
MAT 4183 Final Exam

December 16, 2017. Duration: 3 hours

PLEASE READ THESE INSTRUCTIONS CAREFULLY:

1. You have three hours to complete this exam.

2. This is a closed book exam, and no notes of any kind are permitted. Calculators are
not allowed, and the use or possesion on your person of cell phones is not permitted.
By signing the attendance sheet you are agreeing that you will comply with these rules.

3. The correct answer requires reasonable justification written legibly and logically.

4. All questions are worth an equal number of points, and you should aim to finish 6 questions. Read
through all of the questions before beginning.

5. Please begin each new question on a new page. It will help me and won’t waste too much paper if
you only use the backs of pages for rough work. If you need more scrap paper, please ask.

6. Bonne chance! Good luck!

—————————————————————————————

Possibly useful formulae:

In the following, @i will denote
@

@zi
, and @✓ will denote

@

@✓
for any coordinate function ✓.

A. ?(ei1 ^ · · · ^ eip) = ✏i1 · · · ✏ip sgn(i1, . . . , in) eip+1 ^ · · · ^ ein , where g(ei, ej) = ✏i�i j

B. i⇤ @' = cos ✓ cos'@x +sin ✓ cos'@y � sin'@z, i⇤ @✓ = � sin ✓ sin'@x +cos ✓ sin'@y

C. 2g(ruv, w) = u g(v, w)� w (g(u, v)) + v g(w, u) + g([u, v], w)� g(u, [v, w]) + g([w, u], v)

D. 2�k
i j = gk l(@igj l � @lgi j + @jgl i)

E. �'✓ ✓ = � sin' cos', �✓✓ ' = �✓' ✓ = cot'



1. Let V be a finite dimensional real vector space and V ⇤ its dual. Suppose g is a symmetric non-
degenerate bilinear form on V , and denote  : V ! V ⇤ the isomorphism defined by  (v)(w) =
g(v, w), 8v, w 2 V . Define maps

c : V ⇥ V ⇤ ! R and c̃ : V ⇥ V ⇤ ! R

by
c(v, f) = f(v), and
c̃(v, f) = g(v, �1(f)) for all v 2 V, f 2 V ⇤.

a) Explain briefly why there is an element C 2 (V ⌦ V ⇤)⇤ which satisfies

C(v ⌦ f) = c(v, f), 8v 2 V, f 2 V ⇤.

b) There is a natural isomorphism e : V ⌦ V ⇤ ! Hom(V, V ). Give a brief description of the definition
of e.

c) Prove that if T 2 Hom(V, V ), then C � e�1(T ) is the trace of the linear transformation T .

Solution: Let {v1, . . . vn} be a basis for V and {v1, . . . , vn} its dual basis. Then write T (vi) = Ai
jvj

for scalars Ai
j . Then e�1(T ) = Ai

jvj ⌦ vi, so C(e�1(T )) = Ai
jv

i(vj) = Ai
j�

i
j = Ai

i = tr(T ).

d) Prove that c(v, f) = c̃(v, f) for all v 2 V, f 2 V ⇤.

Solution:

V ⌦ V ⇤

C�e�1

##GGGGGGGGG

idV ⌦ �1
g

✏✏
V ⌦ V

g // R

Down, then right: (v, f) 7! (v, �1
g (f)) ! g(v, �1

g (f)) while (v, f) 7! f(v). If w =  �1
g (f), then

f(v) =  g(w)(v) = g(v, w) = g(v, �1
g (f))



2. Let A =

2
4 1 2 �1

0 �1 1
2 1 1

3
5 and define T 2 Hom(R3,R3) by T (v) = Av.

Let R3⌦R3 = span{ei⌦ej | 1  i, j  3} be the usual tensor product, and note that f : R3⌦R3 !
M33(R) defined by f(v ⌦ w) = vwt is an isomorphism.

Recall the natural isomorphism e : R3 ⌦ (R3)⇤ ! Hom(R3,R3) and set t = e�1(T ).

a) Find an explicit expression for f�1(A) 2 R3 ⌦R3.

b) Find an explicit expression for t 2 R3 ⌦ (R3)⇤.

c) Write t =
Pm

i=1 vi ⌦ wi for vi 2 R3, wi 2 (R3)⇤, where m = rank(t).

