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Rational Topological Complexity
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We give a new upper bound for Farber’s topological complexity for rational spaces
in terms of Sullivan models. We use it to determine the topological complexity in
some new cases, and to prove a Ganea-type formula in these and other cases.1

55P62, 55M30; 68T40

1 Introduction

Motion planning is a rapidly growing area of research in robotics where topologi-
cal methods have been applied [14]. From the topological point of view, a motion
planning algorithm has as input two states of the motion, i.e., two arbitrary points
in the configuration space X . As output it has to provide a continuous path be-
tween the two chosen states. In other words, such an algorithm consists of a sec-
tion (not necessarily continuous) s : X × X −→ XI of the unpointed path fibration
p : XI −→ X × X, p(σ) =

(
σ(0),σ(1)

)
, where XI denotes the space of free paths on

X .

One sees immediately that a section of p can be chosen to be continuous if and only
if the configuration space X is contractible, and, indeed, any such contraction readily
produces a continuous motion planning algorithm. Inspired by the work of Smale [18],
M. Farber [2] took this observation as his starting point for defining the topological
complexity of X , which is the following measure of the difficulty of finding a motion
planning algorithm for a given configuration space:

Definition 1.1 [2] Let X be a path-connected topological space. The topological
complexity of X , TC(X), is the least integer k for which there exists a covering of
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X × X formed by k + 1 open sets U1, ...,Uk+1 , admitting continuous local sections
si : Ui → XI of p, i.e., p ◦ si = 1Ui , for each i = 1, ..., k + 1.

This is the sectional category [1, 17] of the path fibration. (Note that our definition
differs from that of [2] by one, so that here, the topological complexity of a point is
zero.) For a compendium of basic facts and known results on this homotopy invariant
we refer to the excellent survey [3]. There, Farber poses in §31 the open problem of
an “algebraic description of the rational version of TC(X) in terms of the Sullivan
minimal model of X".

The first progress in this direction was the work of L. Fernández, P. Ghienne, T. Kahl
and L. Vandembroucq. In [13] they introduced, for any simply connected space X ,
a lower bound for TC(XQ), namely MTC(X), which is an invariant of the rational
homotopy type of X , and is defined in terms of a Sullivan model of X .

Later on, using the general approach of Fassò Velenik [4] for describing the sectional
category of the rationalization of a given fibration, an algebraic description of TC(XQ)
in terms of the Sullivan model of X was explicitly presented by Lechuga and the second
author in [15]. However, like that of [13], this description is not easy to handle.

Here, we give a simple upper bound for TC(XQ) and MTC(X) ([13]), which was
inspired directly by the highly successful algebraic characterization of the Lusternik-
Schnirelmann category of XQ in terms of Sullivan minimal models given by Y. Félix
and S. Halperin in [5].

In the following, we will assume that our spaces are of the homotopy type of simply
connected CW complexes of finite type.

Let (ΛV, d) (or simply ΛV ) be a Sullivan model of X and let K ⊂ ΛV ⊗ ΛV be the
kernel of the multiplication µ : ΛV ⊗ ΛV → ΛV . For any n ≥ 1, denote by Kn the
nth power of K , i.e., the ideal generated by products of elements of K of length at least
n.

Definition 1.2 Consider the projection

ΛV ⊗ ΛV pm−→ ΛV ⊗ ΛV/Km+1.

Then,

(i) tc(X) is the smallest m for which pm has a homotopy retraction as algebras, and

(ii) mtc(X) is the smallest m for which pm has a homotopy retraction as (ΛV ⊗ ΛV)-
modules.
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Recall that, in this context, having a homotopy retraction means that in any Sullivan
model of the projection,

ΛV ⊗ ΛV i
!!

""!!
!!!

!!!
!!!

! ΛV ⊗ ΛV ⊗ ΛW
ρ

##

!
$$

ΛV ⊗ ΛV/Km+1

the map i has a retraction ρ : ΛV ⊗ ΛV ⊗ ΛW → ΛV ⊗ ΛV , which is a map of a
differential algebras, or (ΛV ⊗ ΛV)-modules.

We prove:

Proposition 1.3 For any simply connected space X ,

MTC(X) ≤ TC(XQ) ≤ tc(X) and MTC(X) ≤ mtc(X) ≤ tc(X).

This simple upper bound is particularly interesting since it is an NP-hard problem to
determine whether the topological complexity of a rational space is finite, given its
minimal model as codification. Indeed, due to the well known inequality [2],

cat(X) ≤ TC(X) ≤ 2 cat(X),

the finiteness of the topological complexity of a given space is equivalent to that of
its LS-category. But, since determining the finiteness of the LS-category of a rational
space is NP-hard [16, Thm 2], this shows that determining whether the topological
complexity is finite is also NP-hard.

