Tensor Analysis Practice questions -1

1. Suppose that $\{v_i\}$ and $\{\tilde{v}_i\}$ are ordered bases for a (finite dimensional real) vector space V, and that $T: V \to V$ is a linear transformation. Define scalars

$$\{A_j^i, T_j^i, \tilde{T}_j^i \in \mathbf{R} \mid 1 \le i, j \le \dim V\}$$

by the equations $v_j = A_j^i \tilde{v}_i$, $T(v_j) = T_j^i v_i$ and $T(\tilde{v}_j) = \tilde{T}_j^i \tilde{v}_i$. Find the transformation rule relating A_j^i, T_j^i , and \tilde{T}_j^i .

2. (Rossmann P. 21#1c) Suppose that $\{v_i\}$ and $\{\tilde{v}_i\}$ are ordered bases for a vector space V, and $\{f^i\}$ and $\{\tilde{f}^i\}$ their ordered dual bases for V^* respectively. Suppose $v_i = A_i^j \tilde{v}_j$ for some scalars $\{A_i^j \in \mathbf{R} \mid 1 \leq i, j \leq \dim V\}$. Find the transformation rule for the coordinates of covectors $f \in V^*$.

3. Rossmann P. 22#3

4. Suppose we are given 3 vector spaces V, W, and another we denote $V \otimes W$, together with a a bilinear map $\otimes : V \times W \to V \otimes W$. As usual, denote $\otimes(v, w) = v \otimes w$ for $(v, w) \in V \times W$, and consider the following three conditions. Make no assumptions on dimension here.

- \otimes_1 For any vector space X and any bilinear map $\varphi: V \times W \to X$, there exists a unique linear map $f: V \otimes W \to X$ such that $f \otimes = \varphi$
- \otimes_2 For any vector space X and any bilinear map $\varphi: V \times W \to X$, there exists a linear map $f: V \otimes W \to X$ such that $f \otimes = \varphi$
- $\otimes_3 \operatorname{span}\{v \otimes w \mid v \in V, w \in W\} = V \otimes W.$
- a) Prove $\otimes_1 \Rightarrow (\otimes_2 \text{ and } \otimes_3)$.
- b) Prove that $(\otimes_2 \text{ and } \otimes_3) \Rightarrow \otimes_1$.
- **5.** Consider the bilinear map $\otimes : \mathbf{R}^m \times \mathbf{R}^n \to \mathbf{M}_{m,n}(\mathbf{R})$ defined by

$$\otimes(y,x) = yx^t,$$

where x and y are column vectors (i.e. $n \times 1$ and $m \times 1$ matrices resp.), x^t denotes the transpose and yx^t denotes the matrix product. Prove that $(\mathbf{M}_{m,n}(\mathbf{R}), \otimes)$ is a tensor product of \mathbf{R}^n and \mathbf{R}^m .

6. Let S be any set and define $\langle S \rangle = \{f : S \to \mathbf{R} \mid f(s) \neq 0 \text{ for only finitely many } s \in S\}$. We know that $\langle S \rangle$ is a vector space. Prove that if we identify $f \in \langle S \rangle$ with the formal (finite) sum $\sum_{s \in S} f(s)s$, then the subset $S \subset \langle S \rangle$ is a basis for $\langle S \rangle$. 7. Suppose that $\{v_i\}$ and $\{w_i\}$ are bases for (finite dimensional) vector spaces V and W respectively, and let $\tilde{S} = \{v_i \otimes w_j \mid 1 \leq i \leq \dim V, 1 \leq j \leq \dim W\}$ be the finite set of symbols obtained from these bases as in class. For $v = x^i v_i$ and $w = y^j w_j$, define $\otimes : V \times W \to \langle \tilde{S} \rangle =: V \otimes W$, by

