
MAT4183 Partial Solutions- Assignment 2

We assume throughout that all vector spaces are finite-dimensional.

24. Let {v1, . . . , vn} be an ordered basis of the vector space V , and suppose that

? : ⇤V ! ⇤V

is the Hodge star map associated to this ordered basis.
Prove that

a) The composition ?? : ⇤pV ! ⇤pV is multiplication by ±1, and find the exact dependence of the sign on p and n.
Solution: The key step involves the following computation, which yields (�1)(n�p)p as the appropriate sign.

sgn
✓

1 · · · p p + 1 · · · n
i1 · · · ip ip+1 · · · in

◆
= (�1) sgn

✓
1 2 · · · p p + 1 · · · n
i1 i2 · · · ip+1 ip · · · in

◆

...

= (�1)p sgn
✓

1 2 · · · p + 1 p + 2 · · · n
ip+1 i1 · · · ip ip+2 · · · in

◆

= (�1)2p sgn
✓

1 2 3 · · · p + 2 p + 3 · · · n
ip+1 ip+2 i1 · · · ip ip+3 · · · in

◆

...

= (�1)(n�p)p sgn
✓

1 2 3 · · · n� p n� p + 1 · · · n
ip+1 ip+2 ip+3 · · · in i1 · · · ip

◆

b) The map ⇤pV ⇥ ⇤pV ! R defined by (↵, �) 7! ?(↵ ^ ?�) is an inner product on ⇤pV , with respect to which (for
p = 1), {v1, . . . , vn} is orthonormal.
Solution: First we give the map a name. Define g(↵, �) = ?(↵ ^ ?�).

i) For ↵, � 2 ⇤pV , the map g is the composition of a linear map (↵, �) ! (a, ?�) , a bilinear map (↵, �) 7! ↵ ^ �, and
finally a linear map � ! ?� (where � = ↵ ^ ?�). Thus, g is bilinear.

ii) We show g is symmetric. By (i), it su�ces to do this on the basis {ei1 ^ · · · ^ eip | 1  i1 < · · · < ip  n}. Indeed,
we show that this basis is ‘orthonormal’ for g. (I put the inverted commas there since we usually only speak of
orthonormality once we know we have an inner product. At this point we do not know g is an inner product.) That,
we will show that

g(ei1 ^ · · · ^ eip , ej1 ^ · · · ^ ejp) = �i1j1 . . . �ipjp .

Note first that given 1  i1 < · · · < ip  n and 1  j1 < · · · < jp  n (and the corresponding 1  ip+1 < · · · < in  n
and 1  jp+1 < · · · < jn  n), that

a) ei1 ^ · · · ^ eip ^ ejp+1 ^ . . . ^ ejn = �i1j1 . . . �ipjpei1 ^ · · · ^ eip ^ eip+1 ^ . . . ^ ein ,
b) ?(ei1 ^ · · · ^ eip ^ eip+1 ^ . . . ^ ein) = "i1,...,ip ? (e1 ^ · · · ^ en) = "i1,...,ip .

Then,

g(ei1 ^ · · · ^ eip , ej1 ^ · · · ^ ejp) = "j1,...,jp ? (ei1 ^ · · · ^ eip ^ ejp+1 ^ . . . ^ ejn)
= "j1,...,jp�i1j1 . . . �ipjp ? (ei1 ^ · · · ^ eip ^ eip+1 ^ · · · ^ ein)
= "i1,...,ip�i1j1 . . . �ipjp"i1,...,ip

= �i1j1 . . . �ipjp ,

as claimed. Thus the matrix of g w.r.t. the ordered basis {ei1 ^ · · · ^ eip | 1  i1 < · · · < ip  n} (ordered
lexicographically) is indeed the identity matrix of size

�n
p

�
, which is indeed symmetric. Hence, g is symmetric.

iii) We now show g is positive definite. Note that while we could have checked (ii) on any basis of ⇤pV , (since
g(aivi, bjvj) = aibjg(vi, vj) = aibjg(vj , vi) = g(bjvj , aivi)), it is not enough to show that “g(vi, vi) � 0 and g(vi, vi) =
0 () vi = 0” for any basis.1

1Here’s an example. Consider the standard ordered basis {e1, e2} of R2, and suppose [g(ei, ej)] =