Solution:

a) [3] If w 2 R3,note that f(ei ⌦w) is the matrix whose ith row is wt, and which has zeros elsehwere.
Thus we have

f�1(A) = e1 ⌦ (e1 + 2e2 � e3) + e2 ⌦ (�e2 + e3) + e3 ⌦ (2e1 + e2 + e3).

b) [3] If v 2 R3, then e(v ⌦ ej) is the linear map whose matrix has v as its jth column, and zeros
elsewhere. Hence

e�1(T ) = (e1 + 2e3)⌦ e1 + (2e1 � e2 + e3)⌦ e2 + (�e1 + e2 + e3)⌦ e3.

Alternatively, let h : R3⌦R3 ! R3⌦ (R3)⇤ denote the isomorphism satisfying h(ei⌦ ej) = ei⌦ ej ,
and S : Hom(R3,R3) ! M33(R) the isomorphism which sends a linear map to its standard matrix.
Then it is clear that f = S � e � h, and so e�1 = h � f�1 � S. Then using (a) one also check sees that

e�1(T ) = e1 ⌦ (e1 + 2e2 � e3) + e2 ⌦ (�e2 + e3) + e3 ⌦ (2e1 + e2 + e3).

c) [4] If we write A in block row form as A =

2
4 r1

r2

r3

3
5, a two-step row reduction shows rankA = rank t = 2

and, in particular that r3 = 2r1 + 3r2. Thus by the second solution to (b) we have

e�1(T ) = (e1 + 2e3)⌦ (e1 + 2e2 � e3) + (e2 + 3e3)⌦ (�e2 + e3).

Alternatively, noting that the third column of A is the first minus the second, using the first soution
to (b) we see that

e�1(T ) = (e1 + 2e3)⌦ (e1 + e3) + (2e1 � e2 + e3)⌦ (e2 � e3).

Or, noting that the first column of A is the sum of the second and third, using the first soution to (b)
we see that

e�1(T ) = (2e1 � e2 + e3)⌦ (e1 + e2) + (�e1 + e2 + e3)⌦ (e1 + e3).



3. Let (V1, g1) and (V2, g2) be semi-Riemannian vector spaces of the same dimension. (So, g1 and g2 are
symmetric, non-degenerate bilinear forms on V1 and V2 respectively.) Recall that a subset {u1, . . . , un} ⇢
V1 is orthonormal if g1(ui, uj) = "i�ij , where "i = ±1.

A map T : V1 ! V2 is an isometry (of semi-Riemannian vector spaces) if

g1(u, v) = g2(Tu, Tv), 8u, v 2 V1.

a) Define “g1 is non-degenerate.”

b) Prove that if {u1, . . . , un} ⇢ V1 is an orthonormal basis of V1, then {Tu1, . . . , Tun} ⇢ V2 is an
orthonormal basis of V2.
( Hint: (i) That {Tu1, . . . , Tun} is an orthonormal set is trivial. The important part is to show that

{Tu1, . . . , Tun} is linearly independent – but do not assume that every isometry is a linear map unless
you have done part (e)!)

Solution: 0 =
P

i �iT (ui) ) 8j, 0 = g2(
P

i �iT (ui), T (uj)) =
P

i �ig1(ui, uj) = �j , and
dimV1 = dimV2. (Note that if u 6= 0 is a null vector, then {u, 2u} is orthogonal, but of course is
not l.i..)

c) Suppose V = R4 and that the matrix of a bilinear form g : V ⇥V ! R with respect to the standard
ordered basis of R4 is 2

64
0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0

3
75 .

Find an orthonormal basis of V .

Solution: Don’t try Gram Schmidt, since here every standard basis vector is null! However, using
the two-dimensional version as a guide, we see that {

p
2

2 (e1 + e3),
p

2
2 (e1 � e3),

p
2

2 (e2 + e4),
p

2
2 (e2 � e4)}

is orthonormal.

e) Prove that an isometry is a linear map.
(Hint: Consider the expression g2(T (u + �v) � T (u) � �T (v), T (uj)), where uj belongs to an or-

thonormal basis in V1.)

Solution:
For all u, v,�, j, we have

g2(T (u + �v)� T (u)� �T (v), T (uj)) = g1(u + �v, uj)� g1(u, uj)� �g1(v, uj) = 0,

because g1, g2 are bilinear. Morover, 8w 2 V2, w =
P

i �iT (ui), so

8j, 0 = g2(w, T (uj)) =
X

i

�i�ij = �i ) w = 0.

