Fixed points of ternary involutions and applications

Richard M. Timoney
Trinity College Dublin

Joint work with Les Bunce

Ternary rings of operators (TROs)

Definition

A TRO is a norm closed linear subspace $T \subseteq \mathcal{B}(\mathcal{H})$ such that

$$
x, y, z \in T \Rightarrow[x, y, z]:=x y^{*} z \in T
$$

Examples

$T=\Lambda \cdot \mathbb{M}_{n}(T) . T=\mathbb{M}_{n, m}(\mathbb{C}) . T=p A q . \quad T^{\mathrm{op}} \subseteq \mathcal{B}(\mathcal{H})^{\mathrm{op}}$

Notation

$\mathfrak{L n}_{T}=\operatorname{span}\left\{x y^{*}: x, y \in T\right\}$
Linking C^{*}-algebra of T :

$$
\mathfrak{L}_{T} \stackrel{\text { def }}{=}\left(\begin{array}{cc}
\mathscr{L}_{T} & T \\
T^{*} & \mathscr{R}_{T}
\end{array}\right) \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})
$$

Ternary rings of operators (TROs)

Definition

A TRO is a norm closed linear subspace $T \subseteq \mathcal{B}(\mathcal{H})$ such that

$$
x, y, z \in T \Rightarrow[x, y, z]:=x y^{*} z \in T
$$

Examples

\square

Notation
$\operatorname{m}_{T}=\operatorname{span}\left\{x y^{*}: x, y \in T\right\}$
Linking C^{*}-algebra of T :

$$
\mathfrak{L}_{T} \stackrel{\text { def }}{=}\left(\begin{array}{cc}
\mathscr{L}_{T} & T \\
T^{*} & \mathscr{R}_{T}
\end{array}\right) \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})
$$

Ternary rings of operators (TROs)

Definition

A TRO is a norm closed linear subspace $T \subseteq \mathcal{B}(\mathcal{H})$ such that

$$
x, y, z \in T \Rightarrow[x, y, z]:=x y^{*} z \in T
$$

Examples

$$
T=A \cdot \mathbb{M}_{n}(T) . T=\mathbb{M}_{n, m}(\mathbb{C}) \cdot T=p A q . \quad T^{\mathrm{op}} \subseteq B(\mathcal{H})^{\mathrm{op}} .
$$

Notation
$\mathscr{L}_{T}=\operatorname{snan}\left\{x y^{*}: x, y \in T\right\}$
Linking C^{*}-algebra of T :

$$
\mathfrak{L}_{T} \stackrel{\text { def }}{=}\left(\begin{array}{cc}
\mathscr{L}_{T} & T \\
T^{*} & \mathscr{R}_{T}
\end{array}\right) \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})
$$

Ternary rings of operators (TROs)

Definition

A TRO is a norm closed linear subspace $T \subseteq \mathcal{B}(\mathcal{H})$ such that

$$
x, y, z \in T \Rightarrow[x, y, z]:=x y^{*} z \in T
$$

Examples

$$
T=A . \mathbb{M}_{n}(T) . \quad T=\mathbb{M}_{n, m}(\mathbb{C})
$$

Notation
$\mathscr{L}_{T}=\operatorname{snan}\left\{x y^{*}: x, y \in T\right\}$
Linking C^{*}-algebra of T :

$$
\mathfrak{L}_{T} \stackrel{\text { def }}{=}\left(\begin{array}{cc}
\mathscr{L}_{T} & T \\
T^{*} & \mathscr{R}_{T}
\end{array}\right) \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})
$$

Ternary rings of operators (TROs)

Definition

A TRO is a norm closed linear subspace $T \subseteq \mathcal{B}(\mathcal{H})$ such that

$$
x, y, z \in T \Rightarrow[x, y, z]:=x y^{*} z \in T
$$

Examples

$T=A . \mathbb{M}_{n}(T) . \quad T=\mathbb{M}_{n, m}(\mathbb{C}) . \quad T=p A q$.

Notation
$\mathscr{L}_{T}-\operatorname{snan}\left\{x y^{*}: x, y \in T\right\}$
Linking C^{*}-algebra of T :

$$
\mathfrak{L}_{T} \stackrel{\text { def }}{=}\left(\begin{array}{cc}
\mathscr{L}_{T} & T \\
T^{*} & \mathscr{R}_{T}
\end{array}\right) \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})
$$

Ternary rings of operators (TROs)

Definition

A $T R O$ is a norm closed linear subspace $T \subseteq \mathcal{B}(\mathcal{H})$ such that

$$
x, y, z \in T \Rightarrow[x, y, z]:=x y^{*} z \in T
$$

Examples

$T=A . \mathbb{M}_{n}(T) . \quad T=\mathbb{M}_{n, m}(\mathbb{C}) . \quad T=p A q . T^{\mathrm{op}} \subseteq \mathcal{B}(\mathcal{H})^{\mathrm{op}}$.

Notation
$\mathscr{L}_{T}-\operatorname{snan}\left\{x y^{*}: x, y \in T\right\}$
Linking C^{*}-algebra of T :

$$
\mathfrak{L}_{T} \stackrel{\text { def }}{=}\left(\begin{array}{cc}
\mathscr{L}_{T} & T \\
T^{*} & \mathscr{R}_{T}
\end{array}\right) \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})
$$

Ternary rings of operators (TROs)

Definition

A TRO is a norm closed linear subspace $T \subseteq \mathcal{B}(\mathcal{H})$ such that

$$
x, y, z \in T \Rightarrow[x, y, z]:=x y^{*} z \in T
$$

Examples

$T=A . \mathbb{M}_{n}(T) . \quad T=\mathbb{M}_{n, m}(\mathbb{C}) . \quad T=p A q . T^{\mathrm{op}} \subseteq \mathcal{B}(\mathcal{H})^{\mathrm{op}}$.

