Tensor Analysis Practice questions -1

1. Suppose that {v;} and {9;} are ordered bases for a (finite dimensional real) vector space
V, and that T': V — V is a linear transformation. Define scalars

(AL TI, TV eR | 1<i,j <dimV}

by the equations v; = A%v;, T'(v;) = Tjv; and T(0;) = T;ﬁz Find the transformation rule
relating A;, T;, and ’f;

2. (Rossmann P. 21#1c) Suppose that {v;} and {9;} are ordered bases for a vector space
V, and {f?} and {f?} their ordered dual bases for V* respectively. Suppose v; = AJ#;
for some scalars {47 € R | 1 < i,j < dimV}. Find the transformation rule for the
coordinates of covectors f € V*.

3. Rossmann P. 22#3

4. Suppose we are given 3 vector spaces V', W, and another we denote V' ® W, together
with a a bilinear map ® : V. x W — V ® W. As usual, denote ®(v,w) = v ® w for
(v,w) € V x W, and consider the following three conditions. Make no assumptions on
dimension here.

®1 For any vector space X and any bilinear map ¢ : V x W — X there exists a unique
linear map f:V ® W — X such that f® = ¢

®9 For any vector space X and any bilinear map ¢ : V x W — X, there exists a linear
map f:V®W — X such that f®@ = ¢

®s span{v@w |veViwe W=V W.

a) Prove ® = (®2 and ®3) .
b) Prove that (®2 and ®3) = ®;.

5. Consider the bilinear map ® : R™ x R™ — M,,, ,(R) defined by

®(y, ) = ya',

where z and y are column vectors (i.e. n x 1 and m x 1 matrices resp.), 2! denotes the
transpose and yxz' denotes the matrix product. Prove that (M,, ,(R),®) is a tensor
product of R™ and R™.

6. Let S be any set and define (S) = {f : S — R | f(s) # 0 for only finitely many s € S}.
We know that (S) is a vector space. Prove that if we identify f € (S) with the formal
(finite) sum ) __g f(s)s, then the subset S C (S) is a basis for (5).



7. Suppose that {v;} and {w;} are bases for (finite dimensional) vector spaces V' and W
respectively, and let S = fviww;, | 1 <i<dimV,1 <j < dimW} be the finite set
of symbols obtained from these bases as in class. For v = z'v; and w = y/w;, define
Q:VxW —=(S)=VoW, by

(v, w) =v @ w = 'y v; ® w;.

a) Prove that ® is bilinear.
b) Prove that S is a basis for (S).

)

)
c) Prove that (S) is a is a tensor product of V' and W.
c) Suppose that {v,} and {w]} are bases for V and W respectively. Show that S’ =
view; e VoW | 1<i<dimV,1 <j <dimW} is also a basis for (S).

8. Suppose t = Y " u; ® z; € V@ W and that {u;} is linearly independent. Show that
t=0 <= 2z =0 for all i.

9.a) Show that 0@ w=v®0=0for allv e V,;w e W.
b) If v@w # 0, show that v@w = v/ @w’ iff v/ = M and w’ = A\~ 1w for some 0 # X € R.

10. Let V' be a vector space, and vy, ... vp, v}, .. .v;, eV.

a) Show that 11 ® v2 ® --- ® v, = 0 iff v; = 0 for some 4.
b) Show that if 0 # v1 ® V2 ® - -+ ® vp, then v] VR V2 ® - -+ @ vy :vi®v§®---®v]’9 iff
v, = A\;v; for some scalars \; satisfying AjAa... A, = 1.

11. Let V be a vector space, and let V&' =V @ --- ® V (p-times). Recall the definition
from class of the subspace (actually a double-sided ideal) of T'(V') (that we quotient out
by — “set to zero” — to obtain AV):

N =span{a® (u@v+vQu)Rb | v,wEVandaEV®p,bEV®q;p,q€N}
Now define

M =span{a Quw @b w® c | weV,aeV®p,b€V®q,c€V®T;p,q,r€N}
In the following, a € V& b€ V®" and c € V',

a) By setting w = u + v, show that N C M.
b) Show that if w € V, then

ARQUWRWRbRc—(—1)a@uWbdw®c e N.
c) Put u=wv toshow that Vw € V, a®@w@w®be N.



d) Use (b),(c) to show that Vw € V,a@w @b w®c e N
e) Conclude from (d) that M C N.
f) Conclude from (a) and (e) that N = M.