Hence 8u, v,�, T (u + �v)� T (u)� �T (v) = 0. Hence T is linear.



4. a) Let V be a vector space and V ⇤ its dual. For v 2 V , define a map iv : ⇤kV ⇤ ! ⇤k�1V ⇤ by

iv(f1 ^ . . . ^ fk) =
kX

j=1

(�1)j�1fj(v) f1 ^ . . . ^ f̂j ^ . . . ^ fk, for k � 1,

and define iv on ⇤0V ⇤ to be zero. You may assume without proof that iv satisfies a graded Leibniz rule:
That is,

iv(↵ ^ �) = iv↵ ^ � + (�1)p↵ ^ iv�, for all v 2 V,↵ 2 ⇤pV ⇤,� 2 ⇤V.

a) Prove that i2v : ⇤kV ⇤ ! ⇤k�eV ⇤ satisfies the usual Leibniz rule:

i2v(↵ ^ �) = i2v↵ ^ � + a ^ i2v�.

Solution: Use the rule, noting that on the second application , the degree of iv↵ is deg↵ � 1, so
like terms cancel, not add.

b) Use (a) to show that i2v = 0 on ⇤V ⇤.

Solution: The linear map i2v is zero on ⇤0V and V ⇤. Since i2v satisfies (1) above, it is zero on all
elements of rank 1. But ⇤kV ⇤ is spanned by elements of rank 1, so i2v = 0 on ⇤V ⇤.

Now let M be a smooth manifold and v 2 Vect(M). Define maps

iv : ⌦k(M)! ⌦k�1(M) and Lv : ⌦k(M)! ⌦k(M)

respectively by
(iv↵)(p) = ivp(↵p), and Lv(↵) = div↵+ ivd↵,

where vp and ↵p are v and ↵ evaluated at p respectively, and ivp is the map defined above for V = TpM .

c) Prove that if d↵ = 0, for some ↵ 2 ⌦k(M), then d(Lv↵) = 0.

d) Prove that if ↵ = d�, for some � 2 ⌦k(M), then Lv↵ = d� for some � 2 ⌦k(M).

Solution: If ↵ = d�, then Lv↵ = d(ivd�).

e) If M = R2, v = a
@

@x
+ b

@

@y
for constant functions a and b, then Lv(dx) = 0.

Solution: Lv(dx) = divdx + ivd(dx) = divdx = d
⇣
i
a
@

@x
+b

@

@y

⌘
(dx) = d(a) = 0, since iv is clearly

linear in v.



5. Let S1 denote the circle and S1 i�! R2 the smooth inclusion map.

a) Define a 1-form on S1 by ! = i⇤(�y dx + x dy). Prove that d! = 0, but that there is no smooth
function ✓ : S1 ! R such that ! = d✓.

b) Prove that !p 6= 0 for all p 2 S1. (Hint: Find a smooth curve � : R ! S1 such that (i) im � = S1

and (ii) !�(t)(�0(t)) 6= 0 for all t 2 R.)

c) Prove that there is a di↵eomorphism  : S1 ⇥ R ! TS1, linear on the fibres, which makes the
diagram

S1 ⇥R
 //

p1

✏✏

TS1

⇡

✏✏
S1

idS1 // S1

commutative i↵ there is v 2 Vect(S1) such that vp 6= 0,8p 2 S1. (Here, p1(z, r) = z, and you need only
define your map and show it is bijective. You do not need to prove it is smooth.)

Solution: Suppose there is a nowhere-vanishing v 2 Vect(S1), and define  : TS1 ! S1 ⇥ R by
 (p, r) = r.vp. This is clearly linear on the fibres, and as dimTpS1 = 1 = dimR, is an iso there. This
shows that  is a bijection.

Conversely, suppose such a  as above exists, and define v : S1 ! TS1 by vp =  (p, 1). Since  is
linear on the fibres and is a bijection,  restricted to the fibres is injective and thus vp =  (p, 1) 6= 0.

d) Prove that there is a vector field v 2 Vect(S1) such that vp 6= 0,8p 2 S1.

Solution: Use the � from part (b)!



6. Give M = R2 \ {(0, 0)} the smooth structure it inherits as an open subset of R2. Define ! 2 ⌦1(M)
and v 2 Vect(M) by

! = � y

x2 + y2
dx +

x

x2 + y2
dy,

and
v = x

@

@x
+ y

@

@y
.