$$\otimes(v,w) = v \otimes w = x^i y^j v_i \otimes w_j.$$

- a) Prove that \otimes is bilinear.
- b) Prove that \tilde{S} is a basis for $\langle \tilde{S} \rangle$.
- c) Prove that $\langle \tilde{S} \rangle$ is a statement of V and W.
- c) Suppose that $\{v'_i\}$ and $\{w'_i\}$ are bases for V and W respectively. Show that $S' = \{v'_i \otimes w'_i \in V \otimes W \mid 1 \le i \le \dim V, 1 \le j \le \dim W\}$ is also a basis for $\langle \tilde{S} \rangle$.
- 8. Suppose $t = \sum_{i=1}^{m} u_i \otimes z_i \in V \otimes W$ and that $\{u_i\}$ is linearly independent. Show that $t = 0 \iff z_i = 0$ for all i.
- **9.** a) Show that $0 \otimes w = v \otimes 0 = 0$ for all $v \in V, w \in W$. b) If $v \otimes w \neq 0$, show that $v \otimes w = v' \otimes w'$ iff $v' = \lambda v$ and $w' = \lambda^{-1} w$ for some $0 \neq \lambda \in \mathbf{R}$.
- **10.** Let V be a vector space, and $v_1, \ldots v_p, v'_1, \ldots v'_p \in V$.
 - a) Show that $v_1 \otimes v_2 \otimes \cdots \otimes v_p = 0$ iff $v_i = 0$ for some *i*.
- b) Show that if $0 \neq v_1 \otimes v_2 \otimes \cdots \otimes v_p$, then $v_1 \otimes v_2 \otimes \cdots \otimes v_p = v'_1 \otimes v'_2 \otimes \cdots \otimes v'_p$ iff $v'_i = \lambda_i v_i$ for some scalars λ_i satisfying $\lambda_1 \lambda_2 \dots \lambda_p = 1$.

11. Let V be a vector space, and let $V^{\otimes^{p}} = V \otimes \cdots \otimes V$ (p-times). Recall the definition from class of the subspace (actually a double-sided ideal) of T(V) (that we quotient out by – "set to zero" – to obtain ΛV):

$$N = \operatorname{span}\{a \otimes (u \otimes v + v \otimes u) \otimes b \mid v, w \in V \text{ and } a \in V^{\otimes^{p}}, b \in V^{\otimes^{q}}; p, q \in \mathbf{N}\}$$

Now define

$$M = \operatorname{span}\{a \otimes w \otimes b \otimes w \otimes c \mid w \in V, a \in V^{\otimes^{p}}, b \in V^{\otimes^{q}}, c \in V^{\otimes^{r}}; p, q, r \in \mathbf{N}\}$$

In the following, $a \in V^{\otimes^p}$, $b \in V^{\otimes^q}$ and $c \in V^{\otimes^r}$.

- a) By setting w = u + v, show that $N \subset M$.
- b) Show that if $w \in V$, then

 $a \otimes w \otimes w \otimes b \otimes c - (-1)^q a \otimes w \otimes b \otimes w \otimes c \in N.$

c) Put u = v to show that $\forall w \in V$, $a \otimes w \otimes w \otimes b \in N$.

- d) Use (b),(c) to show that $\forall w \in V, a \otimes w \otimes b \otimes w \otimes c \in N$
- e) Conclude from (d) that $M \subset N$.
- f) Conclude from (a) and (e) that N = M.

12. Recall that the rank of a tensor $t \in V \otimes W$ is the least m such that $t = \sum_{i=1}^{m} v_i \otimes w_i$ for vectors $v_i \in V$ and $w_i \in W$.

- a) Show that for any $0 \neq t \in V \otimes W$, we may write $t = \sum_{i=1}^{m} v_i \otimes w_i$ where $\{v_i \mid i = 1, \ldots, m\}$ is linearly independent.
- b) Now show that for any $0 \neq t \in V \otimes W$, we may write $t = \sum_{i=1}^{m} v_i \otimes w_i$ where both $\{v_i \mid i = 1, \dots, m\}$ and $\{w_i \mid i = 1, \dots, m\}$ are linearly independent.
- c) Now prove that rank $t \leq \min\{\dim V, \dim W\}, \forall t \in V \otimes W$

13. Suppose V and W are finite dimensional. Recall the isomorphism $W \otimes V^* \xrightarrow{e} \operatorname{Hom}(V, W)$ satisfying $e(w \otimes f)(v) = f(v)w$. The rank of a tensor is defined in problem 12, and recall that the rank of a linear transformation is the dimension of its image.