12. Recall that the rank of a tensor t € V' ® W is the least m such that ¢t = 2211 v; @ w;
for vectors v; € V and w; € W.
a) Show that for any 0 # ¢t € V ® W, we may write ¢t = > ", v; ® w; where {v; | i =
1,...m} is linearly independent.
b) Now show that for any 0 # ¢t € V @ W, we may write t = Y .- v; ® w; where both
{vi | i=1,...m} and {w; | i =1,...m} are linearly independent.
¢) Now prove that rankt < min{dim V,dim W}, vVt € V@ W

13. Suppose V and W are finite dimensional. Recall the isomorphism W®V* < Hom (V, W)
satisfying e(w ® f)(v) = f(v)w. The rank of a tensor is defined in problem 12, and recall
that the rank of a linear transformation is the dimension of its image.

Prove that rankt = ranke(t) for all t € W ® V*.

14. Let
1 0 -1 0 1
A=|0 1 0 0 1
1 -1 -1 0 O
a) Now, (using Q. 5) A € M35 = R® ® RS, so write A = _1" | v; ® w; for some vectors
v; € R3, w; € R, with m > 2.

b) Now write A = >, v; @ w; for some vectors v; € R?, w; € R®, with m = 2.

(Hint 1. Use the same technique that worked in Q.12 to reduce the “length” of the
expression for A, i.e. do some work to make both {v;} and {w;} linearly independent.
1
Hint 2. The rank of A is 2, so we can write A = P~1A, where A = |75 | is in row
0
echelon form, and P = [¢; ¢3 ¢3] is an invertible 3 by 3 matrix with the ¢; as it columns.
Recall /note that P is obtained from the identity by applying the same row operations that
took A to A.)

1 2 -1
15.Let A= |0 —1 1 | and define T € Hom (R?,R?) by T'(v) = Av.
2 1 1

Let R® @ R® = span{e; ® ¢; | 1 < 4,5 < 3} be the usual tensor product, and recall
that f: R3® R® — M33(R) defined by f(v ® w) = vw! is an isomorphism.

Recall also that the unique linear map e : R® ® (R3)* — Hom (R? R3) satisfying
e(e; ® e)(v) = e/ (v)e; is also an isomorphism. Let t = e~ (T)).



a) Find an explicit expression for f~1(A4) € R?® ® R3.

b) Find an explicit expression for t € R3 @ (R3)*.

c) Write t = >, v; ® w' for v; € R*, w' € (R3)*, where m = rank(t).

d) If v ® w* and u ® x* are two tensors in R? ® (R3)*, find an explicit expression for
e e(v ® w*) o (u® x*)), where o denotes the composition of the linear maps in

Hom (R3, R?).

16. In the following, {e1,...,e,} and {e!,..., e"} will denote the standard dual bases of
R™ and (R™)*.
a) Show that rank(e; ® es + e2 ® e1) = 2.
b) Find a tensor of rank 3 in R® ® R3. You must show that the rank of your choice is 3.
¢) Find a tensor of rank 3 in R?® ® (R*)*. You must show that the rank of your choice
is 3.

17. Using the map e : W ® V* — Hom (V, W), find the composition rule
WV ) xUeW") -UV*
which corresponds to composition of linear maps.

18. Show that if Dy : R? x R? — R is defined by Da(v,w) = det[vw] (where v, w are
written as columns), then when viewed (using the maps j and e from class) as an element
in (R?)* @ (R?)",

D, :el®62—e2®el,

where {e1, ez} is the standard basis of R?, and {e!,e?} its dual basis.

19.If D3 : R? x R? x R® — R is defined by D3(u, v, w) = det[uvw] (where u,v,w are
written as columns), find an expression in (R3)* ® (R?)* ® (R?)* representing D3.