Now let '� : M !M be defined by '(v) = �v for some fixed real number � > 0.

a) Define an integral curve of a vector field u 2 Vect(M).

b) Define the flow �t : M !M generated by an integrable vector field u 2 Vect(M).

c) Show that v is integrable and that its flow satisfies �t(p) = 'et(p),8p 2M .

Solution: Denote p = (a, b) and �t(p) = (xp(t), yp(t)). Then we solve ẋp(t) = xp(t) with xp(0) = a
and ẏp(t) = yp(t) with yp(0) = b. These have the solutions xp(t) = aet and yp(t) = bet, so that
�t(p) = et(a, b) = etp = 'et(p). The solutions exist for all t 2 R so v is integrable.

d) Prove that ('�)⇤! = ! for all � > 0.

Solution: Note that ('�)⇤(x) = �x, and ('�)⇤(y) = �x, so ('�)⇤(dx) = d(('�)⇤(x)) = �dx, and
('�)⇤(dy) = �dy. Then,

('�)⇤! = � ('�)⇤y
('�)⇤(x2 + y2)

('�)⇤dx +
('�)⇤x

('�)⇤(x2 + y2)
('�)⇤dy

= � �y

�2(x2 + y2)
�dx +

�x

�2(x2 + y2)
�dy

= !.



7. Equip R3 = {(t, x, y) | t, x, y 2 R}, with the volume form ! = dt^dx^dy and the Minkowski metric
g = �dt⌦ dt + dx⌦ dx + dy ⌦ dy.

a) Complete the following table, where ? is the Hodge-star map in this case for the (orthonormal)
ordered basis {dt, dx, dy}.
Solution: Since ("1, "2, "3) = (�1, 1, 1),

?(dt ^ dx) �dy
?(dt ^ dy) dx
?(dx ^ dy) dt

?(dt ^ dx ^ dy) �1

b) Let F 2 ⌦2(R3) be a smooth 2-form on R3. Show that we may write F = G + dt ^H, where

G = a dx ^ dy and H = b dx + c dy, for some a, b, c 2 C1(R3).

Solution: Any 2-form F on R3 is of the form F = a dx ^ dy + b dt ^ dx + c dt ^ dy = a dx ^ dy +
dt ^ (b dx + c dy) for some a, b, c 2 C1(R3), and is clearly of the desired form.

c) Show that the equation dF = 0 is equivalent to
@a

@t
=
@c

@x
� @b

@y

Solution:

0 = dF = dG� dt ^ dH

= (@ta dt + @xa dx + @ya dy) ^ dx ^ dy � dt ^ (@xb dx ^ dx + @yb dy ^ dx + @tb dt ^ dx)
��dt ^ (@xc dx ^ dy + @yc dy ^ dy + @tc dt ^ dy)
= (@ta + @yb� @xc) dt ^ dx ^ dy

Since (dt ^ dx ^ dy)p 6= 0, 8p 2 R3, this implies @ta + @yb� @xc = 0, and the desired result follows.

d) Show that the equation d ? F = 0 is equivalent to

@a

@x
� @c

@t
=
@a

@y
+
@b

@t
=
@b

@x
+
@c

@y
= 0.

Solution: From the table in (a),

?F = ?(a dx ^ dy) + ?(b dt ^ dx + c dt ^ dy)
= a dt� b dy + c dx,

so

d ? F = d(a dt� b dy + c dx)
= @xa dx ^ dt + @ya dy ^ dt� @tb dt ^ dy � @xb dx ^ dy + @tc dt ^ dx + @yc dy ^ dx

= (�@xa + @tc)dt ^ dx + (�@ya� @tb) dt ^ dy + (�@xb� @yc) dx ^ dy

This equation and the linear independence of dt^dx, dt^dy and dx^dy now yields the desired equivalence.



e)[Bonus] Show that the only solutions to dF = 0 = d ? F with a = et��(x�y) must satisfy �2 = 1
2 .

Solution: Indeed, if a = et��(x�y), then (denoting @xia by axi , etc.), we have at = a and ax =
��a = �ay.

Then, ax = ct and ay = �bt implies b = ��a + b̄, and c = ��a + c̄ where b̄, c̄ satisfy b̄t = c̄t = 0.
Then, at = cx � by () a = �2a + c̄x � (��2a + b̄y) () (1 � 2�2)a = c̄x � b̄y. But taking partials
w.r.t. t on both sides yields (1� 2�2)a = 0, whence �2 = 1

2 .