Prove that rank $t = \operatorname{rank} e(t)$ for all $t \in W \otimes V^*$.

14. Let

$$A = \begin{bmatrix} 1 & 0 & -1 & 0 & 1 \\ 0 & 1 & 0 & 0 & 1 \\ 1 & -1 & -1 & 0 & 0 \end{bmatrix}$$

- a) Now, (using Q. 5) $A \in \mathbf{M}_{35} = \mathbf{R}^3 \otimes \mathbf{R}^5$, so write $A = \sum_{i=1}^m v_i \otimes w_i$ for some vectors $v_i \in \mathbf{R}^3, w_i \in \mathbf{R}^5$, with m > 2.
- b) Now write $A = \sum_{i=1}^{m} v_i \otimes w_i$ for some vectors $v_i \in \mathbf{R}^3, w_i \in \mathbf{R}^5$, with m = 2.

(Hint 1. Use the same technique that worked in Q.12 to reduce the "length" of the expression for A, i.e. do some work to make both $\{v_i\}$ and $\{w_i\}$ linearly independent.

Hint 2. The rank of A is 2, so we can write $A = P^{-1}\tilde{A}$, where $\tilde{A} = \begin{bmatrix} r_1 \\ r_2 \\ 0 \end{bmatrix}$ is in row

echelon form, and $P = [c_1 c_2 c_3]$ is an invertible 3 by 3 matrix with the c_i as it columns. Recall/note that P is obtained from the identity by applying the same row operations that took A to \tilde{A} .)

15. Let
$$A = \begin{bmatrix} 1 & 2 & -1 \\ 0 & -1 & 1 \\ 2 & 1 & 1 \end{bmatrix}$$
 and define $T \in \text{Hom}(\mathbf{R}^3, \mathbf{R}^3)$ by $T(v) = Av$.

Let $\mathbf{R}^3 \otimes \mathbf{R}^3 = \operatorname{span}\{e_i \otimes e_j \mid 1 \leq i, j \leq 3\}$ be the usual tensor product, and recall that $f: \mathbf{R}^3 \otimes \mathbf{R}^3 \to \mathbf{M}_{33}(\mathbf{R})$ defined by $f(v \otimes w) = vw^t$ is an isomorphism.

Recall also that the unique linear map $e : \mathbf{R}^3 \otimes (\mathbf{R}^3)^* \to \operatorname{Hom}(\mathbf{R}^3, \mathbf{R}^3)$ satisfying $e(e_i \otimes e^j)(v) = e^j(v)e_i$ is also an isomorphism. Let $t = e^{-1}(T)$.

- a) Find an explicit expression for $f^{-1}(A) \in \mathbf{R}^3 \otimes \mathbf{R}^3$.
- b) Find an explicit expression for $t \in \mathbf{R}^3 \otimes (\mathbf{R}^3)^*$.
- c) Write $t = \sum_{i=1}^{m} v_i \otimes w^i$ for $v_i \in \mathbf{R}^3, w^i \in (\mathbf{R}^3)^*$, where $m = \operatorname{rank}(t)$.
- d) If $v \otimes w^*$ and $u \otimes x^*$ are two tensors in $\mathbf{R}^3 \otimes (\mathbf{R}^3)^*$, find an explicit expression for $e^{-1}(e(v \otimes w^*) \circ (u \otimes x^*))$, where \circ denotes the composition of the linear maps in Hom $(\mathbf{R}^3, \mathbf{R}^3)$.

16. In the following, $\{e_1, \ldots, e_n\}$ and $\{e^1, \ldots, e^n\}$ will denote the standard dual bases of \mathbf{R}^n and $(\mathbf{R}^n)^*$.

- a) Show that $\operatorname{rank}(e_1 \otimes e_2 + e_2 \otimes e_1) = 2$.
- b) Find a tensor of rank 3 in $\mathbb{R}^3 \otimes \mathbb{R}^3$. You must show that the rank of your choice is 3.
- c) Find a tensor of rank 3 in $\mathbb{R}^3 \otimes (\mathbb{R}^4)^*$. You must show that the rank of your choice is 3.
- 17. Using the map $e: W \otimes V^* \to \text{Hom}(V, W)$, find the composition rule

$$(W \otimes V^*) \times (U \otimes W^*) \to U \otimes V^*$$

which corresponds to composition of linear maps.