20. Suppose T": V' — V is a linear map. If dim V' = n show that for n = 2,3 the induced
map AT : A"V — A™V is multiplication by det T'.

21. a) Find a form of rank 2 in A2R?. You must show that the rank of your choice is 2.
b) Show that every form in A?R3 has rank 1.

22. Let {v;} be a basis for a finite dimensional vector space V and {v’} be its dual basis.
Suppose g is an inner product on V. Using the natural isomorphism (V@ V)* X V* @ V*,
write g = g; ju° ® v/. We know there is an isomorphism 1, : V' — V* induced by g. Show
that g (v;) = gi;v7 fori=1,...,dimV.

23. Let {v1,...,v,} be an ordered orthonormal basis of the inner product space V', and
suppose that x : AV — AV is the Hodge star map associated to the given ordered basis.
Show that



a) % : APV — APV is multiplication by 41, and find the exact dependence of the sign
on p and n.
b) (a,B) = *(a A *f3) for all o, € APV.
c) (xa,x0) = (o, §), for all o, € APV,
24. Let ¢ : V x V — R be a bilinear map.

a) Show that §: V% — R defined by

ﬁ(vla V2, ,Up, W1, W2, - ;wp) = det[gO(/Ui,’U)j)],
is a multilinear map.

b) Show that there is a unique bilinear map 3 : V®" x V¥’ — R satisfying

Br1 V2 @+ @ Vp, w1 @w @ -+ Q@ wp) = det[p(vs, wj)].

c¢) Show that if N is defined as in Q.11, then $(s,n) = B(n,s) = 0 for all s € V®" and
n € NP.

d) Show that there is a unique bilinear map (3 : APV x APV — R satisfying

B(vr Avg A -+ Avp,wi Awa A -+ Awy) = det[p(vi, w;)].

25. Let V be a vector space of dimension n.

a) Show that {uy,...,ux,v1,...vx} is linearly independent iff a = Zle u; A\ v; satisfies
k
a® # 0.
b) For any set of vectors {uq,...,uk, v1,...vx} C V, show that a = Zle u; A\ v; satisfies
k+1 _
a = 0.

c¢) Prove that for a € A2V, ranka = max{k | a* # 0},

d) Prove that for a € A?V,ranka < 5

e) Prove that if vy Ava A... Avg and wy Awa A ... Awy are non-zero rank—one elements
of AFV, then

INFA0 st v1vg. .. v = AMwwy ... wE <= span{vi, vy, ..., v} = span{wy, wa, ..., w}.
26. a) Suppose X " ¥ and Z £ U are linear maps. Explain briefly why there is a well
defined linear map h®@ k: X ® Z — Y ® U satisfying

(hk)(r®y)=hz)@k(y), Vere X,yeY.



Now let V and W be vector spaces, and f: V — W a linear map.
b) Prove that f induces a well-defined linear map f : T(V) — T(W) satisfying

for@ - @va) = flu1) @ ® f(va), Yo €V,
which also makes the following diagram commute:

V ! 14

L

T(V)——=T(W)

(Here the vertical maps are the usual inclusions U < T'(U), for any vector space U.)

c) If W 20 AW and V 2% AV denote these usual inclusions, show that f induces a
well-defined linear map f : AV — AW satisfying

f(vl/\«~~/\vn) = fvr)) A A f(uop), Y €V,

which also makes the following diagram commute:

V4>f W

l f liw

AV — AW

d) Suppose X and Y are subspaces of V such that V = X @ Y, with inclusion maps

X 5 VandY 4 V. Show that if u: AV ® AV — AV denotes the multiplication
mapin AV, i.e., u(a ® ) = a A B, then the composition ¥ = po (1 ® 7)

AX @AY BLAV @AV LAV = A(X 8Y)
is an isomorphism.