Notation

$$
\mathscr{L}_{T}=\overline{\operatorname{span}\left\{x y^{*}: x, y \in T\right\}} \quad \mathscr{R}_{T}=\overline{\operatorname{span}\left\{y^{*} z: y, z \in T\right\}}
$$

Ternary rings of operators (TROs)

Definition

A TRO is a norm closed linear subspace $T \subseteq \mathcal{B}(\mathcal{H})$ such that

$$
x, y, z \in T \Rightarrow[x, y, z]:=x y^{*} z \in T
$$

Examples

$T=A . \mathbb{M}_{n}(T) . \quad T=\mathbb{M}_{n, m}(\mathbb{C}) . \quad T=p A q . T^{\mathrm{op}} \subseteq \mathcal{B}(\mathcal{H})^{\mathrm{op}}$.

Notation

$$
\mathscr{L}_{T}=\overline{\operatorname{span}\left\{x y^{*}: x, y \in T\right\}} \quad \mathscr{R}_{T}=\overline{\operatorname{span}\left\{y^{*} z: y, z \in T\right\}}
$$

Linking C^{*}-algebra of T :

$$
\mathfrak{L}_{T} \stackrel{\text { def }}{=}\left(\begin{array}{cc}
\mathscr{L}_{T} & T \\
T^{*} & \mathscr{R}_{T}
\end{array}\right) \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})
$$

Ideals

Definition

$I \subseteq T$ is an ideal if it is a norm closed linear subspace with

$$
[I, T, T]+[T, I, T]+[T, T, I] \subseteq I
$$

Since $x \in I \Rightarrow x=[y, y, y]$ for some $y \in I$, can omit $[T, I, T]$ (or require only $[T, I, T] \subseteq I$).
$I \subseteq T$ an ideal implies $\mathscr{R}_{1} \subseteq \mathscr{R}_{T}$ an ideal (and so is $\mathscr{L}_{1} \subseteq \mathscr{L}_{T}$). Moreover

$$
I=T \mathscr{R}_{I}=\mathscr{L}_{I} T
$$

and $J \subseteq \mathscr{R}_{T}$ an ideal implies $I_{J}=T J \subseteq T$ an ideal with $\mathscr{R}_{I_{J}}=J$.

Ideals

Definition

$I \subseteq T$ is an ideal if it is a norm closed linear subspace with

$$
[I, T, T]+[T, I, T]+[T, T, I] \subseteq I
$$

Since $x \in I \Rightarrow x=[y, y, y]$ for some $y \in I$, can omit $[T, I, T]$ (or require only $[T, I, T] \subseteq I$).
$I \subseteq T$ an ideal implies $\mathscr{R}_{1} \subseteq \mathscr{R}_{T}$ an ideal (and so is $\mathscr{L}_{1} \subseteq \mathscr{L}_{T}$). Moreover

$$
I=T \mathscr{R}_{1}=\mathscr{L}_{1} T
$$

and $J \subseteq \mathscr{R}_{T}$ an ideal implies $I_{J}=T J \subseteq T$ an ideal with $\mathscr{R}_{I_{J}}=J$.

Ideals

Definition

$I \subseteq T$ is an ideal if it is a norm closed linear subspace with

$$
[I, T, T]+[T, I, T]+[T, T, I] \subseteq I
$$

Since $x \in I \Rightarrow x=[y, y, y]$ for some $y \in I$, can omit $[T, I, T]$ (or require only $[T, I, T] \subseteq I$).

Proposition
$I \subseteq T$ an ideal implies $\mathscr{R}_{I} \subseteq \mathscr{R}_{T}$ an ideal
Moreover

$$
I=T \mathscr{R}_{1}=\mathscr{L}_{1} T
$$

and $J \subseteq \mathscr{R}_{T}$ an ideal implies $I_{J}=T J \subseteq T$ an ideal with $\mathscr{R}_{1}=J$.

Ideals

Definition

$I \subseteq T$ is an ideal if it is a norm closed linear subspace with

$$
[I, T, T]+[T, I, T]+[T, T, I] \subseteq I
$$

Since $x \in I \Rightarrow x=[y, y, y]$ for some $y \in I$, can omit $[T, I, T]$ (or require only $[T, I, T] \subseteq I$).

Proposition

$I \subseteq T$ an ideal implies $\mathscr{R}_{I} \subseteq \mathscr{R}_{T}$ an ideal (and so is $\mathscr{L}_{I} \subseteq \mathscr{L}_{T}$).
Moreover

$$
I=T \mathscr{R}_{1}=\mathscr{L}_{I} T
$$

and $J \subseteq \mathscr{R}_{T}$ an ideal implies $I_{J}=T J \subseteq T$ an ideal with $\mathscr{R}_{1}=J$.

Ideals

Definition

$I \subseteq T$ is an ideal if it is a norm closed linear subspace with

$$
[I, T, T]+[T, I, T]+[T, T, I] \subseteq I
$$

Since $x \in I \Rightarrow x=[y, y, y]$ for some $y \in I$, can omit $[T, I, T]$ (or require only $[T, I, T] \subseteq I$).

Proposition

$I \subseteq T$ an ideal implies $\mathscr{R}_{I} \subseteq \mathscr{R}_{T}$ an ideal (and so is $\mathscr{L}_{I} \subseteq \mathscr{L}_{T}$). Moreover

$$
I=T \mathscr{R}_{I}=\mathscr{L}_{I} T
$$

and $J \subseteq \mathscr{R}_{T}$ an ideal implies $I_{J}=T J \subseteq T$ an ideal with $\mathscr{R}_{I_{J}}=J$.