18. Show that if $D_2 : \mathbf{R}^2 \times \mathbf{R}^2 \to \mathbf{R}$ is defined by $D_2(v, w) = \det[v w]$ (where v, w are written as columns), then when viewed (using the maps j and e from class) as an element in $(\mathbf{R}^2)^* \otimes (\mathbf{R}^2)^*$,

$$D_2 = e^1 \otimes e^2 - e^2 \otimes e^1,$$

where $\{e_1, e_2\}$ is the standard basis of \mathbf{R}^2 , and $\{e^1, e^2\}$ its dual basis.

19. If $D_3 : \mathbf{R}^3 \times \mathbf{R}^3 \times \mathbf{R}^3 \to \mathbf{R}$ is defined by $D_3(u, v, w) = \det[u v w]$ (where u, v, w are written as columns), find an expression in $(\mathbf{R}^3)^* \otimes (\mathbf{R}^3)^* \otimes (\mathbf{R}^3)^*$ representing D_3 .

20. Suppose $T: V \to V$ is a linear map. If dim V = n show that for n = 2, 3 the induced map $\Lambda^n T: \Lambda^n V \to \Lambda^n V$ is multiplication by det T.

21. a) Find a form of rank 2 in $\Lambda^2 \mathbf{R}^4$. You must show that the rank of your choice is 2. b) Show that every form in $\Lambda^2 \mathbf{R}^3$ has rank 1.

22. Let $\{v_i\}$ be a basis for a finite dimensional vector space V and $\{v^i\}$ be its dual basis. Suppose g is an inner product on V. Using the natural isomorphism $(V \otimes V)^* \cong V^* \otimes V^*$, write $g = g_{ij}v^i \otimes v^j$. We know there is an isomorphism $\psi_g : V \to V^*$ induced by g. Show that $\psi_g(v_i) = g_{ij}v^j$ for $i = 1, \ldots, \dim V$.

23. Let $\{v_1, \ldots, v_n\}$ be an ordered orthonormal basis of the inner product space V, and suppose that $\star : \Lambda V \to \Lambda V$ is the Hodge star map associated to the given ordered basis. Show that

- a) $\star \star : \Lambda^p V \to \Lambda^p V$ is multiplication by ± 1 , and find the exact dependence of the sign on p and n.
- b) $\langle \alpha, \beta \rangle = *(\alpha \wedge *\beta)$ for all $\alpha, \beta \in \Lambda^p V$.
- c) $\langle *\alpha, *\beta \rangle = \langle \alpha, \beta \rangle$, for all $\alpha, \beta \in \Lambda^p V$.
- **24.** Let $\varphi: V \times V \to \mathbf{R}$ be a bilinear map.
 - a) Show that $\tilde{\beta}: V^{2p} \to \mathbf{R}$ defined by

$$\tilde{\beta}(v_1, v_2, \cdots, v_p, w_1, w_2, \cdots, w_p) = \det[\varphi(v_i, w_j)],$$

is a multilinear map.

b) Show that there is a unique bilinear map $\bar{\beta}: V^{\otimes^p} \times V^{\otimes^p} \to \mathbf{R}$ satisfying

$$\overline{\beta}(v_1 \otimes v_2 \otimes \cdots \otimes v_p, w_1 \otimes w_2 \otimes \cdots \otimes w_p) = \det[\varphi(v_i, w_j)]$$

- c) Show that if N is defined as in Q.11, then $\bar{\beta}(s,n) = \bar{\beta}(n,s) = 0$ for all $s \in V^{\otimes^p}$ and $n \in N^p$.
- d) Show that there is a unique bilinear map $\beta : \Lambda^p V \times \Lambda^p V \to \mathbf{R}$ satisfying

$$\beta(v_1 \wedge v_2 \wedge \cdots \wedge v_p, w_1 \wedge w_2 \wedge \cdots \wedge w_p) = \det[\varphi(v_i, w_j)].$$