1 �2
�2 1

�
. Then g satisfies

g(ei, ei) � 0 and g(ei, ei) = 0 () ei = 0 for this basis, but indeed if v = e1 + e2, then g(v, v) = �2!
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However, we can check (iii) on any basis {vi | 1  i 
�n

p

�
} of ⇤pV satisfying g(vi, vj) = �ij , and here’s why: Let

↵ 2 ⇤pV and (using the Einstein summation convention) write ↵ = aivi for scalars ai. Then, g(v, v) = g(aivi, ajvj) =
aiajg(vi, vj) = aiaj�ij =

P
i(a

i)2. This shows that g(v, v) � 0 and that equality holds i↵ v = 0.
Now, as part of (ii), we showed we had such a basis of ⇤pV exists! So g is indeed positive definite.

c) Show that h?↵, ?�i = h↵, �i, for all ↵, � 2 ⇤pV , where the inner product is that from (b).
Solution:

h?↵, ?�i = ?(?↵ ^ ? ? �)

= (�1)p(n�p ? (?↵ ^ �)

= (�1)p(n�p)(�1)p(n�p) ? (� ^ ?↵)
= h�, ↵i
= h↵, �i, by (ii).

33. Prove that S2 is a smooth 2 dimensional manifold, by using the stereographic projections from the north and
south poles as chart maps. (b) Also prove that S2 is path connected (use smooth paths). (c) Prove that S2 has no
atlas with just 1 chart.

Solution:

Lemma 1. (i) If U is open in R3 and contains S2, and f : U ! Rm is continuous, then the restriction f̃ of f to
S2 is also continuous. (ii) If V is open in Rm, g : V ! R3 is continuous and g(V ) ✓ S2, then g : V ! S2 is also
continuous.

Proof of Lemma 1. (i) Let W ✓ Rm be open (in Rm). Since f : U ! Rm is continuous, f�1(W ) is open in R3. But
then S2 \ f�1(W ) = f̃�1(W ) is open in S2. Hence f̃ is continuous.
(ii) Let X ✓ S2 be open in S2. Then X = U \ S2 for some open set U ✓ R3. Since g is cts, g�1(U) is open in V (and
so in Rm). As g(V ) ✓ S2, g�1(X) = g�1(U) \ S2. Hence g : V ! S2 is also continuous. ⇤

Let pN , pS denote the stereographic projections from the north and south poles respectively. A short computation
shows that

pN (x, y, z) =
(x, y)

(1� z)
, for (x, y, z) 2 S2 \ {N},

pS(x, y, z) =
(x, y)

(1 + z)
, for (x, y, z) 2 S2 \ {S},

p�1
N (u, v) =

(2u, 2v, u2 + v2 � 1)
u2 + v2 + 1

, 8(u, v) 2 R2, and

p�1
S (u, v) =

(2u, 2v, 1� u2 � v2)
u2 + v2 + 1

, 8(u, v) 2 R2.

Moreover, if (u, v) 2 R2 \ {(0, 0)} we find pS � p�1
N (u, v) =

(u, v)
u2 + v2

= pN � p�1
S (u, v). Note first that S2 \ {N} =

S\{w 2 R3 | z(w) < 1} and S2 \ {S} = S\{w 2 R3 | z(w) > �1} are both open in S2. In addition, with the first
group of formulae above and Lemma 1 above, we see that
a) pN , p�1

N , pS , and p�1
s are continuous,

b) pN (S2 \ {N}) = R2 is open in R2, and
c) pSS2 \ {S}) = R2 is open in R2.

Hence {(pN ,S2 \ {N}), ((pS ,S2 \ {S})} is a collection of charts on S2. Finally, the last two formulae above show
that the transition functions pS � p�1

N and pN � p�1
S are both smooth on their (common) domain, namely R2 \ {(0, 0)}.