Ternary morphisms (of TROs)

Definition

$\phi: T_{1} \rightarrow T_{2}$ is a ternary homomorphism if
$\phi[x, y, z]=[\phi(x), \phi(y), \phi(z)]\left(\right.$ or $\left.\phi\left(x y^{*} z\right)=\phi(x)(\phi(y))^{*} \phi(z)\right)$.

Ternary homomorphisms are (completely) contractive.
$\phi: T_{1} \rightarrow T_{2}$ induces ${ }^{*}$-homomoprhisms $\mathscr{L}_{\phi}: \mathscr{L}_{\boldsymbol{T}_{1}} \rightarrow \mathscr{L}_{\boldsymbol{T}_{2}}$
$\left(x y^{*} \mapsto \phi(x)(\phi(y))^{*}\right)$ and $\mathscr{R}_{\phi}: \mathscr{R}_{T_{1}} \rightarrow \mathscr{R}_{T_{2}}$ and

$$
\mathfrak{L}_{\phi} \stackrel{\text { def }}{=}\left(\begin{array}{cc}
\mathscr{L}_{\phi} & \phi \\
\left(x^{*} \mapsto \phi(x)^{*}\right) & \mathscr{R}_{\phi}
\end{array}\right): \mathfrak{L}_{T_{1}} \rightarrow \mathfrak{L}_{T_{2}}
$$

Definition

Ternary morphisms (of TROs)

Definition

$\phi: T_{1} \rightarrow T_{2}$ is a ternary homomorphism if
$\phi[x, y, z]=[\phi(x), \phi(y), \phi(z)]\left(\right.$ or $\left.\phi\left(x y^{*} z\right)=\phi(x)(\phi(y))^{*} \phi(z)\right)$.

Proposition

Ternary homomorphisms are (completely) contractive.
$\left(x y^{*} \mapsto \phi(x)(\phi(y))^{*}\right)$ and $\mathscr{R}_{\phi}: \mathscr{R}_{T_{1}} \rightarrow \mathscr{R}_{T_{2}}$ and

Definition

Abstract TRO

Ternary morphisms (of TROs)

Definition

$\phi: T_{1} \rightarrow T_{2}$ is a ternary homomorphism if
$\phi[x, y, z]=[\phi(x), \phi(y), \phi(z)]\left(\right.$ or $\left.\phi\left(x y^{*} z\right)=\phi(x)(\phi(y))^{*} \phi(z)\right)$.

Proposition

Ternary homomorphisms are (completely) contractive.
$\phi: T_{1} \rightarrow T_{2}$ induces ${ }^{*}$-homomoprhisms $\mathscr{L}_{\phi}: \mathscr{L}_{T_{1}} \rightarrow \mathscr{L}_{T_{2}}$
$\left(x y^{*} \mapsto \phi(x)(\phi(y))^{*}\right)$

Definition

\sim Abstract TRO

Ternary morphisms (of TROs)

Definition

$\phi: T_{1} \rightarrow T_{2}$ is a ternary homomorphism if
$\phi[x, y, z]=[\phi(x), \phi(y), \phi(z)]\left(\right.$ or $\left.\phi\left(x y^{*} z\right)=\phi(x)(\phi(y))^{*} \phi(z)\right)$.

Proposition

Ternary homomorphisms are (completely) contractive.
$\phi: T_{1} \rightarrow T_{2}$ induces ${ }^{*}$-homomoprhisms $\mathscr{L}_{\phi}: \mathscr{L}_{T_{1}} \rightarrow \mathscr{L}_{T_{2}}$
$\left(x y^{*} \mapsto \phi(x)(\phi(y))^{*}\right)$ and $\mathscr{R}_{\phi}: \mathscr{R}_{T_{1}} \rightarrow \mathscr{R}_{T_{2}}$ and

Definition

\leadsto Abstract TRO

Ternary morphisms (of TROs)

Definition

$\phi: T_{1} \rightarrow T_{2}$ is a ternary homomorphism if
$\phi[x, y, z]=[\phi(x), \phi(y), \phi(z)]\left(\right.$ or $\left.\phi\left(x y^{*} z\right)=\phi(x)(\phi(y))^{*} \phi(z)\right)$.

Proposition

Ternary homomorphisms are (completely) contractive.
$\phi: T_{1} \rightarrow T_{2}$ induces ${ }^{*}$-homomoprhisms $\mathscr{L}_{\phi}: \mathscr{L}_{T_{1}} \rightarrow \mathscr{L}_{T_{2}}$
$\left(x y^{*} \mapsto \phi(x)(\phi(y))^{*}\right)$ and $\mathscr{R}_{\phi}: \mathscr{R}_{T_{1}} \rightarrow \mathscr{R}_{T_{2}}$ and

$$
\mathfrak{L}_{\phi} \stackrel{\text { def }}{=}\left(\begin{array}{cc}
\mathscr{L}_{\phi} & \phi \\
\left(x^{*} \mapsto \phi(x)^{*}\right) & \mathscr{R}_{\phi}
\end{array}\right): \mathfrak{L}_{T_{1}} \rightarrow \mathfrak{L}_{T_{2}}
$$

Definition

\leadsto Abstract TRO:

Ternary morphisms (of TROs)

Definition

$\phi: T_{1} \rightarrow T_{2}$ is a ternary homomorphism if
$\phi[x, y, z]=[\phi(x), \phi(y), \phi(z)]\left(\right.$ or $\left.\phi\left(x y^{*} z\right)=\phi(x)(\phi(y))^{*} \phi(z)\right)$.