25. Let V be a vector space of dimension n.

- a) Show that $\{u_1, \ldots, u_k, v_1, \ldots, v_k\}$ is linearly independent iff $a = \sum_{i=1}^k u_i \wedge v_i$ satisfies $a^k \neq 0$.
- b) For any set of vectors $\{u_1, \ldots, u_k, v_1, \ldots, v_k\} \subset V$, show that $a = \sum_{i=1}^k u_i \wedge v_i$ satisfies $a^{k+1} = 0$.
- c) Prove that for $a \in \Lambda^2 V$, rank $a = \max\{k \mid a^k \neq 0\}$,
- d) Prove that for $a \in \Lambda^2 V$, rank $a \leq \frac{n}{2}$.
- e) Prove that if $v_1 \wedge v_2 \wedge \ldots \wedge v_k$ and $w_1 \wedge w_2 \wedge \ldots \wedge w_k$ are non-zero rank-one elements of $\Lambda^k V$, then

$$\exists \lambda \neq 0 \text{ s.t. } v_1 v_2 \dots v_k = \lambda w_1 w_2 \dots w_k \iff \operatorname{span}\{v_1, v_2, \dots, v_k\} = \operatorname{span}\{w_1, w_2, \dots, w_k\}$$

26. a) Suppose $X \xrightarrow{h} Y$ and $Z \xrightarrow{k} U$ are linear maps. Explain briefly why there is a well defined linear map $h \otimes k : X \otimes Z \to Y \otimes U$ satisfying

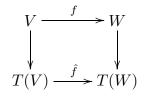
$$(h \otimes k)(x \otimes y) = h(x) \otimes k(y), \quad \forall x \in X, y \in Y.$$

Now let V and W be vector spaces, and $f: V \to W$ a linear map.

b) Prove that f induces a well-defined linear map $\hat{f}: T(V) \to T(W)$ satisfying

$$\hat{f}(v_1 \otimes \cdots \otimes v_n) = f(v_1) \otimes \cdots \otimes f(v_n), \quad \forall v_i \in V,$$

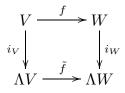
which also makes the following diagram commute:



(Here the vertical maps are the usual inclusions $U \hookrightarrow T(U)$, for any vector space U.) c) If $W \xrightarrow{i_U} \Lambda W$ and $V \xrightarrow{i_U} \Lambda V$ denote these usual inclusions, show that f induces a well-defined linear map $\tilde{f} : \Lambda V \to \Lambda W$ satisfying

$$f(v_1 \wedge \dots \wedge v_n) = f(v_1) \wedge \dots \wedge f(v_n), \quad \forall v_i \in V,$$

which also makes the following diagram commute:



d) Suppose X and Y are subspaces of V such that $V = X \oplus Y$, with inclusion maps $X \xrightarrow{i} V$ and $Y \xrightarrow{j} V$. Show that if $\mu : \Lambda V \otimes \Lambda V \to \Lambda V$ denotes the multiplication mapin ΛV , i.e., $\mu(\alpha \otimes \beta) = \alpha \wedge \beta$, then the composition $\Psi = \mu \circ (\tilde{i} \otimes \tilde{j})$

$$\Lambda X \otimes \Lambda Y \xrightarrow{i \otimes j} \Lambda V \otimes \Lambda V \xrightarrow{\mu} \Lambda V = \Lambda (X \oplus Y)$$

is an isomorphism.

27. If $j: V^* \otimes W^* \to (V \otimes W)^*$ is the map (which is an isomorphism when dim $V + \dim W < \infty$) defined in class, show that if $f: V \to U$ and $g: W \to X$ are linear maps, then the following diagram commutes:

$$V^* \otimes W^* \xleftarrow{f^* \otimes g^*} U^* \otimes X^*$$
$$j \downarrow \qquad \qquad j \downarrow$$
$$(V \otimes W)^* \xleftarrow{(f \otimes g)^*} (U \otimes X)^*$$

28. Let V be a vector space, v a non-zero vector in V, and $f \in V^*$ any linear form satisfying f(v) = 1. Define a linear map $D : \Lambda V \to \Lambda V$ by

$$D(\alpha) = v \wedge \alpha, \quad \forall \alpha \in \Lambda V.$$

a) Show that im $D \subset \ker D$ (i.e., $D^2 = 0$.)

