
Tensor Analysis Practice questions -1

1. Suppose that {vi} and {ṽi} are ordered bases for a (finite dimensional real) vector space
V , and that T : V ! V is a linear transformation. Define scalars

{Ai
j , T

i
j , T̃

i
j 2 R | 1  i, j  dimV }

by the equations vj = Ai
j ṽi, T (vj) = T i

jvi and T (ṽj) = T̃ i
j ṽi. Find the transformation rule

relating Ai
j , T

i
j , and T̃ i

j .

2. (Rossmann P. 21#1c) Suppose that {vi} and {ṽi} are ordered bases for a vector space
V , and {f i} and {f̃ i} their ordered dual bases for V ⇤ respectively. Suppose vi = Aj

i ṽj

for some scalars {Aj
i 2 R | 1  i, j  dimV }. Find the transformation rule for the

coordinates of covectors f 2 V ⇤.

3. Rossmann P. 22#3

4. Suppose we are given 3 vector spaces V , W , and another we denote V ⌦W , together
with a a bilinear map ⌦ : V ⇥ W ! V ⌦ W . As usual, denote ⌦(v, w) = v ⌦ w for
(v, w) 2 V ⇥W , and consider the following three conditions. Make no assumptions on
dimension here.

⌦1 For any vector space X and any bilinear map ' : V ⇥W ! X, there exists a unique
linear map f : V ⌦W ! X such that f⌦ = '

⌦2 For any vector space X and any bilinear map ' : V ⇥W ! X, there exists a linear
map f : V ⌦W ! X such that f⌦ = '

⌦3 span{v ⌦ w | v 2 V,w 2W} = V ⌦W .

a) Prove ⌦1 ) (⌦2 and ⌦3) .
b) Prove that (⌦2 and ⌦3)) ⌦1.

5. Consider the bilinear map ⌦ : Rm ⇥Rn !Mm, n(R) defined by

⌦(y, x) = yxt,

where x and y are column vectors (i.e. n ⇥ 1 and m ⇥ 1 matrices resp.), xt denotes the
transpose and yxt denotes the matrix product. Prove that (Mm, n(R),⌦) is a tensor
product of Rn and Rm.

6. Let S be any set and define hSi = {f : S ! R | f(s) 6= 0 for only finitely many s 2 S}.
We know that hSi is a vector space. Prove that if we identify f 2 hSi with the formal
(finite) sum

P
s2S f(s)s, then the subset S ⇢ hSi is a basis for hSi.



7. Suppose that {vi} and {wi} are bases for (finite dimensional) vector spaces V and W
respectively, and let S̃ = {vi ⌦ wj | 1  i  dimV, 1  j  dimW} be the finite set
of symbols obtained from these bases as in class. For v = xivi and w = yjwj , define
⌦ : V ⇥W ! hS̃i =: V ⌦W , by

⌦(v, w) = v ⌦ w = xiyjvi ⌦ wj .

a) Prove that ⌦ is bilinear.
b) Prove that S̃ is a basis for hS̃i.
c) Prove that hS̃i is a is a tensor product of V and W .
c) Suppose that {v0i} and {w0i} are bases for V and W respectively. Show that S0 =

{v0i ⌦ w0j 2 V ⌦W | 1  i  dimV, 1  j  dimW} is also a basis for hS̃i.

8. Suppose t =
Pm

i=1 ui ⌦ zi 2 V ⌦W and that {ui} is linearly independent. Show that
t = 0 () zi = 0 for all i.

9. a) Show that 0⌦ w = v ⌦ 0 = 0 for all v 2 V,w 2W .
b) If v⌦w 6= 0, show that v⌦w = v0⌦w0 i↵ v0 = �v and w0 = ��1w for some 0 6= � 2 R.

10. Let V be a vector space, and v1, . . . vp, v01, . . . v
0
p 2 V .

a) Show that v1 ⌦ v2 ⌦ · · ·⌦ vp = 0 i↵ vi = 0 for some i.
b) Show that if 0 6= v1 ⌦ v2 ⌦ · · · ⌦ vp, then v1 ⌦ v2 ⌦ · · · ⌦ vp = v01 ⌦ v02 ⌦ · · · ⌦ v0p i↵

v0i = �ivi for some scalars �i satisfying �1�2 . . .�p = 1.