Proposition

Ternary homomorphisms are (completely) contractive.
$\phi: T_{1} \rightarrow T_{2}$ induces ${ }^{*}$-homomoprhisms $\mathscr{L}_{\phi}: \mathscr{L}_{T_{1}} \rightarrow \mathscr{L}_{T_{2}}$
$\left(x y^{*} \mapsto \phi(x)(\phi(y))^{*}\right)$ and $\mathscr{R}_{\phi}: \mathscr{R}_{T_{1}} \rightarrow \mathscr{R}_{T_{2}}$ and

$$
\mathfrak{L}_{\phi} \stackrel{\text { def }}{=}\left(\begin{array}{cc}
\mathscr{L}_{\phi} & \phi \\
\left(x^{*} \mapsto \phi(x)^{*}\right) & \mathscr{R}_{\phi}
\end{array}\right): \mathfrak{L}_{T_{1}} \rightarrow \mathfrak{L}_{T_{2}}
$$

Definition

\leadsto Abstract TRO: $(T,[\cdot, \cdot, \cdot])$.

Corners \& tripotents

$$
\mathfrak{L}_{T} \stackrel{\text { def }}{=}\left(\begin{array}{cc}
\mathscr{L}_{T^{\sim}} & T \\
T^{*} & \mathscr{R}_{T^{\sim}}
\end{array}\right) \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})
$$

Ex

For $p=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \in \mathfrak{L}_{T^{\sim}}, q=1-p=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$,
$T \cong\left(\begin{array}{ll}0 & T \\ 0 & 0\end{array}\right)=p\left(\mathfrak{L}_{T}\right) q$

Definition

$e \in T$ is called a tripotent if $[e, e, e]=e e^{*} e=e(\Longleftrightarrow e$ a partial isometry)
$T=e e^{*} T e^{*} e+\left(\left(1-e e^{*}\right) T e^{*} e+e e^{*} T\left(1-e^{*} e\right)\right)+\left(1-e e^{*}\right) T\left(1-e^{*} e\right)$

Corners \& tripotents

$$
\mathfrak{L}_{T} \stackrel{\text { def }}{=}\left(\begin{array}{cc}
\mathscr{L}_{T^{\sim}} & T \\
T^{*} & \mathscr{R}_{T^{\sim}}
\end{array}\right) \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})
$$

Ex

For $p=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \in \mathfrak{L}_{T^{\sim}}, q=1-p=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$,
$T \cong\left(\begin{array}{ll}0 & T \\ 0 & 0\end{array}\right)=p\left(\mathfrak{L}_{T}\right) q$

Definition

$e \in T$ is called a tripotent if $[e, e, e]=e e^{*} e=e(\Longleftrightarrow e$ a partial isometry)
$T=e e^{*} T e^{*} e+\left(\left(1-e e^{*}\right) T e^{*} e+e e^{*} T\left(1-e^{*} e\right)\right)+\left(1-e e^{*}\right) T\left(1-e^{*} e\right)$

Corners \& tripotents

$$
\mathfrak{L}_{T} \stackrel{\text { def }}{=}\left(\begin{array}{cc}
\mathscr{L}_{T^{\sim}} & T \\
T^{*} & \mathscr{R}_{T^{\sim}}
\end{array}\right) \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})
$$

Ex

For $p=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \in \mathfrak{L}_{T^{\sim}}, q=1-p=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$,
$T \cong\left(\begin{array}{ll}0 & T \\ 0 & 0\end{array}\right)=p\left(\mathfrak{L}_{T}\right) q$

Definition

$e \in T$ is called a tripotent if $[e, e, e]=e e^{*} e=e$

Corners \& tripotents

$$
\mathfrak{L}_{T} \stackrel{\text { def }}{=}\left(\begin{array}{cc}
\mathscr{L}_{T^{\sim}} & T \\
T^{*} & \mathscr{R}_{T^{\sim}}
\end{array}\right) \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})
$$

Ex

For $p=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \in \mathfrak{L}_{T^{\sim}}, q=1-p=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$,
$T \cong\left(\begin{array}{ll}0 & T \\ 0 & 0\end{array}\right)=p\left(\mathfrak{L}_{T}\right) q$

Definition

$e \in T$ is called a tripotent if $[e, e, e]=e e^{*} e=e(\Longleftrightarrow e$ a partial isometry)

Corners \& tripotents

$$
\mathfrak{L}^{\sim} \stackrel{\text { def }}{=}\left(\begin{array}{cc}
\mathscr{L}_{T^{\sim}} & T \\
T^{*} & \mathscr{R}_{T^{\sim}}
\end{array}\right) \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})
$$

Ex

For $p=\left(\begin{array}{ll}1 & 0 \\ 0 & 0\end{array}\right) \in \mathfrak{L}_{T^{\sim}}, q=1-p=\left(\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right)$,
$T \cong\left(\begin{array}{ll}0 & T \\ 0 & 0\end{array}\right)=p\left(\mathfrak{L}_{T}\right) q$

Definition

$e \in T$ is called a tripotent if $[e, e, e]=e e^{*} e=e(\Longleftrightarrow e$ a partial isometry)

$$
T=e e^{*} T e^{*} e+\left(\left(1-e e^{*}\right) T e^{*} e+e e^{*} T\left(1-e^{*} e\right)\right)+\left(1-e e^{*}\right) T\left(1-e^{*} e\right)
$$

Peirce spaces for $e \in T$

$$
T=e e^{*} T e^{*} e+\left(\left(1-e e^{*}\right) T e^{*} e+e e^{*} T\left(1-e^{*} e\right)\right)+\left(1-e e^{*}\right) T\left(1-e^{*} e\right)
$$

Notation

$$
T_{\lambda}(e)=\{x \in T:[e, e, x]+[x, e, e]=\lambda x\} \quad(\lambda=0,1,2)
$$

$$
T_{2}(e)=e e^{*} T e^{*} e
$$

$$
\begin{gathered}
T_{1}(e)=\left(1-e e^{*}\right) T e^{*} e+e e^{*} T\left(1-e^{*} e\right) \\
T_{0}(e)=\left(1-e e^{*}\right) T\left(1-e^{*} e\right)
\end{gathered}
$$