- b) Show that we may write $V = \operatorname{span}\{v\} \oplus \ker f$.
- c) Denote $Y = \ker f$. Assuming the results of Q.27d, show that for any element $\alpha \in \Lambda V$, there are unique elements $\beta_0, \beta_1 \in \Lambda Y$ such that

$$\alpha = v \wedge \beta_0 + \beta_1.$$

d) Show that im $D = \ker D$.

29. Rossmann's exercises 1.1: 12, 13. (Note that we the space of $n \times n$ matrices M_{nn} is denoted $\mathbf{R}^{n \times n}$ in those notes.

30. Rossmann's exercises 1.1: 15. The Jacobian matrix is the matrix of partial derivatives.

- **31.** Rossmann's exercises 1.1: 18.
- **32.** Rossmann's exercises 1.2: 8

33. Prove that S^2 is a connected 2 dimensional manifold. Is there an atlas with just 2 charts? Is there an atlas with just 1 chart?

34. Rossmann's exercises 1.2: 8 (modified) Let M be the set \mathbf{R} with the usual topology. Give \mathbf{R} the atlas $\{(\mathrm{id}_R, \mathbf{R})\}$ and denote the corresponding manifold M_0 (this is the usual manifold ' \mathbf{R} ').

- a) Define $\varphi: M \to \mathbf{R}$ by $\varphi(t) = t^3$.
 - i) Show that $\{(\varphi, M)\}$ is an atlas for a manifold structure on M.
 - ii) Is $f = id_{\mathbf{R}} : M \to M_0$ a diffeomorphism?
 - iii) Viewing f as a map $f: M \to M$, is f in $C^{\infty}(M)$?
 - iv) Is $g = \mathrm{id}_{\mathbf{R}} : M_0 \to M \text{ a } C^{\infty} \text{ map}?$
 - v) Can you find a diffeomorphism $h: M_0 \to M$? If so, exhibit one.

b) Define $\psi_1: M \setminus \{0\} \to \mathbf{R}$ by $\psi(t) = t^3$ and $\psi_2: (-1, 1) \to \mathbf{R}$ by $\psi_2(t) = \frac{t}{1-t}$.

- i) Show that $\{(\psi_1, M \setminus \{0\}), (\psi_2, (-1, 1)\}$ is an atlas for a manifold structure on M.
- ii) Is $f = id_{\mathbf{R}} : M \to M_0$ a diffeomorphism?
- iii) Viewing f as a map $f: M \to M$, is f in $C^{\infty}(M)$?
- iv) Is $g = \mathrm{id}_{\mathbf{R}} : M_0 \to M \text{ a } C^{\infty} \text{ map}?$
- v) Can you find a diffeomorphism $k: M_0 \to M$? If so, exhibit one.

35-45. Text: problems 2-12, inclusive.

46. Suppose (U, φ) is a coordinate chart on an smooth *n*-Manifold *M*, and let $\psi : W = \varphi(U) \to U$ denote φ^{-1} . Suppose $v \in \operatorname{Vect}(W)$.

Define $\psi_*(v): C^{\infty}(U) \to C^{\infty}(U)$ by

$$\psi_*(v)(f) = [v(f \circ \psi)] \circ \varphi.$$

Show that $\psi_*(v) \in \operatorname{Vect}(U)$, and that $\psi_* : \operatorname{Vect}(W) \to \operatorname{Vect}(U)$ so defined is an invertible linear map.

47. Let $M = \mathbf{R}^2$ with the standard differentiable structure (i.e. with the unique maximal atlas containing the chart $(\mathbf{R}^2, \mathrm{id}_{\mathbf{R}^2})$.) If $v = -y\frac{\partial}{\partial x} + x\frac{\partial}{\partial y}$, show that the flow $\phi_t : \mathbf{R}^2 \to \mathbf{R}^2$ generated by v is $\phi_t \begin{pmatrix} x \\ y \end{pmatrix} = \begin{bmatrix} \cos t & -\sin t \\ \sin t & \cos t \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$, i.e. rotation about the origin through an angle t in the counterclockwise sense.