11. Let V be a vector space, and let V ⌦p
= V ⌦ · · · ⌦ V (p-times). Recall the definition

from class of the subspace (actually a double-sided ideal) of T (V ) (that we quotient out
by – “set to zero” – to obtain ⇤V ):

N = span{a⌦ (u⌦ v + v ⌦ u)⌦ b | v, w 2 V and a 2 V ⌦p

, b 2 V ⌦q

; p, q 2 N}

Now define

M = span{a⌦ w ⌦ b⌦ w ⌦ c | w 2 V, a 2 V ⌦p

, b 2 V ⌦q

, c 2 V ⌦r

; p, q, r 2 N}

In the following, a 2 V ⌦p
, b 2 V ⌦q

and c 2 V ⌦r
.

a) By setting w = u + v, show that N ⇢M .
b) Show that if w 2 V , then

a⌦ w ⌦ w ⌦ b⌦ c� (�1)qa⌦ w ⌦ b⌦ w ⌦ c 2 N.

c) Put u = v to show that 8w 2 V, a⌦ w ⌦ w ⌦ b 2 N .



d) Use (b),(c) to show that 8w 2 V, a⌦ w ⌦ b⌦ w ⌦ c 2 N
e) Conclude from (d) that M ⇢ N .
f) Conclude from (a) and (e) that N = M .

12. Recall that the rank of a tensor t 2 V ⌦W is the least m such that t =
Pm

i=1 vi ⌦ wi

for vectors vi 2 V and wi 2W .
a) Show that for any 0 6= t 2 V ⌦W , we may write t =

Pm
i=1 vi ⌦ wi where {vi | i =

1, . . .m} is linearly independent.
b) Now show that for any 0 6= t 2 V ⌦W , we may write t =

Pm
i=1 vi ⌦ wi where both

{vi | i = 1, . . .m} and {wi | i = 1, . . .m} are linearly independent.
c) Now prove that rank t  min{dimV,dimW}, 8t 2 V ⌦W

13. Suppose V and W are finite dimensional. Recall the isomorphism W⌦V ⇤ e�! Hom(V,W )
satisfying e(w ⌦ f)(v) = f(v)w. The rank of a tensor is defined in problem 12, and recall
that the rank of a linear transformation is the dimension of its image.

Prove that rank t = rank e(t) for all t 2W ⌦ V ⇤.

14. Let

A =

2
4 1 0 �1 0 1

0 1 0 0 1
1 �1 �1 0 0

3
5

a) Now, (using Q. 5) A 2M3 5 = R3 ⌦R5, so write A =
Pm

i=1 vi ⌦ wi for some vectors
vi 2 R3, wi 2 R5, with m > 2.

b) Now write A =
Pm

i=1 vi ⌦ wi for some vectors vi 2 R3, wi 2 R5, with m = 2.

(Hint 1. Use the same technique that worked in Q.12 to reduce the “length” of the
expression for A, i.e. do some work to make both {vi} and {wi} linearly independent.

Hint 2. The rank of A is 2, so we can write A = P�1Ã, where Ã =

2
4 r1

r2

0

3
5 is in row

echelon form, and P = [c1 c2 c3] is an invertible 3 by 3 matrix with the ci as it columns.
Recall/note that P is obtained from the identity by applying the same row operations that
took A to Ã.)

15. Let A =

2
4 1 2 �1

0 �1 1
2 1 1

3
5 and define T 2 Hom(R3,R3) by T (v) = Av.

Let R3 ⌦R3 = span{ei ⌦ ej | 1  i, j  3} be the usual tensor product, and recall
that f : R3 ⌦R3 !M33(R) defined by f(v ⌦ w) = vwt is an isomorphism.

