2. [Total: 7] Let $A=\left[\begin{array}{ccc}0 & 1 & 1 \\ 1 & 0 & -1 \\ 1 & 1 & 0\end{array}\right]$ and define $T \in \operatorname{Hom}\left(\mathbf{R}^{3}, \mathbf{R}^{3}\right)$ by $T(v)=A v$.

Recall the isomorphism $e: \mathbf{R}^{3} \otimes\left(\mathbf{R}^{3}\right)^{*} \rightarrow \operatorname{Hom}\left(\mathbf{R}^{3}, \mathbf{R}^{3}\right)$ satisfying

$$
e(v \otimes f)(w)=f(w) v
$$

and let $t=e^{-1}(T)$.
a) [2] Find an explicit expression for $t \in \mathbf{R}^{3} \otimes\left(\mathbf{R}^{3}\right)^{*}$.

Solution: Write $A=\left[\begin{array}{lll}v_{1} & v_{2} & v_{3}\end{array}\right]$ in block column form, so we know that $T\left(e_{i}\right)=v_{i},(i=1,2,3)$ where $\left\{e_{1}, e_{2}, e_{3}\right\}$ is the standard ordered basis of \mathbf{R}^{3}. Now, set

$$
t=v_{1} \otimes e^{1}+v_{2} \otimes e^{2}+v_{3} \otimes e^{3},
$$

where $\left\{e^{1}, e^{2}, e^{3}\right\}$ is the basis of $\left(\mathbf{R}^{3}\right)^{*}$ dual to $\left\{e_{1}, e_{2}, e_{3}\right\}$. Then it's clear from the defintion of e that $e(t)=T$.
b) [3] Write $t=\sum_{i=1}^{2} v_{i} \otimes w^{i}$ for $v_{i} \in \mathbf{R}^{3}, w^{i} \in\left(\mathbf{R}^{3}\right)^{*}$.

Solution: Noting that $v_{2}=v_{1}+v_{3}$, we see that $t=v_{1} \otimes\left(e^{1}+e^{2}\right)+v_{3} \otimes\left(e^{2}+e^{3}\right)$.
c) [2] Use (b) to find ordered bases $\mathcal{A}=\left\{u_{1}, u_{2}, u_{3}\right\}$ and $\mathcal{B}=\left\{x_{1}, x_{2}, x_{3}\right\}$ of \mathbf{R}^{3} such that the matrix of T w.r.t. \mathcal{A} and \mathcal{B} is

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

Solution: Recall from (b) that $t=v_{1} \otimes\left(e^{1}+e^{2}\right)+v_{3} \otimes\left(e^{2}+e^{3}\right)$ and so $\left\{v_{1}, v_{3}\right\}$ is a basis for $\operatorname{im} T$ and the fact that $v_{2}=v_{1}+v_{3}$ also means that $v=(1,-1,1) \in \operatorname{ker} T$ (so we'll take $u_{3}=v$ in a moment).

So set $x_{1}=v_{1}, x_{2}=v_{3}$ and $x_{3}=e_{2}$ (the latter has many choices).
Now (using (b) again) it remains to find two vectors u_{1}, u_{2} with $\left(e^{1}+e^{2}\right)\left(u_{1}\right)=1,\left(e^{1}+e^{2}\right)\left(u_{2}\right)=0$, $\left(e^{2}+e^{3}\right)\left(u_{1}\right)=0,\left(e^{2}+e^{3}\right)\left(u_{2}\right)=1$.

It 's easy to see that $u_{1}=e_{1}$ and $u_{2}=e_{3}$ satisfy these 4 conditions, and we conclude by setting $u_{3}=v$. Then $T\left(u_{i}\right)=x_{i}$ for $i=1,2$, and $T\left(u_{3}\right)=0$, as required.