27.1fj : V*@W* — (V@W)* is the map (which is an isomorphism when dim V+dim W <
o0) defined in class, show that if f : V — U and g : W — X are linear maps, then the
following diagram commutes:

Viewr L2 prg xt

vew) 2 (yex)



28. Let V be a vector space, v a non-zero vector in V', and f € V* any linear form satisfying
f(v) = 1. Define a linear map D : AV — AV by

D(a)=vAa, VaeAV.

a) Show that im D C ker D (i.e., D* = 0.)

b) Show that we may write V' = span{v} & ker f.

c) Denote Y = ker f. Assuming the results of Q.27d, show that for any element o € AV,
there are unique elements 3y, 1 € AY such that

o ="v /\ﬁo —|—ﬁ1
d) Show that im D = ker D.

29. Rossmann’s exercises 1.1: 12, 13. (Note that we the space of n x n matrices M,,,, is
denoted R™*™ in those notes.

30. Rossmann’s exercises 1.1: 15. The Jacobian matrix is the matrix of partial derivatives.
31. Rossmann’s exercises 1.1: 18.
32. Rossmann’s exercises 1.2: 8

33. Prove that S? is a connected 2 dimensional manifold. Is there an atlas with just 2
charts? Is there an atlas with just 1 chart?

34. Rossmann’s exercises 1.2: 8 (modified) Let M be the set R with the usual topology.
Give R the atlas {(idgr,R)} and denote the corresponding manifold M (this is the usual
manifold ‘R’).
a) Define ¢ : M — R by ¢(t) = 3.
i) Show that {(¢, M)} is an atlas for a manifold structure on M.
ii) Is f =idr : M — My a diffeomorphism?
iii) Viewing f asamap f: M — M, is f in C°(M)?
iv) Isg=1idr : My — M a C* map?
v) Can you find a diffeomorphism h : My — M ? If so, exhibit one.
b) Define ¢y : M\ {0} — R by ¢(t) = t* and 95 : (—1,1) — R by ¢2(t) = 5.
i) Show that {(¢1, M \ {0}), (¢2, (—1,1)} is an atlas for a manifold structure on M.
ii) Is f =idr : M — My a diffeomorphism?
iii) Viewing f asamap f: M — M, is f in C°(M)?
iv) Is g = idr : My — M a C*° map?
)

iv
v) Can you find a diffeomorphism k& : My — M 7 If so, exhibit one.



35-45. Text: problems 2-12, inclusive.

46. Suppose (U, ¢) is a coordinate chart on an smooth n-Manifold M, and let ¢ : W =
©(U) — U denote p~. Suppose v € Vect(W).
Define 9. (v) : C*(U) — C*(U) by
Uu(0)(f) = [v(f o)) o .
Show that ,(v) € Vect(U), and that ¢, : Vect(W) — Vect(U) so defined is an
invertible linear map.
47. Let M = R? with the standard differentiable structure (i.e. with the unique maximal
0 0
atlas containing the chart (R?,idgz).) If v = Y5 + xa—y, show that the flow ¢, : R? —

, ) T _ |cost —sint| |x
R~ generated by v is ¢t([y}> = Lint cost } {y

through an angle ¢ in the counterclockwise sense.

], i.e. rotation about the origin

48. Suppose M is a smooth manifold, and let v,w € Vect(M) Define vw : C*°(M) —
C* (M) by
vw(f) = v(w(f))
a) Show by an example with M = R that vw ¢ Vect(M)
b) Show that if we define [v, w] = vw — wv, for v, w € Vect(M), that [v,w] € Vect(M)
c) Given (2 different) examples for M = R, one where [v,w] = 0, and another where
[v,w] # 0.
d) For arbitrary vector fields v, w € Vect(R), find necessary and sufficient conditions for
[v,w] = 0.

b

: a
49. For any matrix A = [c d

} € My, define v4 € Vect(R?) by

v = (az + cy)% + (cx + by)%‘
Prove that if A, B € Mss, then the Lie bracket [v?,vP] = v[4 Bl where [A, B] =
AB — BA is the usual commutator of A and B in Mys.

50-67. Text: problems 13, 14, 16,17, 18 (assume ¢ is a diffeomorphism), 19 (but see the
errata for the book, as there’s a mistake), 20, 21, 22, 23 (check the errata again), 24, 25,
27, 28, 29, 33, 34.