Recall also that the unique linear map e : R3 ⌦ (R3)⇤ ! Hom(R3,R3) satisfying
e(ei ⌦ ej)(v) = ej(v)ei is also an isomorphism. Let t = e�1(T ).



a) Find an explicit expression for f�1(A) 2 R3 ⌦R3.
b) Find an explicit expression for t 2 R3 ⌦ (R3)⇤.
c) Write t =

Pm
i=1 vi ⌦ wi for vi 2 R3, wi 2 (R3)⇤, where m = rank(t).

d) If v ⌦ w⇤ and u ⌦ x⇤ are two tensors in R3 ⌦ (R3)⇤, find an explicit expression for
e�1(e(v ⌦ w⇤) � (u ⌦ x⇤)), where � denotes the composition of the linear maps in
Hom(R3,R3).

16. In the following, {e1, . . . , en} and {e1, . . . , en} will denote the standard dual bases of
Rn and (Rn)⇤.
a) Show that rank(e1 ⌦ e2 + e2 ⌦ e1) = 2.
b) Find a tensor of rank 3 in R3⌦R3. You must show that the rank of your choice is 3.
c) Find a tensor of rank 3 in R3 ⌦ (R4)⇤. You must show that the rank of your choice

is 3.

17. Using the map e : W ⌦ V ⇤ ! Hom(V,W ), find the composition rule

(W ⌦ V ⇤)⇥ (U ⌦W ⇤)! U ⌦ V ⇤

which corresponds to composition of linear maps.

18. Show that if D2 : R2 ⇥ R2 ! R is defined by D2(v, w) = det[v w] (where v, w are
written as columns), then when viewed (using the maps j and e from class) as an element
in (R2)⇤ ⌦ (R2)⇤,

D2 = e1 ⌦ e2 � e2 ⌦ e1,

where {e1, e2} is the standard basis of R2, and {e1, e2} its dual basis.

19. If D3 : R3 ⇥R3 ⇥R3 ! R is defined by D3(u, v, w) = det[u v w] (where u, v, w are
written as columns), find an expression in (R3)⇤ ⌦ (R3)⇤ ⌦ (R3)⇤ representing D3.

20. Suppose T : V ! V is a linear map. If dimV = n show that for n = 2, 3 the induced
map ⇤nT : ⇤nV ! ⇤nV is multiplication by detT .

21. a) Find a form of rank 2 in ⇤2R4. You must show that the rank of your choice is 2.
b) Show that every form in ⇤2R3 has rank 1.

22. Let {vi} be a basis for a finite dimensional vector space V and {vi} be its dual basis.
Suppose g is an inner product on V . Using the natural isomorphism (V ⌦V )⇤ ⇠= V ⇤⌦V ⇤,
write g = gi jvi ⌦ vj . We know there is an isomorphism  g : V ! V ⇤ induced by g. Show
that  g(vi) = gi jvj for i = 1, . . . ,dimV .

23. Let {v1, . . . , vn} be an ordered orthonormal basis of the inner product space V , and
suppose that ? : ⇤V ! ⇤V is the Hodge star map associated to the given ordered basis.
Show that



a) ?? : ⇤pV ! ⇤pV is multiplication by ±1, and find the exact dependence of the sign
on p and n.

b) h↵,�i = ⇤(↵ ^ ⇤�) for all ↵,� 2 ⇤pV .
c) h⇤↵, ⇤�i = h↵,�i, for all ↵,� 2 ⇤pV .

24. Let ' : V ⇥ V ! R be a bilinear map.

a) Show that �̃ : V 2p ! R defined by

�̃(v1, v2, · · · , vp, w1, w2, · · · , wp) = det['(vi, wj)],

is a multilinear map.

b) Show that there is a unique bilinear map �̄ : V ⌦p ⇥ V ⌦p ! R satisfying

�̄(v1 ⌦ v2 ⌦ · · ·⌦ vp, w1 ⌦ w2 ⌦ · · ·⌦ wp) = det['(vi, wj)].

c) Show that if N is defined as in Q.11, then �̄(s, n) = �̄(n, s) = 0 for all s 2 V ⌦p
and

n 2 Np.

d) Show that there is a unique bilinear map � : ⇤pV ⇥ ⇤pV ! R satisfying

�(v1 ^ v2 ^ · · · ^ vp, w1 ^ w2 ^ · · · ^ wp) = det['(vi, wj)].

