have not displayed the shear modulus for the system with
N530 since it is too small to show much variation on the
scale of this figure, but its behavior is qualitatively the same
as for the other two chain lengths.

In Fig. 6 we show the dimensionless shear modulus for
the largest system (M560 andN550) for which we have
reasonably well-converged data. Again, the finite-size effects
discussed above are clearly visible. The character of the data
changes atnc'1.4 from a monotonic decrease to a slower,
rather noisy decrease. We again believe that this reflects the

FIG. 4. Plot of the shear modulus determined from the strain
method for three different elongations of the computational cell for
N510 andM5100.

FIG. 5. Plot of the shear modulus forM5100 andN510,20 as
a function of the number of cross-links per chain. The solid lines
are fits of the data to the functionbEs35b(n2nc)

f , with b and
f fitting parameters. The critical value of the cross-link density is
that determined in@6# from the behavior of the order parameter. The
exponentsf are 1.11 forN510 and 1.29 forN520.

FIG. 6. Shear modulus forM560 andN550 as a function of
the density of cross-links.
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broad transition in geometric percolation seen in Fig. 1. Un-
fortunately, we do not have order parameter data for this
system and hence no independent determination of the criti-
cal cross-link density. However, it is again clear that rigidity
percolation occurs at a much higher cross-link density than
geometric percolation: forn50.6 none of the samples dis-
played a finite shear modulus, whereas more than 50% had
their largest cluster extend in all three directions through the
sample.

One can also attempt to determine an exponent for the
variation of the shear modulus nearnc by fitting the data to
the formbEs35b(n2nc)

f . Such fits are shown in Fig. 5 to
the data forN510,20. Clearly the quality of the data and the
accuracy ofnc do not permit a particularly accurate determi-
nation of the exponentf . Both the data of Fig. 5 and those of
Fig. 6 yield estimates consistent withf51.260.3, a value
that is much smaller than those previously found for the case
of rigidity percolation in three-dimensional lattices with cen-
tral forces between the particles@25#. However, even in that
situation, where significantly larger systems can be studied,
there is considerable uncertainty in the value of the exponent
f and indeed it is not clear whether or not there is a universal
value that depends only on the spatial dimensionality, as do
the geometric percolation exponents. What does seem to be
clear is thatf is different from the conductivity exponent
t'2 of a random resistor network@26# at the geometric per-
colation threshold, a conclusion also consistent with our re-
sult.

If, however, one fits the data of Figs. 5 and 6 to the
function bEs35b8(n2n* ) f , wheren* is the percolation
concentration, estimated as described in@15#, one obtains
larger values for the exponentf . For the two systems with
100 chains, the results aref'1.5 (N520), f'1.9
(N510), and f'1.3 for N550 andM560. However, the
available data for the order parameter@6# are inconsistent
with the picture that these systems become amorphous solids
at cross-link densities as small asn* .

V. DISCUSSION

In this work we have attempted to perform a systematic
numerical study of the elastic properties of randomly cross-
linked macromolecules near and above the vulcanization
transition. While much remains to be done, we believe that
we have shown that the percolation theory of rubber elastic-
ity is not valid. As in site- or bond-diluted central force lat-
tices, the transition from a soft inelastic material to material
that can withstand shear takes place at a higher concentration
of cross-links than is necessary for geometric percolation.
However, in contrast to the diluted lattices in which rigidity
percolation and geometric percolation occur at the same con-
centration if there are bond-bending forces, we believe that
our result is independent of the nature of the cross-linking
potential or of the potential that binds monomers into chains:
As long as the strand length, i.e., the typical distance along
the chains between cross-linking points, is longer than the
persistence length@27# of the chains, the effects of any an-
gular forces are lost.

We have also presented evidence that the exponentf that
describes the increase of the shear modulus in the rigid phase
is substantially different from the conductivity exponentt of

random resistor networks and much less than the classical
predictionf53 that follows from a tree approximation. This
last result is interesting from the following perspective. de
Gennes@29# argued, on the basis of a Ginzburg criterion, that
in the limitN→` the vulcanization transition is described by
mean-field exponents. Of course, our chains are very short
and our estimates off in themselves do not refute his theory.
However, de Gennes’s argument also explicitly assumes that
the vulcanization transition occurs at the geometric percola-
tion point, something we believe will not be the case even in
the thermodynamic limit. There is clearly a need for further
investigation of this issue.

As far as future numerical simulations of such cross-
linked systems are concerned, we make the following com-
ments. If the object of the calculation is to obtain more ac-
curate estimates ofnc and of the relevant critical exponents,
then it probably pays to increase the number of chainsM
rather than the chain lengthN. Figure 1 clearly shows that
the geometric percolation transition is sharpened substan-
tially in going from 60 chains to 100 chains and is essentially
unaffected by increasing the chain length. While we have
only indirect evidence, it seems reasonable to suppose that
the same effect will occur at rigidity percolation@28# and
therefore larger systems of chains of, e.g., lengthN510 may
provide better data in the critical region. A drawback is that
with such short chains one cannot address the aforemen-
tioned arguments of de Gennes. A further disadvantage of
working with short chains is that the effects of entanglements
will certainly be quite minor. As mentioned above, the en-
tanglement length of our systems is of the order of 35 mono-
mers and therefore only the system of polymers with
N550 is expected to have a significant number of entangle-
ments. Therefore, in the heavily cross-linked regime it is
probably appropriate to study systems as function ofN rather
thanM .

As mentioned in Sec. I, there have been recent develop-
ments in the analytic theory of the vulcanization transition
@2–5#. The variational approximation of Ref.@3#, in which
the amorphous state is characterized by a single localization
length j, predicts f52. The more general theory of@4,5#,
which allows a distribution of localization lengths, has not
yet yielded results for the shear modulus. In addition, the
approximations made in these approaches seem to limit the
theory primarily to the regimeN@1 and ^j&@1, where
^j& is the mean localization length of the monomers. With
our present computational resources, we are still unable to
access this region in parameter space. We note that there
have also been some experimental studies of the shear modu-
lus in the context of gelation@30#. These studies have yielded
inconsistent results with values off'2,3.

Finally, we have noted the discrepancy in estimates of the
shear modulus as obtained from strain and fluctuation meth-
ods. It remains a challenge to devise an equilibrium fluctua-
tion method that measures accurately the elasticity of a sys-
tem entropic in nature.
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