—————————————————————————————

8. Let M be a manifold with connection D. For p 2 M and u 2 Vect(M), let up 2 TpM denote the
tangent vector obtained by evaluating the vector field u at p 2M .

Suppose that ! 2 ⌦1(M), and define two functions D!, T! : Vect(M)⇥Vect(M)! C1(M) by

D!(u, v) = u(!(v))� !(Duv), 8u, v 2 Vect(M), and
T!(u, v) = u(!(v))� v(!(u))� !([u, v]), 8u, v 2 Vect(M)

a) Prove that D! is C1(M)–bilinear.

Solution: Let f, g 2 C1(M). Then

D!(fu, gv) = fu(!(gv))� !(Dfugv)
= fu(g(!(v))� f!(Dugv)

= f
⇣
u(g)(!(v) + gu(!(v))

⌘
� f!

⇣
u(g)v + gDuv

⌘
= fg u(!(v)) + fu(g)!(v)� fu(g)!(v)� fg !(Duv)
= fg D!(u, v)

b) Prove that T! is C1(M)–bilinear.

Solution: Let f, g 2 C1(M). If u, v 2 V ect(M), first note that an easy computaion shows that

[f u, v] = f [u, v]� v(f)u.

Then

T!(fu, v) = fu(!(v))� v(!(fu))� !([fu, v])

= fu(!(v))�
⇣
v(f)!(u) + f v(!(u))

⌘
� !

⇣
f [u, v]� v(f)u

⌘
= f u(!(v))� v(f)!(u)� f v(!(u)) � f !([u, v]) + v(f)!(u)
= f T!(u, v)

Since T! is clearly antisymmetric in its arguments, we’re done.

c) For u, v 2 Vect(M), show that (D!(u, v))(p) depends only on up and vp.



(Hint: Use local coordinates around p and consider the the smooth functions Bi j defined by Bi,j =
D!(@i, @j).)

Solution: Suppose u = ui@i and v = vj@j for smooth functions ui, vj . hen, by (b),

D!(u, v) = D!(ui@i, v
j@j)

= uivjD!(@i, @j)
= uivjBi j

Hence, D!(u, v)(p) = ui(p)vj(p)Bi j(p). Noting that up = ui(p)@i(p) and vp = vj(p)@j(p) gives the desired
result.

d) If M = R2, and d denotes the exterior derivative prove that d! = T!(
@

@x
,
@

@y
) dx ^ dy.

Solution: Let w 2 ⌦1(R2) so we may write ! = fdx + g dy for some f, g 2 C1(R2). Then

d! = �@f

@y
dx ^ dy +

@g

@x
dx ^ dy = (

@g

@x
� @f

@y
)dx ^ dy.

On the other hand, T!(
@

@x
,
@

@y
) =

@

@x
!(

@

@y
)� @

@y
!(

@

@x
), since [

@

@x
,
@

@y
] = 0.

But
@

@x
!(

@

@y
) =

@g

@x
, and

@

@y
!(

@

@x
) =

@f

@y
, whence the result.



9. Let M = S2 \ {(x, 0, z) | x  0}. In the usual coordinates ', ✓ on M , define the non-standard
tensor

h = �d'⌦ d'+ 2 sin' d✓ ⌦ d✓

a) Prove that h is a semi-Riemannian metric on M .

b) Find the non-zero Christo↵el symbols for the Levi-Civita connection r for h. You may assume that
convenience that �k

i j = 1
2hk k(@ihj k � @khi j + @jhk i), in this case.

Solution:

Note that [hi j ] =

�1 0
0 2 sin'

�
and [hi j ] =


�1 0
0 1

2 sin'

�
. As for �'��, as both matrices are

diagonal and do not depend on ✓, only '–derivatives contribute, and only in @'h✓ ✓ = 2 cos', so

�'✓ ✓ =
1
2
h''(�@'h✓ ✓) =

1
2
(�1)(�2 cos') = cos'.