We find a class of spaces whose topological complexity attain this lower bound.

Theorem 1.4 Let X be a space for which π∗(X) ⊗ Q is finite dimensional and
concentrated in odd degrees. Then,

TC(XQ) = dimπ∗(X) ⊗Q = cat(XQ).

Indeed, the last equality is a well known identity [5] or [6, Ex. 6,§29]. Here, the lower
bound of the inequality cat(X) ≤ TC(X) ≤ cat(X × X) of [2] is attained. Another
consequence of Proposition 1.3 is a sharpening of [13, Prop. 6.2]. Recall that given A
a CDGA, its nilpotence index, denoted by nilA, is the least integer n (possibly infinite)
for which An+1 = 0.
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Proposition 1.5 Let N be a CDGA of the rational homotopy type of the space X with
multiplication µN . Then,

TC(XQ) ≤ tc(X) ≤ nil kerµN .

Recall that the Ganea conjecture for LS-category stated that the LS-category of a space
increases by one when taking a product with a sphere [9]. This conjecture was proved
to be false in the general case [11] but it remains true in the rational category [8, 10, 12].
Here, a final application to the Ganea conjecture for rational topological complexity is
obtained using mtc.

It is well known [2] that topological complexity satisfies the following sub-additive
formula:

TC(X × Y) ≤ TC(X) + TC(Y).

To the authors’ knowledge, no example of strict inequality in the above has previously
appeared in the literature. However, if X = S2 ∪f e3 and Y = S2 ∪g e3 , where f
and g are maps of degree 2 and 3 respectively, then in section 3, we show that strict
inequality does occur in this case. If we endow a given robot with configuration space
X with an extra articulated arm with n degrees of freedom, the configuration space of
the new robot is X × Sn , which satisfies:

TC(X × Sn) ≤ TC(X) + TC(Sn) =
{

TC(X) + 1 if n is odd
TC(X) + 2 if n is even

(1)

We do not know if equality holds in (1) for rational spaces. However we are able to
show that equality does hold for mtc in all cases, and in some for tc, MTC and TC:

Theorem 1.6 If X is a simply connected CW-complex of finite type and n ≥ 2, then

MTC(X × Sn) ≥ MTC(X) + MTC(Sn) = MTC(X) + TC(Sn).

Moreover,

mtc(X × Sn) = mtc(X) + mtc(Sn) = mtc(X) + MTC(Sn) = mtc(X) + TC(Sn).

Though the following result can be proven directly from the characterization of TC
given in the next section, here we obtain it as a corollary of Theorem 1.6.

Corollary 1.7 If X is a formal, simply connected, rational CW-complex of finite type,
and n ≥ 2, then

TC(X × Sn) = TC(X) + TC(Sn).
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2 Rational Topological Complexity

We shall be using known results in rational homotopy for which the excellent reference
[6] is now standard. Here we present a summary of some basic facts. For any simply
connected CW-complex of finite type X (all spaces considered here shall be of this
kind), its rationalization XQ is a rational space (i.e., its homotopy groups are rational
vector spaces), together with a map X → XQ inducing isomorphisms in rational
homotopy. On the other hand, to any space X there corresponds, in a contravariant
way, a Sullivan algebra, i.e., a commutative differential graded algebra (ΛV, d), called
the minimal model of X , which is unique up to isomorphism and algebraically models
the rational homotopy type of the space X , or equivalently, the homotopy type of its
rationalization XQ . By ΛV we mean the free commutative algebra generated by the
graded vector space V , i.e., ΛV = TV/I where TV denotes the tensor algebra over
V and I is the ideal generated by v ⊗ w − (−1)|w||v|w ⊗ v, ∀v,w ∈ V , homogeneous
elements of degrees |v| and |w| respectively. Moreover, as all spaces considered here
are 1-connected, the differential d satisfies the following minimality condition: for
any element of v ∈ V , dv is a polynomial in ΛV with no linear term. This is known
in this context as the nilpotence condition [6, p. 138]. This correspondence yields
an equivalence between the homotopy categories of 1-connected rational spaces of
finite type and that of 1-connected rational commutative differential graded algebras
(CDGA) of finite type.

We next give an algebraic description of TC(XQ), different from that in [15], which
is based on characterizations of the sectional category of a rational fibration given in
terms of generalized fat wedges [4]. The fat wedge can also be seen as a generalized
polyhedral product. If we use the diagonal map X ∆→ X × X to regard (X × X,X) as a
CW pair, then [7, Thm. 1] the mth fat wedge is (X × X,X)Sm

.