25. Let V be a vector space of dimension n.

a) Show that {u1, . . . , uk, v1, . . . vk} is linearly independent i↵ a =
Pk

i=1 ui ^ vi satisfies
ak 6= 0.

b) For any set of vectors {u1, . . . , uk, v1, . . . vk} ⇢ V , show that a =
Pk

i=1 ui ^ vi satisfies
ak+1 = 0.

c) Prove that for a 2 ⇤2V , ranka = max{k | ak 6= 0},
d) Prove that for a 2 ⇤2V, ranka  n

2 .
e) Prove that if v1 ^ v2 ^ . . .^ vk and w1 ^w2 ^ . . .^wk are non-zero rank–one elements

of ⇤kV , then

9� 6= 0 s.t. v1v2 . . . vk = �w1w2 . . . wk () span{v1, v2, . . . , vk} = span{w1, w2, . . . , wk}.

26. a) Suppose X
h�! Y and Z

k�! U are linear maps. Explain briefly why there is a well
defined linear map h⌦ k : X ⌦ Z ! Y ⌦ U satisfying

(h⌦ k)(x⌦ y) = h(x)⌦ k(y), 8x 2 X, y 2 Y.



Now let V and W be vector spaces, and f : V !W a linear map.

b) Prove that f induces a well-defined linear map f̂ : T (V )! T (W ) satisfying

f̂(v1 ⌦ · · ·⌦ vn) = f(v1)⌦ · · ·⌦ f(vn), 8vi 2 V,

which also makes the following diagram commute:

V
f //

✏✏

W

✏✏
T (V )

f̂ // T (W )

(Here the vertical maps are the usual inclusions U ,! T (U), for any vector space U .)
c) If W

iU�! ⇤W and V
iU�! ⇤V denote these usual inclusions, show that f induces a

well-defined linear map f̃ : ⇤V ! ⇤W satisfying

f̃(v1 ^ · · · ^ vn) = f(v1) ^ · · · ^ f(vn), 8vi 2 V,

which also makes the following diagram commute:

V
f //

iV

✏✏

W

iW

✏✏
⇤V

f̃ // ⇤W

d) Suppose X and Y are subspaces of V such that V = X � Y , with inclusion maps
X

i�! V and Y
j�! V . Show that if µ : ⇤V ⌦ ⇤V ! ⇤V denotes the multiplication

mapin ⇤V , i.e., µ(↵⌦ �) = ↵ ^ �, then the composition  = µ � (̃i⌦ j̃)

⇤X ⌦ ⇤Y
ĩ⌦j̃��! ⇤V ⌦ ⇤V

µ�! ⇤V = ⇤(X � Y )

is an isomorphism.

27. If j : V ⇤⌦W ⇤ ! (V ⌦W )⇤ is the map (which is an isomorphism when dimV +dimW <
1) defined in class, show that if f : V ! U and g : W ! X are linear maps, then the
following diagram commutes:

V ⇤ ⌦W ⇤ f⇤⌦g⇤ ���� U⇤ ⌦X⇤

j

??y j

??y
(V ⌦W )⇤

(f⌦g)⇤ ���� (U ⌦X)⇤



28. Let V be a vector space, v a non-zero vector in V , and f 2 V ⇤ any linear form satisfying
f(v) = 1. Define a linear map D : ⇤V ! ⇤V by

D(↵) = v ^ ↵, 8↵ 2 ⇤V.

a) Show that im D ⇢ kerD (i.e., D2 = 0.)
b) Show that we may write V = span{v}� ker f .
c) Denote Y = ker f . Assuming the results of Q.27d, show that for any element ↵ 2 ⇤V ,

there are unique elements �0,�1 2 ⇤Y such that

↵ = v ^ �0 + �1.

d) Show that im D = kerD.

29. Rossmann’s exercises 1.1: 12, 13. (Note that we the space of n ⇥ n matrices Mn n is
denoted Rn⇥n in those notes.

30. Rossmann’s exercises 1.1: 15. The Jacobian matrix is the matrix of partial derivatives.

31. Rossmann’s exercises 1.1: 18.

32. Rossmann’s exercises 1.2: 8

33. Prove that S2 is a connected 2 dimensional manifold. Is there an atlas with just 2
charts? Is there an atlas with just 1 chart?