$T_{2}(e)$ "is" a C^{*}-algebra (with product $x \cdot y=[x, e, y]$).
But like projections in C^{*}-algebras, in general 刀ee $T \backslash\{0\}$

Peirce spaces for $e \in T$

$$
T=e e^{*} T e^{*} e+\left(\left(1-e e^{*}\right) T e^{*} e+e e^{*} T\left(1-e^{*} e\right)\right)+\left(1-e e^{*}\right) T\left(1-e^{*} e\right)
$$

Notation

$$
T_{\lambda}(e)=\{x \in T:[e, e, x]+[x, e, e]=\lambda x\} \quad(\lambda=0,1,2)
$$

$$
T_{2}(e)=e e^{*} T e^{*} e
$$

$$
\begin{gathered}
T_{1}(e)=\left(1-e e^{*}\right) T e^{*} e+e e^{*} T\left(1-e^{*} e\right) \\
T_{0}(e)=\left(1-e e^{*}\right) T\left(1-e^{*} e\right)
\end{gathered}
$$

$T_{2}(e)$ "is" a C^{*}-algebra (with product $x \cdot y=[x, e, y]$).
But like projections in C^{*}-algebras, in general $\nexists e \in T \backslash\{0\}$

Peirce spaces for $e \in T$

$$
T=e e^{*} T e^{*} e+\left(\left(1-e e^{*}\right) T e^{*} e+e e^{*} T\left(1-e^{*} e\right)\right)+\left(1-e e^{*}\right) T\left(1-e^{*} e\right)
$$

Notation

$$
T_{\lambda}(e)=\{x \in T:[e, e, x]+[x, e, e]=\lambda x\} \quad(\lambda=0,1,2)
$$

$$
T_{2}(e)=e e^{*} T e^{*} e
$$

$$
\begin{gathered}
T_{1}(e)=\left(1-e e^{*}\right) T e^{*} e+e e^{*} T\left(1-e^{*} e\right) \\
T_{0}(e)=\left(1-e e^{*}\right) T\left(1-e^{*} e\right)
\end{gathered}
$$

$T_{2}(e)$ "is" a C^{*}-algebra (with product $x \cdot y=[x, e, y]$).
But like projections in C^{*}-algebras, in general $\nexists e \in T \backslash\{0\}$

Peirce spaces for $e \in T$

$$
T=e e^{*} T e^{*} e+\left(\left(1-e e^{*}\right) T e^{*} e+e e^{*} T\left(1-e^{*} e\right)\right)+\left(1-e e^{*}\right) T\left(1-e^{*} e\right)
$$

Notation

$$
T_{\lambda}(e)=\{x \in T:[e, e, x]+[x, e, e]=\lambda x\} \quad(\lambda=0,1,2)
$$

$$
T_{2}(e)=e e^{*} T e^{*} e
$$

$$
\begin{gathered}
T_{1}(e)=\left(1-e e^{*}\right) T e^{*} e+e e^{*} T\left(1-e^{*} e\right) \\
T_{0}(e)=\left(1-e e^{*}\right) T\left(1-e^{*} e\right)
\end{gathered}
$$

$T_{2}(e)$ "is" a C^{*}-algebra (with product $x \cdot y=[x, e, y]$).
But like projections in C^{*}-algebras, in general $\nexists e \in T \backslash\{0\}$

Peirce spaces for $e \in T$

$$
T=e e^{*} T e^{*} e+\left(\left(1-e e^{*}\right) T e^{*} e+e e^{*} T\left(1-e^{*} e\right)\right)+\left(1-e e^{*}\right) T\left(1-e^{*} e\right)
$$

Notation

$$
T_{\lambda}(e)=\{x \in T:[e, e, x]+[x, e, e]=\lambda x\} \quad(\lambda=0,1,2)
$$

$$
\begin{gathered}
T_{2}(e)=e e^{*} T e^{*} e \\
T_{1}(e)=\left(1-e e^{*}\right) T e^{*} e+e e^{*} T\left(1-e^{*} e\right) \\
T_{0}(e)=\left(1-e e^{*}\right) T\left(1-e^{*} e\right)
\end{gathered}
$$

$T_{2}(e)$ "is" a C^{*}-algebra (with product $x \cdot y=[x, e, y]$).
But like projections in C^{*}-algebras, in general $\nexists e \in T \backslash\{0\}$.

Weak*-closed TROs and biduals

If we consider TROs $U \in \mathcal{B}(\mathcal{H})$ that are weak*-closed (or are Banach dual spaces), all extreme points of the unit ball are tripotents.

Weak*-closed 'ideals' $I \subseteq U$ are in 1-1 correspondence with projections $z \in Z\left(\overline{R_{11}}\right)$ via $I=U z$.

```
Definition
A M/*_TRO U is called a left TRO if U is TRO isomorphic to Wp
for p = p*}=\mp@subsup{p}{}{2}\inW,W\mathrm{ a W*-algebra
U}\mathrm{ is called square if }U\cong
U square-free if }\not\existsI\subseteqU\mathrm{ with I}\not={0}\mathrm{ square.
```


Weak*-closed TROs and biduals

If we consider TROs $U \in \mathcal{B}(\mathcal{H})$ that are weak*-closed (or are Banach dual spaces), all extreme points of the unit ball are tripotents.
Bidual or weak* closure of T can be U.