Let (ΛV, d) be a Sullivan model of X . The multiplication map of ΛV ,

µ : (ΛV, d) ⊗ (ΛV, d) → (ΛV, d),

Algebraic & Geometric Topology XX (20XX)
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is a model of the diagonal ∆ : X → X × X . Let A denote (ΛV, d) ⊗ (ΛV, d) and
K ⊂ A the kernel of µ. Then, a model of the mth fat wedge associated to the diagonal
∆ : X → X × X is given by the projection

A⊗m+1 P−→ A⊗m+1
/K⊗m+1

.

If A⊗m+1 M−→ A denotes the iterated multiplication α1 ⊗ · · · ⊗ αm+1 ,→ α1 · · ·αm+1 ,
and

A⊗m+1 j
↪→ A⊗m+1 ⊗ ΛW !−→ A⊗m+1

/K⊗m+1

is a relative Sullivan model of P, then we have the following proposition:

Proposition 2.1 (a) [4, Prop. 8.4.1]: TC(XQ) is the least m for which there is a map
of differential graded algebras

ρ : A⊗m+1 ⊗ ΛW → A

with ρj = M .

(b) [13, Sec. 6]: MTC(X) is the least m for which there is a map of differential graded
A–modules ρ : A⊗m+1 ⊗ ΛW → A with ρj = M .

Henceforth, we use (a) and (b) above as definitions of TC and MTC.

The proof of Proposition 1.3 is now immediate:

Proof of Proposition 1.3 With the notation of the above, simply note that the mul-
tiplication map M above takes K⊗m+1 to Km+1 , and so induces a map of differential
graded algebras

A⊗m+1
/K⊗m+1 M̃−→ A/Km+1.

Thus, any homotopy retraction of A → A/Km+1 will, essentially by precomposition
with M̃ , induce the desired map ρ.

From this, some important consequences are deduced. The first, Proposition 1.5 (see
section 1) is a sharpening of [13, Prop. 6.2].
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Proof of Proposition 1.5 Let ϕ : (ΛV, d) !−→ N be the minimal model of N (and
hence of X ) and denote by µ the multiplication in ΛV . As (ϕ ⊗ ϕ)(kerµ) ⊂ kerµN

we have, for any m, a commutative square

ΛV ⊗ ΛV

pm
$$

!
ϕ⊗ϕ

!! N ⊗ N

$$

(ΛV ⊗ ΛV)/Km+1 !! (N ⊗ N)/(kerµN)m+1

Whenever m ≥ nil kerµN , (kerµN)m+1 = 0 and so this becomes the triangle

ΛV ⊗ ΛV !
ϕ⊗ϕ

!!

pm ""!!
!!!

!!!
!!!

!!
N ⊗ N

(ΛV ⊗ ΛV)/Km+1

%%

This readily implies the existence of a homotopy retraction of pm , and so

TC(X) ≤ tc(X) ≤ nil kerµN .

Recall that if
∪K : H∗(X;K) ⊗ H∗(X;K) → H∗(X;K)

denotes the cup product for any field K, the main cohomological lower bound for
topological complexity is given by [2, Theorem 7]:

TC(X) ≥ nil ker∪K.

From Proposition 1.5 we can thus immediately obtain the main result of [15]. Recall
that a simply connected space X is said to be formal if its rational homotopy type
depends only on its rational cohomology algebra.

Corollary 2.2 For any formal space X ,

TC(XQ) = nil ker∪Q.

Another class of spaces for which rational topological complexity can easily be com-
puted via Proposition 1.3 is given by Theorem 1.4. We begin its proof with the
following observation:

Lemma 2.3 If µ : ΛV⊗ΛV → ΛV is the multiplication map, then kerµ is generated,
as an ideal , by {v ⊗ 1 − 1 ⊗ v | v ∈ V}.

Algebraic & Geometric Topology XX (20XX)
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Proof Let I = 〈{v⊗1−1⊗ v | v ∈ V}〉. It is clear that I ⊂ kerµ, and that moreover,
(ΛV ⊗ ΛV)/I ∼= ΛV via the homomorphism induced by µ.

We now proceed to the proof of Theorem 1.4:

Proof of Theorem 1.4 Let (ΛV, d) be a minimal model of X , and {v1, . . . , vn} a basis
of V such that |vi| ≤ |vi+1|. If U = kerµ∩Λ1(V ⊕V) = span{vi⊗1−1⊗vi | 1 ≤ i ≤
n}, then kerµ : ΛV⊗ΛV → ΛV is just ΛV⊗Λ+U , and Km = (kerµ)m = ΛV⊗Λ≥mU .