As for �✓��, we see that

�✓✓ ' = �✓' ✓ =
1
2
h✓ ✓(@'h✓ ✓) =

1
2

1
2 sin'

(2 cos') =
cot'

2
.

c) Show that the geodesic equations are

✓̈ + '̇ ✓̇ cot' = 0 and '̈+ ✓̇2 cos' = 0

Solution: �̈i + �̇j �̇k�i
j k = 0 for ‘i = '’ is '̈+ ✓̇✓̇ �'✓ ✓ = 0, and

'̈+ ✓̇✓̇ �'✓ ✓ = 0 () '̈+ ✓̇2 cos' = 0.

For
‘i = ✓’ is

✓̈ + '̇ ✓̇ �✓' ✓ + ✓̇ '̇ �✓✓ ' = 0 () ✓̈ + '̇ ✓̇ cot' = 0

d) Show that the first equation in (c) can be written as
d(✓̇ sin')

dt
= 0.

Solution:
d(✓̇ sin')

dt
= ✓̈ sin'+ ✓̇'̇ cos'; now divide by sin' since it is never zero on M .

e) Find all unit speed geodesics t! �(t) such that t! '(�(t)) is constant.

Solution: If '̇ = 0, then ' = '0 for some constant. Since ✓̇ sin' = A is constant, ✓̇ =
A

sin'0
.

Unit speed is equivalent to �'̇2 + 2 sin' ✓̇2 = 1 () ✓̇2 =
A2

sin2 '0
=

1
2 sin'0

yielding A2 =
sin'0

2
.

However, ✓̇2 cos'0 = 0, and so as ✓̇ 6= 0, we find '0 =
⇡

2
and hence ' =

⇡

2
and ✓ = ±

p
2

2 t + B where B

is any constant.



10. Suppose M is a smooth n–manifold and with connection D, and � : [a, b]!M is a smooth curve in
M .

a) If v1, . . . , vn are vector fields defined along �, define “{v1, . . . , vn} is a parallel frame along �.”

b) Suppose {v1, . . . , vn} is a parallel frame along �, and v : [a, b]! TM is any vector field along �. If
we write v(t) = ⇠i(t)vi(t) for t 2 [a, b] and smooth functions ⇠i : [a, b]! R, i = 1, . . . , n, prove that

⇣
D�̇(t)v

⌘
(t) =

d⇠i

dt
(t)vi(t).

Solution:
Recall that if w(t) = wk(t)@k(�(t)) , then

D�̇(t)w(t) :=
dwk

dt
@k(�(t)) + �̇i(t)wj(t)Ak

i j(�(t))@k(�(t)) .

Write vi = W j
i @j(�(t)) , so that v(t) = ⇠iW j

i @j(�(t)) . Then,

D�̇v = D�̇(⇠iW j
i @j(�(t)))

=
d

dt
(⇠iW j

i )@j(�(t)) + �̇l(t)⇠iW j
i Ak

l j(�(t))@k(�(t))

=
d

dt
(⇠i)vi + ⇠i d

dt
(W j

i ) + �̇l(t)⇠iW j
i Ak

l j(�(t))@k(�(t))

=
d

dt
(⇠i)vi + ⇠iD�̇vi

=
d

dt
(⇠i)vi,

since {v1, . . . , vn} is a parallel frame along �.

c) Let M = S2 \ {(x, 0, z) | x  0} and � : [0, ⇡2 ) ! M be the smooth curve defined in (', ✓)
coordinates by

('(t), ✓(t)) =
⇣⇡

2
� t, 0

⌘
.

That is, ('(t), ✓(t)) = ('(�(t)), ✓(�(t)).

Equip M with the Levi-Civita connection associated to the standard Riemannian metric inherited from
R3. You may assume formula (E) on page 1 gives the only non-zero Christo↵el symbols in these
coordinates for this Levi-Civita connection.

Find a parallel frame along �.

Solution: We know that �̇(t) = �@', and from (E) that r@'(@') = 0. Moreover r@'(@✓) =
cot'@✓.Hence, since @' csc csc' = � csc' cot',

r@'(csc'@✓) = (@' csc') @✓ + csc'r@'(@✓)
= � csc' cot'@✓ + csc' cot'@✓
= 0.

Since {@', csc'@✓} is linearly independent everywhere on M , the above shows that{@'�(t) , csc'(t) @✓�(t)}
is a parallel frame along �.