Weak*-closed 'ideals' $I \subseteq U$ are in 1-1 correspondence with projections $z \in Z\left(\overline{\mathscr{R}_{11}}\right)$ via $I=U z$.

```
Definition
A M/*_TRO U is called a left TRO if U is TRO isomorphic to WP
for }p=\mp@subsup{p}{}{*}=\mp@subsup{p}{}{2}\inW,W\mathrm{ a W*-algebra
U}\mathrm{ is called square if }U\cong
U square-free if }\not\existsI\subseteqU\mathrm{ with I }\not={0}\mathrm{ square.
```


Weak*-closed TROs and biduals

If we consider TROs $U \in \mathcal{B}(\mathcal{H})$ that are weak*-closed (or are Banach dual spaces), all extreme points of the unit ball are tripotents.
Bidual or weak* closure of T can be U. Use $\overline{\mathscr{L}_{U}}=\overline{\operatorname{span}\left\{x y^{*}: x, y \in U\right\}}{ }^{w^{*}}, \overline{\mathscr{R}_{U}}$ and $\left(\begin{array}{ll}\overline{L_{U}} & U \\ U^{*} & \mathscr{R}_{U}\end{array}\right) \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$

Weak*-closed 'ideals' $I \subseteq U$ are in 1-1 correspondence with projections $z \in Z\left(\overline{\mathscr{R}_{11}}\right)$ via $I=U z$.

```
Definition
A M/*_TRO U is called a left TRO if U is TRO isomorphic to Wp
for }p=\mp@subsup{p}{}{*}=\mp@subsup{p}{}{2}\inW,W\mathrm{ a W*-algebra
U}\mathrm{ is called square if }U\cong
U square-free if }\not\existsI\subseteqU\mathrm{ with I 
```


Weak*-closed TROs and biduals

If we consider TROs $U \in \mathcal{B}(\mathcal{H})$ that are weak*-closed (or are Banach dual spaces), all extreme points of the unit ball are tripotents.
Bidual or weak* closure of T can be U. Use $\overline{\mathscr{L}_{U}}=\overline{\operatorname{span}\left\{x y^{*}: x, y \in U\right\}}{ }^{w^{*}}, \overline{\mathscr{R}_{U}}$ and
$\left(\begin{array}{ll}\overline{L_{U}} & U \\ U^{*} & \mathscr{R}_{U}\end{array}\right) \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$

Proposition (Zettl)

Weak*-closed 'ideals' $I \subseteq U$ are in 1-1 correspondence with projections $z \in Z\left(\overline{\mathscr{R}_{U}}\right)$ via $I=U z$.

```
Definition
A W*_TRO U is called a left TRO if U is TRO isomorphic to Wp
for }p=\mp@subsup{p}{}{*}=\mp@subsup{p}{}{2}\inW,W\mathrm{ a }\mp@subsup{W}{}{*}\mathrm{ -algebra
U}\mathrm{ is called square if }U\cong
U square-free if }\not\existsI\subseteqU\mathrm{ with I }\not={0}\mathrm{ square.
```


Weak*-closed TROs and biduals

If we consider TROs $U \in \mathcal{B}(\mathcal{H})$ that are weak*-closed (or are Banach dual spaces), all extreme points of the unit ball are tripotents.
Bidual or weak* closure of T can be U. Use $\overline{\mathscr{L}_{U}}=\overline{\operatorname{span}\left\{x y^{*}: x, y \in U\right\}}{ }^{w^{*}}, \overline{\mathscr{R}_{U}}$ and
$\left(\begin{array}{ll}\overline{\mathscr{L}_{U}} & U \\ U^{*} & \mathscr{R}_{U}\end{array}\right) \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$

Proposition (Zettl)

Weak*-closed 'ideals' $I \subseteq U$ are in 1-1 correspondence with projections $z \in Z\left(\overline{\mathscr{R}_{U}}\right)$ via $I=U z$.

Definition

A W^{*}-TRO U is called a left TRO if U is TRO isomorphic to $W p$ for $p=p^{*}=p^{2} \in W, W$ a W^{*}-algebra.

Weak*-closed TROs and biduals

If we consider TROs $U \in \mathcal{B}(\mathcal{H})$ that are weak*-closed (or are Banach dual spaces), all extreme points of the unit ball are tripotents.
Bidual or weak* closure of T can be U. Use $\overline{\mathscr{L}_{U}}=\overline{\operatorname{span}\left\{x y^{*}: x, y \in U\right\}}{ }^{w^{*}}, \overline{\mathscr{R}_{U}}$ and
$\left(\begin{array}{ll}\overline{\mathscr{L}_{U}} & U \\ U^{*} & \mathscr{R}_{U}\end{array}\right) \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$

Proposition (Zettl)

Weak*-closed 'ideals' $I \subseteq U$ are in 1-1 correspondence with projections $z \in Z\left(\overline{\mathscr{R}_{U}}\right)$ via $I=U z$.

Definition

A $W^{*}-$ TRO U is called a left TRO if U is TRO isomorphic to $W p$ for $p=p^{*}=p^{2} \in W, W$ a W^{*}-algebra.
U is called square if $U \cong W$.

Weak*-closed TROs and biduals

If we consider TROs $U \in \mathcal{B}(\mathcal{H})$ that are weak*-closed (or are Banach dual spaces), all extreme points of the unit ball are tripotents.
Bidual or weak* closure of T can be U. Use $\overline{\mathscr{L}_{U}}=\overline{\operatorname{span}\left\{x y^{*}: x, y \in U\right\}}{ }^{w^{*}}, \overline{\mathscr{R}_{U}}$ and
$\left(\begin{array}{ll}\overline{L_{U}} & U \\ U^{*} & \mathscr{R}_{U}\end{array}\right) \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$

Proposition (Zettl)

Weak*-closed 'ideals' $I \subseteq U$ are in 1-1 correspondence with projections $z \in Z\left(\overline{\mathscr{R}_{U}}\right)$ via $I=U z$.