48. Suppose M is a smooth manifold, and let $v, w \in \text{Vect}(M)$ Define $vw : C^{\infty}(M) \to C^{\infty}(M)$ by

$$vw(f) = v(w(f))$$

- a) Show by an example with $M = \mathbf{R}$ that $vw \notin \operatorname{Vect}(M)$
- b) Show that if we define [v, w] = vw wv, for $v, w \in \text{Vect}(M)$, that $[v, w] \in \text{Vect}(M)$
- c) Given (2 different) examples for M = R, one where [v, w] = 0, and another where $[v, w] \neq 0$.
- d) For arbitrary vector fields $v, w \in \text{Vect}(\mathbf{R})$, find necessary and sufficient conditions for [v, w] = 0.

49. For any matrix
$$A = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in \mathbf{M}_{22}$$
, define $v^A \in \operatorname{Vect}(\mathbf{R}^2)$ by
 $v^A = (ax + cy)\frac{\partial}{\partial x} + (cx + by)\frac{\partial}{\partial y}.$

Prove that if $A, B \in \mathbf{M}_{22}$, then the Lie bracket $[v^A, v^B] = v^{[A,B]}$, where [A, B] = AB - BA is the usual commutator of A and B in \mathbf{M}_{22} .

50-67. Text: problems 13, 14, 16,17, 18 (assume ϕ is a diffeomorphism), 19 (but see the errata for the book, as there's a mistake), 20, 21, 22, 23 (check the errata again), 24, 25, 27, 28, 29, 33, 34.

(*) For questions 68-74 (if necessary): Suppose (U, φ) is a coordinate chart on an smooth *n*-Manifold M, and let $\psi : \varphi(U) \to U$ denote φ^{-1} . Define, as in class, $\frac{\partial}{\partial z^i} = \psi_*(\frac{\partial}{\partial x^i})$, and $z^i \in C^{\infty}(U)$ by $z^i = x^i \circ \varphi$.

68. a) Show that $\frac{\partial z^i}{\partial z^j} = \delta^i_j$.

b) If dz^i denotes the differential of the local coordinate function z^i , show that $dz^i(\frac{\partial}{\partial z^i}) = \delta^i_i$.

69. Show that if $v \in \operatorname{Vect}(U)$, then $v = v^k \frac{\partial}{\partial z^k}$ for some smooth functions $v^k \in C^{\infty}(U)$.

70. Let (U, φ) be a local coordinate system for a smooth manifold M. If $p \in U$, let $\epsilon = \sup \{r \mid B(\varphi(p), r) \subset \varphi(U)\}$. If $\varphi(p) = (a_1, \ldots, a_n)$, define

$$\beta_i(t) = \psi(a_1, \dots, a_{i-1}, a_i + t, a_{i+1}, \dots, a_n)$$

for $t \in (-\epsilon, \epsilon)$.

Show that $\beta'_i(0) = \frac{\partial}{\partial z^i}(p)$, as members of $T_p M$.

71. a) Suppose (U, φ) is a coordinate chart on an smooth *n*-manifold M, and let $\psi : W = \varphi(U) \to U$ denote φ^{-1} . Suppose $v \in \operatorname{Vect}(W)$.

Define $\psi_*(v): C^{\infty}(U) \to C^{\infty}(U)$ by

$$\psi_*(v)(f) = [v(f \circ \psi)] \circ \varphi.$$

We know that $\psi_* : \operatorname{Vect}(W) \to \operatorname{Vect}(U)$ is an invertible linear map. Define $\frac{\partial}{\partial z^i} = \psi_*(\frac{\partial}{\partial x^i})$, as usual.

Show carefully that $\frac{\partial^2 f}{\partial z^i \partial z^j} := \frac{\partial}{\partial z^i} (\frac{\partial}{\partial z^f} (f))$ for $f \in C^{\infty}(U)$ satisfies

$$\frac{\partial^2 f}{\partial z^i \partial z^j} = \frac{\partial^2 f}{\partial z^j \partial z^i}, \quad \text{for all } 1 \le i, j \le n, \text{ and } f \in C^{\infty}(U).$$

b) Now suppose $\psi : M \to N$ is a diffeomorphism with inverse φ , and define $\psi_* : \operatorname{Vect}(M) \to \operatorname{Vect}(N)$ by the formula in (a). Show that $\psi_*([v,w]) = [\psi_*v,\psi_*w]$ for all vector fields $v, w \in \operatorname{Vect}(M)$. (i.e. ψ_* preserves the Lie bracket of vector fields.)