(x) For questions 68-74 (if necessary): Suppose (U, ) is a coordinate chart on an

0
smooth n-Manifold M, and let v : p(U) — U denote p~!. Define, as in class, Fi
Z’L

@b*(%)v and 2° € C*°(U) by z' = x% 0 .



7

68. a) Show that 9 &5
. , 0
b) If dz* denotes the differential of the local coordinate function z*, show that dZZ(T) =
ZZ

8.
69. Show that if v € Vect(U), then v =v % for some smooth functions v* € C(U).
70. Let (U, ) be a local coordinate system for a smooth manifold M. If p € U, let
e=sup{r | B(e(p),r) CoU)}. If o(p) = (a1,...,ay,), define
BGi(t) =v(ar,...,ai—1,a; +t,ai41,...,ay)

for t € (—e,€).

Show that 3;(0) = ;(p), as members of T),M.
27/

71. a) Suppose (U, ¢) is a coordinate chart on an smooth n-manifold M, and let ¢ : W =
©(U) — U denote p~!. Suppose v € Vect(W).
Define ¢, (v) : C>*(U) — C*>*(U) by
e (v)(f) = [o(f o)) o

We know that ¢, : Vect(W) — Vect(U) is an invertible linear map.
Define i w*( 0 ) as usual.
0z¢

0 f g , 0 - ,
50 azl(@(f)) for f € C(U) satisfies

0% f B 0% f
021029 029 0z

Show carefully that

forall 1 <i,5 <mn, and f € C*(U).

b) Now suppose ¢ : M — N is a diffeomorphism with inverse ¢, and define 1, :
Vect(M) — Vect(N) by the formula in (a). Show that ¢, ([v,w]) = [¢.v,Y,w] for
all vector fields v, w € Vect(M). (i.e. ¥, preserves the Lie bracket of vector fields.)

72. (a) If i : S2 — R3 is the inclusion map, show that is it a smooth map. (S? and R?
have the usual manifold structures)

b) Show that i, : T,S* — T,R? is an injective linear map. (This allows us to identify
T,S? with the subspace i.(7},S?) of T,R3.)

73.For M = St let U = {(z,y) € S* | z > 0} and 6 : U — R be defined by 0(z,y) =
arctan(¥). (Here arctan: R — (=%, 5).)

SIE]



. 0 0 d - :
ii) Define 20 € Vect(U) by %0 = w*(a), where t : (=5,%) — R is the usual

coordinate t(z) = z. (If you like, t = z.)
Show carefully that if a = (x9,y0) € U, and i : U — R? is the (smooth) inclusion,

then
0 9,0
Dt 00y -

i*(%a).

a

74.Let M = S%, U = {(x,y,2) € S* | > 0} and define ¢ : U — ¢(U) by ¢(z,y,2) =

(y,2z) = (!, 2?), with inverse ¢. As usual, define If j : S2 — R3

9k = %(@)-
is the smooth inclusion, Compute (j*ﬁ)P for k = 1,2 in terms of the tangent vectors
o 0 0
cise 71.)

on R3, using the identification we employed in class (and justified by exer-

75. We know (Warner, P. 10, and assignment 2) that for any r > 0, there is k € C*°(R")
such that Vo, ||v]] < r = k(v) = 1, and Vo, ||v]] > 2r = k(v) = 0. Let M be a smooth
manifold.

a) Show that Vp € M, and any open set U > p there is an open set V' > p with
V C V C U, and a smooth function f € C*°(M) such that f(p) =1 on V, and f =0
in M\ U.

b) Prove that if g € C>° (M) is zero on an open set containing p, then Vv, € T, M, v,(g) =
0. (Hint: Show that there is a function h € C*°(M) with h(p) = 1 and 0 = hg.)

c) Suppose (¢,U) is a coordinate system for M, and p € U. Prove that for every
feC>®(), thereis f € C>*°(M) and an open set W > p such that f = f on W.

d) Suppose (¢, U) is a coordinate system for M, and p € U. Prove that i, : T,U — T, M
is an isomorphism, where ¢ : U — M denotes the inclusion.