Since π∗(X) ⊗ Q ∼= U = Uodd , and dim U = n, Kn+1 = 0, and so, by Proposition
1.3, TC(XQ) ≤ tc(X) ≤ n.

We conclude by noting that TC(XQ) ≥ cat(XQ) = dim V = n.

3 The Ganea conjecture for rational topological complexity

We begin here with the example of strict inequality of the sub-additive formula on
products for TC mentioned in the introduction. The following may be compared to [3,
Thm. 19.1].

Lemma 3.1 Suppose X and Y are well-pointed. If X ∨ Y ↪→ X × Y is a homotopy
equivalence, then

TC(X ∨ Y) ≤ max{TC(X),TC(Y)}.

Proof If we regard X ∨ Y as the subset X × {y0} ∪ {x0}× Y of the product X × Y ,
then (X ∨ Y) × (X ∨ Y) is the union of the following subsets of X × Y × X × Y :

(X ∨ Y) × (X ∨ Y) = X × {y0}× X × {y0} ∪ X × {y0}× {x0}× Y ∪
∪ {x0}× Y × X × {y0} ∪ {x0}× Y × {x0}× Y.

On the other hand, since our spaces are well pointed, the inclusion X ∨ Y ↪→ X × Y is
a cofibration, and thus, as it is a homotopy equivalence, it is also a deformation retract
(though not necessarily strong), see for instance [19, Cor. 10, p. 31]. Hence, we use
the deformation retraction of X × Y onto X × {y0} ∪ {x0}× Y to deduce that

X × {y0}× {x0}× {y0} ∪ {x0}× {y0}× {x0}× Y

Algebraic & Geometric Topology XX (20XX)
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and
{x0}× {y0}× X × {y0} ∪ {x0}× Y × {x0}× {y0}

are also deformation retracts of

X × {y0}× {x0}× Y

and
{x0}× Y × X × {y0}

respectively. Therefore,

(X × X) ∨ (Y × Y) = X × {y0}× X × {y0} ∪ {x0}× Y × {x0}× Y

is a deformation retract of (X ∨ Y) × (X ∨ Y). We denote this retraction by r :

(X × X) ∨ (Y × Y) ! " j
!! (X ∨ Y) × (X ∨ Y)

r
&&

Now, suppose we have homotopy sections of the fibrations XI → X×X and YI → Y×Y
over coverings {U1, . . . ,Un} and {V1, . . . ,Vm} of X × X and Y × Y respectively.
Assume n ≥ m. Using the homotopy lifting property, we may assume those sections
to be base point preserving whenever any of the elements of these coverings contain
the base point. Thus, there are homotopy sections of

(X ∨ Y)I −→ (X ∨ Y) × (X ∨ Y) r−→ (X × X) ∨ (Y × Y)

over the covering {U1∨V1, . . . ,Um∨Vm,Um+1, . . . ,Un}. Finally, consider the induced
homotopy sections of (X ∨ Y)I −→ (X ∨ Y) × (X ∨ Y) over the covering

{r−1(U1 ∨ V1), . . . , r−1(Um ∨ Vm), r−1(Um+1), . . . , r−1(Un)}.

If X = S2 ∪f e3 and Y = S2 ∪g e3 , where f and g are maps of degree 2 and 3
respectively, then TC(X) and TC(Y) are positive, and X ∨ Y ↪→ X × Y is a homotopy
equivalence. Then, by all of the above, this is also a deformation retract and, by Lemma
3.1, we have

TC(X × Y) = TC(X ∨ Y) ≤ max{TC(X),TC(Y)} < TC(X) + TC(Y).

As stated in the introduction, it is open whether, for a rational simply connected CW-
complex X of finite type, one always has the equality TC(X × Sn) = TC(X)+TC(Sn).
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However, this Ganea formula does hold for mtc, as we prove in our final result,
Theorem 1.6. Note that, for Sn ,

MTC(Sn) = mtc(Sn) = TC(Sn
Q) = tc(Sn) = TC(Sn) =

{
1 if n is odd
2 if n is even

The first three equalities trivially hold as Sn is a formal space while the fourth is well
known [3]. For the second note that TC(Sn

Q) = nil ker∪Q = TC(Sn).

Proof of Theorem 1.6 We first prove subadditivity of mtc, i.e.,

mtc(X × Y) ≤ mtc(X) + mtc(Y).