Thus the smooth atlas {(pN ,S2 \ {N}), ((pS ,S2 \ {S})} demonstrates that S2 is a smooth 2 dimensional manifold.
Now suppose P,Q 2 S2 and suppose at least one of these is not in {N,S}. If (say) P /2 {N,S}, and Q 6= N , then

the path � : [0, 1] ! S2 defined by �(t) = p�1
N ((1 � t)pN (P ) + tpN (Q)), being the composition of a linear map with

the smooth map p�1
N is clearly smooth as a map into S2, since pN � � is smooth as a map from [0, 1] ! R2. It satisfies

�(0) = P, �(1) = Q. If P /2 {N,S} and Q = S, replace pN by pS in the above formula. Finally if {N,S} = {P,Q},
use the stereographic projection from (say) E = (1, 0, 0) (to the plane with equation x = 0), and mimic the formulae
above. Note that we could simply have chosen a point R on S2 which is neither P nor Q, and used the stereographic
projection from R, to the plane {v 2 R3 | v · R = 0}, which is isomorphic to R2.
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Alternatively, if you don’t like stereographic projections from points other than N or S, note that if we define
� : [0, ⇡] ! R3 by �(t) = (sin t, 0, cos t), then � is certainly a smooth map into R3 whose image lies in S2, but it is not
immediately clear that � is a smooth map into S2. This can be checked in this case via charts covering N and S, or
remedied with the (once and for all) lemma:

Lemma 2. If N is a smooth manifold and f : N ! S2 is smooth when composed with the inclusion map i : S2 !
R3 \ {0}, then f is a smooth map into S2.

Proof of lemma 2.
Define p : R3 \ {0} ! S2 by p(v) = v

kvk . We claim that p is a smooth map.
Cover the manifold R3 \ {0} with the open sets UN = R3 \ {(0, 0, t) | t � 0} and US = R3 \ {(0, 0,�t) | t � 0},

and use 'N : UN ! R3, 'S : US ! R3 defined by '±N (v) = v as charts. Note that '±N (U±N ) = U±N . (Don’t mix
the pluses and minuses on di↵erent sides of the equation here, or in what follows). Clearly, {('N , UN ), ('S , US)} is a
smooth atlas for R3 \ {0}, as the transition functions are also the identity on their domains.

To see that p is smooth, it then su�ces to check that p±N � p � '�1
± N are smooth as maps from U±N ! R2. But if

(x, y, z) 2 UN ,

pN � p � '�1
N (x, y, z) =

(x, y)p
x2 + y2 + z2 � z

,

and the denominator is only zero when x = y = 0, points which are excluded from UN . A similar argument show that
pN � p � '�1

S is smooth. Hence, p is smooth.
But then, f = p � (i � f) is a composition of smooth maps and hence is smooth. ⇤

A third possibility is to use the first case, and appropriate reflections in planes through the origin in R3. These will
restrict to maps S2 ! S2 and will be smooth by Lemma 2.
c) Suppose {(',S2)} were an atlas for S2. Then the (non-empty) set V = '(S2) must be open in R2. Now, we know

from second year analysis that that S2, as a subset of R3, is compact. We know the continuous image of a compact
set is compact, so V is compact in R2. Thus, V is closed and bounded. Indeed, V is non-empty, open, closed and
bounded. We obtain a contradiction directly from the following (as Rn is not bounded):

Lemma 3. The only open and closed sets in Rn are the empty set and Rn.

Proof of Lemma 3. Suppose W ⇢ Rn is open and closed, and neither empty nor Rn. Thus both W and W c are
non-empty. Choose a 2 W and b 2 W c, and define � : [0, 1] ! Rn by �(t) = a + t(b � a). Then � is continuous,
�(0) = a 2 W , and �(1) = b 2 W c. Let s = sup {t 2 [0, 1] | �(t) 2 W}. (This supremum clearly exists.) From second
year, we know that as W is closed, and � is continuous, �(s) 2 W . Hence s < 1. But W is open, and �(s) 2 W , so
9r > 0 such that B(�(s), r) ⇢ W . Let r0 = min{1� s,

r

kb� ak} > 0. But then, �(s + r0) 2 B(�(s), r) ⇢ W .

This contradicts s = sup {t 2 [0, 1] | �(t) 2 W}, and so W is empty or W is Rn. ⇤

34. Rossmann’s exercise 1.2: 8 (modified) Let M be the set R with the usual topology. Give R the atlas {(idR,R)}
and denote the corresponding smooth manifold M0 (this is the usual smooth manifold ‘R’).
a) Define ' : M ! R by '(t) = t3.

i) Show that {(',M)} is an atlas for a manifold structure on M .
ii) Is f = idR : M ! M0 a di↵eomorphism?
iii) Viewing f as a map f : M ! M , is f smooth? (this is what I intended. Sorry for any confusion.)
iv) Is g = idR : M0 ! M a C1 (i.e. smooth) map?
v) Can you find a di↵eomorphism h : M0 ! M ? If so, exhibit one.
Solution: (i) M is open in M , and ' : M = R ! R is surjective, so '(M) = R is open in R, and indeed is

continuous, and has the continuous inverse '�1(s) = s
1
3 . Moreover, M covers M, and the only transition function to

check is ' � '�1 = idR, which is clearly smooth (as a function from R ! R, the ‘R’ here being M0).
(ii) Is f = idR : M ! M0 a di↵eomorphism?

