MAT 4183 Assignment 3: Due Wednesday 22-Nov-2017 at 6:15pm

A. Let *M* be a smooth manifold, *TM* its tangent bundle, and $v \in Vect(M)$.

As usual, if $p \in M$, let v_p denote the tangent vector obtained from v at p. Prove that if we define $\tilde{v}: M \to TM$ by

$$\tilde{v}(p) = v_p, \quad \forall p \in M,$$

then \tilde{v} is a smooth section of TM.

B:80⁺⁺. Let $M = \mathbb{R}^2 \setminus \{0\}, i : \mathbb{S}^1 \hookrightarrow M$ denote the (smooth) inclusion and define

$$\omega = -\frac{y}{x^2 + y^2} dx + \frac{x}{x^2 + y^2} dy \in \Omega^1(M), \text{ and}$$
$$\tilde{\omega} = i^* \omega \in \Omega^1(\mathbf{S}^1)$$

Define $\beta : \mathbf{R} \to M$ by $\beta(t) = \begin{bmatrix} \cos t \\ \sin t \end{bmatrix}$ for $t \in \mathbf{R}$.

- a) Show that dw = 0.
- b) Show that $d\tilde{\omega} = 0$ without using the fact that $di^* = i^*d$.
- c) Prove that $\tilde{\omega}$ is a nowhere vanishing 1-form on \mathbf{S}^1 , i.e., that $\forall p \in \mathbf{S}^1, \tilde{\omega}_p \neq 0$.
- d) If $s \in \mathbf{R}$, and $v_s \in T_s \mathbf{R}$ is $v_s = \frac{d}{dt}|_s$, show that $\beta_*(v_s) = \dot{\beta}(s) \in T_{\beta(s)} \mathbf{S}^1$.
- e) Use (d) if necessary to prove that $\beta^*(\tilde{\omega}) = dt$.
- f)* Suppose $\eta \in \Omega^1(\mathbf{S}^1)$ satisfies $\int_{\mathbf{S}^1} \eta = 0$. Show that $\eta = dh$ for some smooth function $h \in \mathbf{C}^{\infty}(\mathbf{S}^1)$. (You may assume that if $\tilde{h} \in \mathbf{C}^{\infty}(\mathbf{R})$ is periodic with period 2π , then $\tilde{h} = \beta^* h$ for some $h \in \mathbf{C}^{\infty}(\mathbf{S}^1)$.)
- g)* Prove that the de-Rham cohomology of \mathbf{S}^1 is as was stated in lectures.

C:82. Define $\beta \in \Omega^1(\mathbf{R}^3)$ by

$$\beta = x \, dx + y \, dy + z \, dz$$

Now let $i : \mathbf{S}^2 \to \mathbf{R}^3$ denote the inclusion map. (We shall identify p and i(p) in the following when convenient.)

- b) Show that, for all $p \in \mathbf{S}^2$, the map $i_p^* : T_p^* \mathbf{R}^3 \to T_p^* \mathbf{S}^2$ is onto, but is not injective. Find dim ker i_p^* without using part (c).
- c) Show that $i^*(\beta) = 0$, and hence that ker $i_p^* = \text{span}\{\beta_p\}$.
- d) Use (c) to show then $i_p^*(dx)_p = 0$ at p = (1,0,0). To avoid all the subscripts, This is usually written as $i^*(dx) = 0$ at p = (1,0,0). Indeed, find all $p \in \mathbf{S}^2$ where $i^*(dx) = di^*(x) = 0$. (The distinction between $di^*(x)$ and dx is rarely made. One usually says, for example, "dx restricted to \mathbf{S}^2 is zero at p = (1,0,0)")

D:89. Consider the smooth map $\phi : (0,1) \times (-\pi,\pi) \times (0,\pi) \to \{v \in \mathbf{R}^3 \mid ||v|| \leq 1\}$ defined by

 $\phi(r,\varphi,\theta) = r(\cos\theta\sin\varphi,\sin\theta\sin\varphi,\cos\varphi)$

Show that $\phi^*(dx \wedge dy \wedge dz) = r^2 \sin \varphi \, dr \wedge d\varphi \wedge d\theta$.

E:90. Define forms on \mathbf{R}^3 by

$$\beta = x \, dx + y dy + z \, dz$$

$$\alpha = x \, dy \wedge dz + z \, dx \wedge dy + y \, dz \wedge dx.$$

- a) Let $M = \mathbf{S}^2 \setminus \{(0, y, z) \in \mathbf{S}^2 \mid y \leq 0\}$ and let $\theta, \varphi \in C^{\infty}(M)$ be the functions satisfying $(x, y, z) = (\cos \theta \sin \varphi, \sin \theta \sin \varphi, \cos \varphi)$ for $(x, y, z) \in M$. Consider the (smooth) inclusion map $j: M \to \mathbf{R}^3$. Show that $j^*(\alpha) = \sin \varphi \, d\varphi \wedge d\theta$.
- b) Show that

$$i^*(x\,dx \wedge dy - z\,dy \wedge dz) = i^*(x\,dx \wedge dz + y\,dy \wedge dz) = i^*(y\,dx \wedge dy + z\,dx \wedge dz) = 0.$$

- c) Use 82(b) to conclude that $i_p^* : \Lambda^2 T_p^* \mathbf{R}^3 \to \Lambda^2 T_p^* \mathbf{S}^2$ is non-zero for all $p \in \mathbf{S}^2$.
- d) Show that $i^*(\alpha)$ is a nowhere-vanishing 2-form on \mathbf{S}^2 ., i.e. $i_p^*(\alpha_p) \neq 0$ for all $p \in \mathbf{S}^2$.

F:91. Let $M = \mathbf{S}^2 \setminus \{(0, y, z) \in \mathbf{S}^2 \mid y \le 0\}.$

- a) Identify $T_p \mathbf{R}^3$ with \mathbf{R}^3 in the usual way: $\frac{\partial}{\partial x^i} \mapsto e_i$, where $\{e_1, e_2, e_3\}$ is the standard ordered basis of \mathbf{R}^3 . Now define $g(u, v) = i_*(u) \cdot i_*(v)$ for $u, v \in T_p M$ (where "." denotes the standard inner product on $T\mathbf{R}^3 \cong \mathbf{R}^3 \times \mathbf{R}^3$). Show that $g = d\varphi \otimes d\varphi + \sin^2 \varphi \, d\theta \otimes d\theta$ and that this defines a Riemannian metric on M.
- b) Show that $\omega = \sin \varphi \, d\varphi \wedge d\theta$ is a volume form on M (so that M is oriented), and that it is the canonical volume form on M.
- c) Find $\star(d\varphi)$ and $\star(d\theta)$, and hence compute $\star(dx), \star(dy)$ and $\star(dz)$.