34. Rossmann’s exercises 1.2: 8 (modified) Let M be the set R with the usual topology.
Give R the atlas {(idR,R)} and denote the corresponding manifold M0 (this is the usual
manifold ‘R’).
a) Define ' : M ! R by '(t) = t3.

i) Show that {(',M)} is an atlas for a manifold structure on M .
ii) Is f = idR : M !M0 a di↵eomorphism?
iii) Viewing f as a map f : M !M , is f in C1(M)?
iv) Is g = idR : M0 !M a C1 map?
v) Can you find a di↵eomorphism h : M0 !M ? If so, exhibit one.

b) Define  1 : M \ {0}! R by  (t) = t3 and  2 : (�1, 1)! R by  2(t) = t
1�t .

i) Show that {( 1,M \{0}), ( 2, (�1, 1)} is an atlas for a manifold structure on M .
ii) Is f = idR : M !M0 a di↵eomorphism?
iii) Viewing f as a map f : M !M , is f in C1(M)?
iv) Is g = idR : M0 !M a C1 map?
v) Can you find a di↵eomorphism k : M0 !M ? If so, exhibit one.



35-45. Text: problems 2-12, inclusive.

46. Suppose (U,') is a coordinate chart on an smooth n-Manifold M , and let  : W =
'(U)! U denote '�1. Suppose v 2 Vect(W ).

Define  ⇤(v) : C1(U)! C1(U) by

 ⇤(v)(f) = [v(f �  )] � '.

Show that  ⇤(v) 2 Vect(U), and that  ⇤ : Vect(W ) ! Vect(U) so defined is an
invertible linear map.

47. Let M = R2 with the standard di↵erentiable structure (i.e. with the unique maximal

atlas containing the chart (R2, idR2).) If v = �y
@

@x
+ x

@

@y
, show that the flow �t : R2 !

R2 generated by v is �t(


x
y

�
) =


cos t � sin t
sin t cos t

� 
x
y

�
, i.e. rotation about the origin

through an angle t in the counterclockwise sense.

48. Suppose M is a smooth manifold, and let v, w 2 Vect(M) Define vw : C1(M) !
C1(M) by

vw(f) = v(w(f))

a) Show by an example with M = R that vw 62 Vect(M)
b) Show that if we define [v, w] = vw � wv, for v, w 2 Vect(M), that [v, w] 2 Vect(M)
c) Given (2 di↵erent) examples for M = R, one where [v, w] = 0, and another where

[v, w] 6= 0.
d) For arbitrary vector fields v, w 2 Vect(R), find necessary and su�cient conditions for

[v, w] = 0.

49. For any matrix A =


a b
c d

�
2M2 2, define vA 2 Vect(R2) by

vA = (ax + cy)
@

@x
+ (cx + by)

@

@y
.

Prove that if A,B 2 M2 2, then the Lie bracket [vA, vB] = v[A,B], where [A,B] =
AB �BA is the usual commutator of A and B in M2 2.

50-67. Text: problems 13, 14, 16,17, 18 (assume � is a di↵eomorphism), 19 (but see the
errata for the book, as there’s a mistake), 20, 21, 22, 23 (check the errata again), 24, 25,
27, 28, 29, 33, 34.

(?) For questions 68-74 (if necessary): Suppose (U,') is a coordinate chart on an

smooth n-Manifold M , and let  : '(U) ! U denote '�1. Define, as in class,
@

@zi
=

 ⇤(
@

@xi
), and zi 2 C1(U) by zi = xi � '.



68. a) Show that
@zi

@zj
= �i

j .

b) If dzi denotes the di↵erential of the local coordinate function zi, show that dzi(
@

@zi
) =

�i
j .

69. Show that if v 2 Vect(U), then v = vk @

@zk
for some smooth functions vk 2 C1(U).