Definition

A W^{*}-TRO U is called a left TRO if U is TRO isomorphic to $W p$ for $p=p^{*}=p^{2} \in W, W$ a W^{*}-algebra.
U is called square if $U \cong W$.
U square-free if $\nexists I \subseteq U$ with $I \neq\{0\}$ square.

Left/right/square decomposition

Theorem
U a W^{*}-TRO implies

$$
U=U_{1} \oplus U_{\mathrm{r}} \oplus U_{\mathrm{s}}
$$

with $U_{\mathrm{l}} / U_{\mathrm{r}} / U_{\mathrm{s}}$ the largest square-free left/ square-free right/ square weak*-closed ideals of U.

Example

For $p \in \mathcal{B}(\mathcal{H})$ a projection $(p \neq 0), U=\mathcal{B}(\mathcal{H}) p$ is a left TRO $\overline{\mathscr{L}_{U}}=\mathcal{B}(\mathcal{H})$, no non-trivial (weak*-closed) ideals, square-free if $\operatorname{dim} p(\mathcal{H})<\operatorname{dim} \mathcal{H}$. For p rank one, $U=\mathcal{B}(\mathcal{H}) p$ is a left TRO, isometric to \mathcal{H} as a Banach space, square-free if $\operatorname{dim} \mathcal{H}>1$. (Column Hilbert space.)

Left/right/square decomposition

Theorem

U a W^{*}-TRO implies

$$
U=U_{1} \oplus U_{\mathrm{r}} \oplus U_{\mathrm{s}}
$$

with $U_{\mathrm{l}} / U_{\mathrm{r}} / U_{\mathrm{s}}$ the largest square-free left/ square-free right/ square weak*-closed ideals of U.

Example

For $p \in \mathcal{B}(\mathcal{H})$ a projection $(p \neq 0), U=\mathcal{B}(\mathcal{H}) p$ is a left TRO, $\overline{\mathscr{L}_{U}}=\mathcal{B}(\mathcal{H})$, no non-trivial (weak*-closed) ideals, square-free if $\operatorname{dim} p(\mathcal{H})<\operatorname{dim} \mathcal{H}$.
For p rank one, $U=\mathcal{B}(\mathcal{H}) p$ is a left $T R O$, isometric to \mathcal{H} as a Banach space, square-free if $\operatorname{dim} \mathcal{H}>1$. (Column Hilbert space.)

Left/right/square decomposition

Theorem

U a W^{*}-TRO implies

$$
U=U_{1} \oplus U_{\mathrm{r}} \oplus U_{\mathrm{s}}
$$

with $U_{\mathrm{l}} / U_{\mathrm{r}} / U_{\mathrm{s}}$ the largest square-free left/ square-free right/ square weak*-closed ideals of U.

Example

For $p \in \mathcal{B}(\mathcal{H})$ a projection $(p \neq 0), U=\mathcal{B}(\mathcal{H}) p$ is a left TRO, $\overline{\mathscr{L}_{U}}=\mathcal{B}(\mathcal{H})$, no non-trivial (weak*-closed) ideals, square-free if $\operatorname{dim} p(\mathcal{H})<\operatorname{dim} \mathcal{H}$.
For p rank one, $U=\mathcal{B}(\mathcal{H}) p$ is a left TRO, isometric to \mathcal{H} as a Banach space, square-free if $\operatorname{dim} \mathcal{H}>1$.

Left/right/square decomposition

Theorem

U a W^{*}-TRO implies

$$
U=U_{1} \oplus U_{\mathrm{r}} \oplus U_{\mathrm{s}}
$$

with $U_{\mathrm{l}} / U_{\mathrm{r}} / U_{\mathrm{s}}$ the largest square-free left/ square-free right/ square weak*-closed ideals of U.

Example

For $p \in \mathcal{B}(\mathcal{H})$ a projection $(p \neq 0), U=\mathcal{B}(\mathcal{H}) p$ is a left TRO, $\overline{\mathscr{L}_{U}}=\mathcal{B}(\mathcal{H})$, no non-trivial (weak*-closed) ideals, square-free if $\operatorname{dim} p(\mathcal{H})<\operatorname{dim} \mathcal{H}$.
For p rank one, $U=\mathcal{B}(\mathcal{H}) p$ is a left TRO, isometric to \mathcal{H} as a Banach space, square-free if $\operatorname{dim} \mathcal{H}>1$. (Column Hilbert space.)

Involutions and fixed points

Definition

An involution of a C^{*}-algebra A is $\Phi: A \rightarrow A$ such that Φ is \mathbb{C}-linear, $\Phi(\Phi(a))=a, \Phi(a b)=\Phi(b) \Phi(a)$, and $\Phi\left(a^{*}\right)=\Phi(a)^{*}$

Definition

A ternary involution of a TRO T is $\phi: T \rightarrow T \mathbb{C}$-linear, $\phi(\phi(a))=a, \phi[a, b, c]=[\phi(c), \phi(b), \phi(a)]$ (or $\left.\phi\left(a b^{*} c\right)=\phi(c)(\phi(b))^{*} \phi(a)\right)$

Fixed points $T^{\phi}=\{x \in T: \phi(x)=x\}=\{x+\phi(x): x \in T\}$ A^{Φ} will be a (closed) Jordan *-algebra of operators (JC*-algebra) T^{ϕ} will be a $J C^{*}$-triple: closed under Jordan triple product

$$
\{a, b, c\} \stackrel{\text { def }}{=}([a, b, c]+[c, b, a]) / 2=\left(a b^{*} c+c b^{*} a\right) / 2
$$

In fact T^{ϕ} is reversible:

