Tensor Analysis Fall 2017 Assignment 2 (Final) (Due Friday 13-October 4 pm)

Question numbers refer to those on the list on the web. Make no assumptions on dimension here, unless otherwise specified. All responses require sufficient justification.

24. Let $\{v_1, \ldots, v_n\}$ be an ordered orthonormal basis of the inner product space V, and suppose that $\star : \Lambda V \to \Lambda V$ is the Hodge star map associated to the given ordered basis. Show that

a) $\star\star: \Lambda^p V \to \Lambda^p V$ is multiplication by ± 1 , and find the exact dependence of the sign on p and n.

- b) $\langle \alpha, \beta \rangle = *(\alpha \wedge *\beta)$ for all $\alpha, \beta \in \Lambda^p V$.
- c) $\langle *\alpha, *\beta \rangle = \langle \alpha, \beta \rangle$, for all $\alpha, \beta \in \Lambda^p V$.

26. Let V be a vector space of dimension n.

- a) Show that $\{u_1, \ldots, u_k, v_1, \ldots, v_k\}$ is linearly independent iff $a = \sum_{i=1}^k u_i \wedge v_i$ satisfies $a^k \neq 0$.
- e) Prove that if $v_1 \wedge v_2 \wedge \ldots \wedge v_k$ and $w_1 \wedge w_2 \wedge \ldots \wedge w_k$ are non-zero rank-one elements of $\Lambda^k V$, then

 $\exists \lambda \neq 0 \text{ s.t. } v_1 v_2 \dots v_k = \lambda w_1 w_2 \dots w_k \iff \operatorname{span}\{v_1, v_2, \dots, v_k\} = \operatorname{span}\{w_1, w_2, \dots, w_k\}.$

33. a) Prove that S^2 is a connected 2 dimensional smooth manifold by using the stereographic projections from the north and south poles as chart maps.

- b) Prove that \mathbf{S}^2 is path connected via smooth paths.
- c) Prove that \mathbf{S}^2 has no atlas with just 1 chart.

34. Rossmann's exercises 1.2: 8 (modified) Let M be the set \mathbf{R} with the usual topology. Give \mathbf{R} the atlas $\{(\mathrm{id}_R, \mathbf{R})\}$ and denote the corresponding manifold M_0 (this is the usual manifold ' \mathbf{R} ').

- a) Define $\varphi: M \to \mathbf{R}$ by $\varphi(t) = t^3$.
 - i) Show that $\{(\varphi, M)\}$ is an atlas for a manifold structure on M.
 - ii) Is $f = id_{\mathbf{R}} : M \to M_0$ a diffeomorphism?
 - iii) Viewing f as a map $f: M \to M$, is f in $C^{\infty}(M)$?
 - iv) Is $g = \mathrm{id}_{\mathbf{R}} : M_0 \to M \neq C^{\infty}$ map?
 - v) Can you find a diffeomorphism $h: M_0 \to M$? If so, exhibit one.

New. (Warner, P. 10) Define $f, g, h : \mathbf{R} \to \mathbf{R}$ by

$$f(t) = \begin{cases} e^{-1/t} & t > 0\\ 0 & t \le 0 \end{cases}, \quad g(t) = \frac{f(t)}{f(t) + f(1-t)}, \quad \text{and } h(t) = g(t+2)g(2-t). \end{cases}$$

You may assume that $f \in \mathbf{C}^{\infty}(\mathbf{R})$.

- a) Show that the function h satisfies $h \in C^{\infty}(\mathbf{R}), \forall t, |t| \leq 1 \Rightarrow h(t) = 1 \text{ and } \forall t, |t| > 2 \Rightarrow h(t) = 0.$
- b) Let r > 0. Find a function $k \in \mathbf{C}^{\infty}(\mathbf{R}^n)$ such that $\forall v, \|v\| \le r \Rightarrow k(v) = 1$, and $\forall v, \|v\| > 2r \Rightarrow k(v) = 0$.
- c) Let r > 0. Find a function $l \in \mathbf{C}^{\infty}(\mathbf{R}^n)$ such that $\forall v, ||v|| \le r \Rightarrow l(v) = 0$, and $\forall v, ||v|| > 2r \Rightarrow l(v) = 1$.
- d) Suppose $f \in C^{\infty}(\mathbf{S}^2)$. Prove that there is $g \in \mathbf{C}^{\infty}(\mathbf{R}^3)$ such that $g(v) = f(v), \forall v \in \mathbf{S}^2$. (Hint: Use the map $v \mapsto \frac{v}{\|v\|}$, f, and part (c) to fix things at v = 0.)
- e) Assuming that that the inclusion map $i: \mathbf{S}^2 \to \mathbf{R}^3$ is smooth map, prove that $i_*: T_p \mathbf{S}^2 \to T_p \mathbf{R}^3$ is an injective linear map. (Hint: Use (d).) (Recall: for $g \in \mathbf{C}^{\infty}(\mathbf{R}^3), i_*(v_p)(g) := v_p(g \circ i)$)