70. Let (U,') be a local coordinate system for a smooth manifold M . If p 2 U , let
✏ = sup {r | B('(p), r) ⇢ '(U)}. If '(p) = (a1, . . . , an), define

�i(t) =  (a1, . . . , ai�1, ai + t, ai+1, . . . , an)

for t 2 (�✏, ✏).
Show that �0i(0) =

@

@zi
(p), as members of TpM .

71. a) Suppose (U,') is a coordinate chart on an smooth n-manifold M , and let  : W =
'(U)! U denote '�1. Suppose v 2 Vect(W ).

Define  ⇤(v) : C1(U)! C1(U) by

 ⇤(v)(f) = [v(f �  )] � '.

We know that  ⇤ : Vect(W )! Vect(U) is an invertible linear map.

Define
@

@zi
=  ⇤(

@

@xi
), as usual.

Show carefully that
@2f

@zi @zj
:=

@

@zi
(
@

@zf
(f)) for f 2 C1(U) satisfies

@2f

@zi @zj
=

@2f

@zj @zi
, for all 1  i, j  n, and f 2 C1(U).

b) Now suppose  : M ! N is a di↵eomorphism with inverse ', and define  ⇤ :
Vect(M) ! Vect(N) by the formula in (a). Show that  ⇤([v, w]) = [ ⇤v, ⇤w] for
all vector fields v, w 2 Vect(M). (i.e.  ⇤ preserves the Lie bracket of vector fields.)

72. (a) If i : S2 ! R3 is the inclusion map, show that is it a smooth map. (S2 and R3

have the usual manifold structures)

b) Show that i⇤ : TpS2 ! TpR3 is an injective linear map. (This allows us to identify
TpS2 with the subspace i⇤(TpS2) of TpR3.)

73. For M = S1, let U = {(x, y) 2 S1 | x > 0} and ✓ : U ! R be defined by ✓(x, y) =
arctan( y

x ). (Here, arctan : R! (�⇡
2 , ⇡

2 ).)



i) Show that ✓ is a homeomorphism onto (�⇡
2 , ⇡

2 ), by finding  ⌘ ✓�1.

ii) Define
@

@✓
2 Vect(U) by

@

@✓
=  ⇤(

d

dt
), where t : (�⇡

2 , ⇡
2 ) ! R is the usual

coordinate t(x) = x. (If you like, t ⌘ x1.)
Show carefully that if a = (x0, y0) 2 U , and i : U ! R2 is the (smooth) inclusion,

then
i⇤(

@

@✓ a
) := �y0

@

@xa
+ x0

@

@y a
.

74. Let M = S2, U = {(x, y, z) 2 S2 | x > 0} and define ' : U ! '(U) by '(x, y, z) =

(y, z) = (x1, x2), with inverse  . As usual, define
@

@zk
=  ⇤(

@

@xk
). If j : S2 ! R3

is the smooth inclusion, Compute (j⇤
@

@zk
)p for k = 1, 2 in terms of the tangent vectors

@

@xp
,
@

@y p
,
@

@z p
on R3, using the identification we employed in class (and justified by exer-

cise 71.)

75. We know (Warner, P. 10, and assignment 2) that for any r > 0, there is k 2 C1(Rn)
such that 8v, kvk  r ) k(v) = 1, and 8v, kvk > 2r ) k(v) = 0. Let M be a smooth
manifold.

a) Show that 8p 2 M , and any open set U 3 p there is an open set V 3 p with
V ⇢ V̄ ⇢ U , and a smooth function f 2 C1(M) such that f(p) = 1 on V , and f = 0
in M \ U .

b) Prove that if g 2 C1(M) is zero on an open set containing p, then 8vp 2 TpM,vp(g) =
0. (Hint: Show that there is a function h 2 C1(M) with h(p) = 1 and 0 = hg.)

c) Suppose (', U) is a coordinate system for M , and p 2 U . Prove that for every
f 2 C1(U), there is f̃ 2 C1(M) and an open set W 3 p such that f = f̃ on W .

d) Suppose (', U) is a coordinate system for M , and p 2 U . Prove that i⇤ : TpU ! TpM
is an isomorphism, where i : U ,!M denotes the inclusion.