Let ΛV and ΛW be Sullivan models of X and Y . Write V ⊕V = V2 and observe that,
if KV denotes the kernel of the multiplication ΛV2 → ΛV , then KV⊕W is generated as
a Λ(V ⊕ W)-module by {v ⊗ 1 − 1 ⊗ v,w ⊗ 1 − 1 ⊗ w | v ∈ V,w ∈ W} (see Lemma
2.3). Thus, for m, n ≥ 1, there is a natural morphism of algebras

Λ(V2 ⊕ W2)/Km+n+1
V⊕W −→ Λ(V2)/Km+1

V ⊗ Λ(W2)/Kn+1
W

which induces, via the lifting lemma [6, Prop. 12.9], a morphism h between the
Sullivan models of the quotients:

Λ(V2 ⊕ W2)
i
$$

j
!! ΛV2 ⊗ ΛR ⊗ ΛW2 ⊗ ΛS

!
$$

Λ(V2 ⊕ W2) ⊗ ΛT !
!!

h
''""""""""""""""""""""""""""""""""

Λ(V2 ⊕ W2)/Km+n+1
V⊕W

!! Λ(V2)/Km+1
V ⊗ Λ(W2)/Kn+1

W

Thus, if j has a retraction ρ (either as a morphism of algebras or Λ(V ⊕W)-modules),
then ρh is a retraction of i. This proves the assertion and also the subadditivity of
“rational" TC.

We now prove the reverse inequality for mtc whenever Y is a sphere. Again, let
(ΛV, d) be a Sullivan model of X and (ΛUn, d) denote the model of an n-sphere Sn ,
so that U2k+1 = span{u}, U2k = span{x, y}, du = 0 = dx, dy = x2 , |u| is odd, and
|x| is even. In what follows, we suppress the dependence on n wherever possible.

Let A = ΛV ⊗ ΛV , C = ΛUn ⊗ ΛUn , and B = A ⊗ C , all differentials being those
from the products. Denote by K and L the kernel of the multiplication in A and B
respectively. Consider in C the element z ⊗ 1 − 1 ⊗ z ∈ Un ⊕ Un , denoted by z − z′

henceforth, and observe that z − z′ ∈ L .

Algebraic & Geometric Topology XX (20XX)
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Now define

γ =

{
u − u′ if n is odd,

(x − x′)2 if n is even.

Note that

γ ∈
{

L if n is odd,
L2 if n is even,

and that, [γ] 3= 0 in H∗(C), and thus it is also nonzero in H∗(B).

Hence, as graded differential vector spaces, we may write

C = 〈γ〉 ⊕ M,

and we can define a map p : C → Q of graded differential vector spaces by p(kγ+m) =
k . Note that p is homogenous of degree −|γ|.

This allows us to write B = (A ⊗ 〈γ〉) ⊕ (A ⊗ M), the direct sum being now one of
differential A-modules. Now define two maps of differential A-modules σ : A → B
and τ : B → A by

σ(α) = αγ and τ (α0γ + α1m) = α0.

It is easy to check that, for all m, σ(Km) ⊂ Lm+mtc(Sn) , which implies that the following
diagram commututes:

A

pm+1
$$

σ !! B

ξ
$$

A/Km+1 σ̄ !! B/Lm+mtc(Sn)+1.

Moreover, τ is a retraction of σ . Thus, if ξ has a homotopy retraction, pm+1 does as
well. This proves that

mtc(X) + mtc(Sn) ≤ mtc(X × Sn),

and so establishes the Ganea formula for mtc.

The inequality MTC(X × Sn) ≥ MTC(X)+TC(Sn) is established in a similar fashion,
which we now outline. We use the same notation as before.

Briefly, the map
σ̄ : A⊗m+1 −→ B⊗m+MTC(Sn)+1

defined by

Algebraic & Geometric Topology XX (20XX)
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α1 ⊗ · · ·⊗ αm+1 ,→
{
α1 ⊗ · · ·⊗ αm+1 ⊗ (u − u′), n odd
α1 ⊗ · · ·⊗ αm+1 ⊗ (x − x′) ⊗ (x − x′). n even.

satisfies σ̄(K⊗m+1) ⊂ L⊗m+MTC(Sn)+1 and so induces a commutative diagram

A⊗m+1

PA
$$

σ̄ !! B⊗m+MTC(Sn)+1

PB
$$

MB !! B

A⊗m+1
/K⊗m+1 σ̃ !! B⊗m+MTC(Sn)+1

/L⊗m+MTC(Sn)+1

ρ

((

where MB is multiplication. Thus, if there is (up to a relative Sullivan model) a map ρ
as shown with ρPB 4 MB , post composition with τ defined earlier shows that

MTC(X) ≤ MTC(X × Sn) − MTC(Sn).

We end with the following:

Conjecture: For all spaces X with the homotopy type of simply connected CW
complexes of finite type,

TC(XQ) = tc(X).
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