72. (a) If $i : \mathbf{S}^2 \to \mathbf{R}^3$ is the inclusion map, show that is it a smooth map. (\mathbf{S}^2 and \mathbf{R}^3 have the usual manifold structures)

b) Show that $i_*: T_p \mathbf{S}^2 \to T_p \mathbf{R}^3$ is an injective linear map. (This allows us to identify $T_p \mathbf{S}^2$ with the subspace $i_*(T_p \mathbf{S}^2)$ of $T_p \mathbf{R}^3$.)

73. For $M = \mathbf{S}^1$, let $U = \{(x, y) \in \mathbf{S}^1 \mid x > 0\}$ and $\theta : U \to \mathbf{R}$ be defined by $\theta(x, y) = \arctan(\frac{y}{x})$. (Here, $\arctan : \mathbf{R} \to (-\frac{\pi}{2}, \frac{\pi}{2})$.)

- i) Show that θ is a homeomorphism onto $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$, by finding $\psi \equiv \theta^{-1}$.
- ii) Define $\frac{\partial}{\partial \theta} \in \operatorname{Vect}(U)$ by $\frac{\partial}{\partial \theta} = \psi_*(\frac{d}{dt})$, where $t : (-\frac{\pi}{2}, \frac{\pi}{2}) \to \mathbf{R}$ is the usual coordinate t(x) = x. (If you like, $t \equiv x^1$.)

Show carefully that if $a = (x_0, y_0) \in U$, and $i : U \to \mathbb{R}^2$ is the (smooth) inclusion, then

$$i_*(\frac{\partial}{\partial \theta_a}) := -y_0 \frac{\partial}{\partial x_a} + x_0 \frac{\partial}{\partial y_a}.$$

74. Let $M = \mathbf{S}^2$, $U = \{(x, y, z) \in \mathbf{S}^2 \mid x > 0\}$ and define $\varphi : U \to \varphi(U)$ by $\varphi(x, y, z) = (y, z) = (x^1, x^2)$, with inverse ψ . As usual, define $\frac{\partial}{\partial z^k} = \psi_*(\frac{\partial}{\partial x^k})$. If $j : \mathbf{S}^2 \to \mathbf{R}^3$ is the smooth inclusion, Compute $(j_* \frac{\partial}{\partial z^k})_p$ for k = 1, 2 in terms of the tangent vectors $\frac{\partial}{\partial x_p}, \frac{\partial}{\partial y_p}, \frac{\partial}{\partial z_p}$ on \mathbf{R}^3 , using the identification we employed in class (and justified by exercise 71.)

75. We know (Warner, P. 10, and assignment 2) that for any r > 0, there is $k \in \mathbf{C}^{\infty}(\mathbf{R}^n)$ such that $\forall v, ||v|| \leq r \Rightarrow k(v) = 1$, and $\forall v, ||v|| > 2r \Rightarrow k(v) = 0$. Let M be a smooth manifold.

- a) Show that $\forall p \in M$, and any open set $U \ni p$ there is an open set $V \ni p$ with $V \subset \overline{V} \subset U$, and a smooth function $f \in \mathbf{C}^{\infty}(M)$ such that f(p) = 1 on V, and f = 0 in $M \setminus U$.
- b) Prove that if $g \in \mathbf{C}^{\infty}(M)$ is zero on an open set containing p, then $\forall v_p \in T_pM, v_p(g) = 0$. (Hint: Show that there is a function $h \in \mathbf{C}^{\infty}(M)$ with h(p) = 1 and 0 = hg.)
- c) Suppose (φ, U) is a coordinate system for M, and $p \in U$. Prove that for every $f \in \mathbf{C}^{\infty}(U)$, there is $\tilde{f} \in \mathbf{C}^{\infty}(M)$ and an open set $W \ni p$ such that $f = \tilde{f}$ on W.
- d) Suppose (φ, U) is a coordinate system for M, and $p \in U$. Prove that $i_* : T_p U \to T_p M$ is an isomorphism, where $i : U \hookrightarrow M$ denotes the inclusion.