11. Define C (an open ‘cut’ cone in R3) and H (an open subset of R2) as follows:

C =
⇢

(x, y, z) 2 R3 | x2 + y2 = z2, z > 0
�
\

⇢
(x, 0, z) | x  0

�

H =
⇢

(r cos ✓, r sin ✓) 2 R2 | r > 0, ✓ 2 (�
p

2⇡
2

,

p
2⇡
2

)
�

.

Note that there are smooth global coordinates r, ✓ : H ! R with
(x, y) = r(cos ✓, sin ✓), 8(x, y) 2 H,

and there are smooth functions ⇢ : C ! (0,1) and � : C ! (�⇡,⇡) satisfying
(x, y, z) = ⇢(cos�, sin�, 1), 8(x, y, z) 2 C.

A homeomorphism  : H ! C is given by

 (p) =
p

2 r

2
(cos[

p
2✓)], sin[

p
2✓)], 1 ),

where r = r(p) and ✓ = ✓(p). We use  to give C the di↵erentiable structure that makes  a di↵eomor-
phism. This makes the inclusion C

i�! R3 smooth.
Let G = dx⌦ dx + dy ⌦ dy + dz ⌦ dz denote the standard metric on R3. Equip H with the metric

g = dr ⌦ dr + r2d✓ ⌦ d✓ and C with the metric k = i⇤G. That is,
k = i⇤dx⌦ i⇤dx + i⇤dy ⌦ i⇤dy + i⇤dz ⌦ i⇤dz.

a) Show that on C, k = 2 d⇢⌦ d⇢+ ⇢2d� ⌦ d�.
Solution: Noting that i⇤x = ⇢ cos�, i⇤y = ⇢ sin�, and i⇤z = ⇢,

i⇤dx⌦ i⇤dx = d(i⇤x)⌦ d(i⇤x)
= d(⇢ cos�)⌦ d(⇢ cos�)
= (cos�d⇢� ⇢ sin�d�)⌦ (cos�d⇢� ⇢ sin�d�)
= cos2 �d⇢⌦ d⇢+ ⇢2 sin2 �d� ⌦ d� � ⇢ sin� cos�(d⇢⌦ d� + d� ⌦ d⇢),

while
i⇤dy ⌦ i⇤dy = d(i⇤y)⌦ d(i⇤y)

= d(⇢ sin�)⌦ d(⇢ sin�)
= (sin�d⇢+ ⇢ cos�d�)⌦ (sin�d⇢+ ⇢ cos�d�)
= sin2 �d⇢⌦ d⇢+ ⇢2 cos2 �d� ⌦ d� + ⇢ sin� cos�(d⇢⌦ d� + d� ⌦ d⇢),

and i⇤dz ⌦ i⇤dz = d(i⇤z)⌦ d(i⇤z) = d⇢⌦ d⇢. Hence, k = 2 d⇢⌦ d⇢+ ⇢2d� ⌦ d�

b) Show that 8p 2 H, ⇢ �  (p) =
p

2 r(p)
2

, and � �  (p) =
p

2 ✓(p).

Solution: Since  (p) =
p

2 r
2 (cos[

p
2✓)], sin[

p
2✓)], 1 ) = ⇢(cos�, sin�, 1), equating the last comp-

nents gives ⇢ �  =
p

2 r

2
. Then, equality of the first two components (noting the ranges of � and ✓)

forces � �  =
p

2 ✓.

c) If we define  ⇤(f↵ ⌦ �) =  ⇤(f) ⇤(↵) ⌦  ⇤(�) for ↵,� 2 ⌦1(C), and f 2 C1(C), and extend by
linearity, show that

 ⇤(k) = g

Solution: This follows immediately from (a) and (b), upon noting that (b) says  ⇤⇢ =
p

2 r

2
and

 ⇤� =
p

2✓.



12. Suppose (M,g) is a semi-Riemannian manifold and with Levi-Civita connection r, and let R denote
the Riemann curvature defined as usual by

R(u, v)w = (rurv �rvru)w �r[u,v]w, 8u, v, w 2 Vect(M).

a) Prove that R(�,�)� is C1(M)-linear in the third slot.

b) Suppose that u, v, w are commuting vector fields. Prove that

R(u, v)w + R(w, u)v + R(v, w)u = 0.

(Hint: Use the fact that the Levi-Civita connection r is torsion-free to show that e.g., (rurv �
rvru)w = rurvw �rvrwu, in order to cancel terms in pairs.)

c) Suppose that u, v, w, x and z are commuting vector fields. Expand [u, v](g(w, x)), (which is zero
since [u, v] = 0), using the fact that r is a metric connection to show that

g(R(u, v)w, x) + g(w,R(u, v)x) = 0.