Solution: No: f = idR : M ! R is not even smooth, since f � '�1 is the map '�1 : s 7! s
1
3 , which is not even

di↵erentiable at s = 0.
iii) Viewing f as a map f : M ! M , is f smooth? (This is what I intended. Sorry for any confusion.)

Yes, since ' � f � '�1 is s 7! s, which is smooth.
(iv) Is g = idR : M0 ! M a C1 (i.e. smooth) map? Yes, since ' � g � idR is s 7! s3, which is smooth.
(v) Can you find a di↵eomorphism h : M0 ! M ? If so, exhibit one. If not, explain why.
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Solution: Yes: define h : M0 ! M by h(s) = s
1
3 . Then, h is smooth because (checking on charts at both ‘ends’)

'�h� id�1
R is the map s 7! s, which is a smooth map in the usual sense: as a function from R ! R, no tricks. Moreover,

the inverse of h, h�1 : M ! M0, defined by h�1(s) = s3, is also smooth, as (checking again on charts at both ‘ends’)
idR �h�1'�1 is again the map s 7! s, which is a smooth map in the usual sense: as a function from R ! R, again, no
tricks.

New. (Warner, P. 10) Define f, g, h : R ! R by

f(t) =
⇢

e�1/t t > 0
0 t  0

, g(t) =
f(t)

f(t) + f(1� t)
, and h(t) = g(t + 2)g(2� t).

You may assume that f 2 C1(R).
a) Show that the function h satisfies h 2 C1(R), 8t, |t|  1 ) h(t) = 1 and 8t, |t| > 2 ) h(t) = 0.

Solution: This is a straightforward check.
b) Let r > 0. Find a function k 2 C1(Rn) such that 8v, kvk  r ) k(v) = 1, and 8v, kvk > 2r ) k(v) = 0.

Solution: Define k(v) = h
⇣kvk

r

⌘
.

Then k clearly satisfies all conditions except possibly smoothness at v = 0. But inside the open set B(0, r) = {v |
kvk < r}, k is identically 1, and so is clearly smooth at v = 0.
c) Let r > 0. Find a function l 2 C1(Rn) such that 8v, kvk  r ) l(v) = 0, and 8v, kvk > 2r ) l(v) = 1.

Solution: Set l = 1� k.
d) Suppose f 2 C1(S2). Prove that there is g 2 C1(R3) such that g(v) = f(v),8v 2 S2. (Hint: Use the map v 7! v

kvk ,
f , and part (c) to fix things at v = 0.)
Solution: Given f 2 C1(S2), let l 2 C1(R3) be the function designed in part (c) (for r = 1

4 ), and define
g : R3 ! R by

g(v) =

(
l(v)f

⇣ v

kvk
⌘
, v 6= 0

0, v = 0

Then g is clearly smooth except possibly at v = 0. However, (see part (c)), g is identically 0 inside the open set
B(0, 1

4 ), and so is now clearly smooth at v = 0. Note that for all v with kvk > 1
2 , l(v) = 1, and so if v 2 S2, i.e.

kvk = 1, g(v) = f(v). In other words, f = g � i.
e) Show that i⇤ : TpS2 ! TpR3 is an injective linear map. Prove that i⇤ is an injective linear map. (Hint: Use (d).)

Solution: Let vp 2 TpS2 and suppose i⇤(vp) = 0. This means that i⇤(vp)(g) = 0, for all g 2 C1(R3). That is,
vp(g � i) = 0 for all g 2 C1(R3). But then, given any f 2 C1(S2), by (d), there is g 2 C1(R3) with f = g � i. Hence
vp(f) = 0 for all f 2 C1(S2). Thus, vp = 0, and so i⇤ is injective.