Solution: These are all straighforward computations.

—————————————————————————————

13. Suppose (M,g) is a semi-Riemannian manifold with Levi-Civita connection r, and let R denote its
Riemann curvature tensor. Define a tensor field of type (0,2) on M , the Ricci tensor by

Ric(u, v) = the trace of the linear map
h
w 7! R(u,w)v

i
, 8u, v, w 2 Vect(M)

(Note the placement of w in R(u,w)v.)

a) Show that 8u, v 2 Vect(M)
tr

h
w 7! R(u, v)w

i
= 0.

(Note the placement of w in R(u, v)w. This not the Ricci tensor. You may use Q.12.)

Solution: Fix u, v and denote by T the map w 7! R(u, v)w. Suppose g(ei, fj) = �i j We know that

2 trT =
X

i

g(Tei, fi) +
X

i

g(ei, Tfi) =
X

i

⇣
g(R(u, v)ei, fi) + g(ei,R(u, v)fi)

⌘
= 0

by the previous question.

b) Show that Ric(u, v) = Ric(v, u),8u, v 2 Vect(M). (You may use Q. 1(d) and Q. 12 without proof.)

Solution: Fix u, v 2 Vect(M), and define S(w) = R(u,w)v, T (w) = R(u, v)w and U(w) =
R(v, w)u. Then 12(b) is equivalent to

T � S + U = 0.

Since the trace is linear trT � trS + trU = 0. But by (a), trT = 0. Hence trS = trU , i.e. Ric(u, v) =
Ric(v, u).

—————————————————————————————



14. Suppose (M,g) and (N,h) are semi-Riemannian manifolds with Levi-Civita connections r and r0
respectively. Suppose that s : M ! N is a di↵eomorphism which is also an isometry of semi-Riemannian
manifolds, that is, s⇤h = g. Explicitly, this means that

g(u, v) = h(s⇤u, s⇤v) � s, 8u, v 2 Vect(M)

a) Use formula (C) on the first page to prove that

s⇤(ruv) = r0s⇤us⇤v, 8u, v 2 Vect(M)

(You may assume when using formula (C) that all vector fields commute.)

b) If R and R0 respectively denote the Riemann curvature tensors for (M,g) and (N,h), show that

s⇤(R(u, v)w) = R0(s⇤u, s⇤v)s⇤w, 8u, v, w 2 Vect(M).

(You may again assume (w.l.o.g.) that all vector fields commute.)

c) [Bonus] Use (b) to compute the Riemann curvature tensor for Levi-Civita connection on the Rie-
mannian manifold (C, k) of question 11.

Solution: (a) Let u, v, w 2 Vect(M). Then by formula (C),

2h(r0s⇤u, s⇤w) = s⇤(u)(h(s⇤v, s⇤w))� s⇤(w)(h(s⇤u, s⇤v)) + s⇤(v)(h(s⇤w, s⇤u)).

But if f 2 C1(N), (s⇤u)(f) = [u(f � s)] � s�1, so

2h(r0s⇤u, s⇤w) � s = u(h(s⇤v, s⇤w) � s) � s�1 � s� w(h(s⇤u, s⇤v) � s) � s�1 � s + v(h(s⇤w, s⇤u) � s) � s�1 � s

= u g(v, w)� w (g(u, v)) + v g(w, u)
= 2g(ruv, w)
= 2h(s⇤(ruv), s⇤w) � s.

Since s⇤ is an isomorphism, this holds for all w,and h is non-degenerate, s⇤(ruv) = r0s⇤us⇤v, 8u, v 2
Vect(M).
b) Well, s⇤(rurvw) = r0s⇤us⇤(rvw) = r0s⇤ur0s⇤vs⇤w. So

s⇤R(u, v)w = [r0s⇤u,r0s⇤v]s⇤w = R0(s⇤u, s⇤v)s⇤w

c) We know from (b), since  of Q. 11 is an isometry, and (using the notation of Q.11)  ⇤(g) = k,
if the Riemann curvature of either g or k is zero, both will be. But the metric g of Q.11 is the
standard flat metric on the plane (pulled back to the subset H). So the Riemann curvature of k is
also zero. (The cone is Riemman-‘flat’!)