Involutions and fixed points

Definition

An involution of a C^{*}-algebra A is $\Phi: A \rightarrow A$ such that Φ is \mathbb{C}-linear, $\Phi(\Phi(a))=a, \Phi(a b)=\Phi(b) \Phi(a)$, and $\Phi\left(a^{*}\right)=\Phi(a)^{*}$

Definition

A ternary involution of a TRO T is $\phi: T \rightarrow T \mathbb{C}$-linear, $\phi(\phi(a))=a, \phi[a, b, c]=[\phi(c), \phi(b), \phi(a)]$ (or $\left.\phi\left(a b^{*} c\right)=\phi(c)(\phi(b))^{*} \phi(a)\right)$.
A^{Φ} will be a (closed) Jordan *-algebra of operators (JC*-algebra) T^{ϕ} will be a $J C^{*}$-triple: closed under Jordan triple product

$$
\{a, b, c\} \stackrel{\text { def }}{=}([a, b, c]+[c, b, a]) / 2=\left(a b^{*} c+c b^{*} a\right) / 2
$$

In fact T^{ϕ} is reversible:

Involutions and fixed points

Definition

An involution of a C^{*}-algebra A is $\Phi: A \rightarrow A$ such that Φ is \mathbb{C}-linear, $\Phi(\Phi(a))=a, \Phi(a b)=\Phi(b) \Phi(a)$, and $\Phi\left(a^{*}\right)=\Phi(a)^{*}$

Definition

A ternary involution of a TRO T is $\phi: T \rightarrow T \mathbb{C}$-linear, $\phi(\phi(a))=a, \phi[a, b, c]=[\phi(c), \phi(b), \phi(a)]$ (or $\left.\phi\left(a b^{*} c\right)=\phi(c)(\phi(b))^{*} \phi(a)\right)$.

Fixed points $T^{\phi}=\{x \in T: \phi(x)=x\}=\{x+\phi(x): x \in T\}$.
A^{ϕ} will be a (closed) Jordan *-algebra of operators (JC*-algebra)
will be a $J C^{*}$-triple: closed under Jordan triple product

$$
\{a, b, c\} \stackrel{\text { def }}{=}([a, b, c]+[c, b, a]) / 2=\left(a b^{*} c+c b^{*} a\right) / 2
$$

In fact T^{ϕ} is reversible:

Involutions and fixed points

Definition

An involution of a C^{*}-algebra A is $\Phi: A \rightarrow A$ such that Φ is \mathbb{C}-linear, $\Phi(\Phi(a))=a, \Phi(a b)=\Phi(b) \Phi(a)$, and $\Phi\left(a^{*}\right)=\Phi(a)^{*}$

Definition

A ternary involution of a TRO T is $\phi: T \rightarrow T \mathbb{C}$-linear, $\phi(\phi(a))=a, \phi[a, b, c]=[\phi(c), \phi(b), \phi(a)]$ (or $\left.\phi\left(a b^{*} c\right)=\phi(c)(\phi(b))^{*} \phi(a)\right)$.

Fixed points $T^{\phi}=\{x \in T: \phi(x)=x\}=\{x+\phi(x): x \in T\}$. A^{Φ} will be a (closed) Jordan *-algebra of operators (JC*-algebra).
will be a $J C^{*}$-triple: closed under Jordan triple product

In fact T^{ϕ} is reversible:

Involutions and fixed points

Definition

An involution of a C^{*}-algebra A is $\Phi: A \rightarrow A$ such that Φ is \mathbb{C}-linear, $\Phi(\Phi(a))=a, \Phi(a b)=\Phi(b) \Phi(a)$, and $\Phi\left(a^{*}\right)=\Phi(a)^{*}$

Definition

A ternary involution of a TRO T is $\phi: T \rightarrow T \mathbb{C}$-linear, $\phi(\phi(a))=a, \phi[a, b, c]=[\phi(c), \phi(b), \phi(a)]$ (or $\left.\phi\left(a b^{*} c\right)=\phi(c)(\phi(b))^{*} \phi(a)\right)$.

Fixed points $T^{\phi}=\{x \in T: \phi(x)=x\}=\{x+\phi(x): x \in T\}$. A^{Φ} will be a (closed) Jordan *-algebra of operators (JC*-algebra).
T^{ϕ} will be a $J C^{*}$-triple: closed under Jordan triple product

$$
\{a, b, c\} \stackrel{\text { def }}{=}([a, b, c]+[c, b, a]) / 2=\left(a b^{*} c+c b^{*} a\right) / 2
$$

In fact T^{ϕ} is reversible:

Involutions and fixed points

Definition

An involution of a C^{*}-algebra A is $\Phi: A \rightarrow A$ such that Φ is \mathbb{C}-linear, $\Phi(\Phi(a))=a, \Phi(a b)=\Phi(b) \Phi(a)$, and $\Phi\left(a^{*}\right)=\Phi(a)^{*}$

Definition

A ternary involution of a TRO T is $\phi: T \rightarrow T \mathbb{C}$-linear, $\phi(\phi(a))=a, \phi[a, b, c]=[\phi(c), \phi(b), \phi(a)]$ (or $\left.\phi\left(a b^{*} c\right)=\phi(c)(\phi(b))^{*} \phi(a)\right)$.

Fixed points $T^{\phi}=\{x \in T: \phi(x)=x\}=\{x+\phi(x): x \in T\}$. A^{Φ} will be a (closed) Jordan *-algebra of operators (JC*-algebra).
T^{ϕ} will be a $J C^{*}$-triple: closed under Jordan triple product

$$
\{a, b, c\} \stackrel{\text { def }}{=}([a, b, c]+[c, b, a]) / 2=\left(a b^{*} c+c b^{*} a\right) / 2
$$

In fact T^{ϕ} is reversible:

$$
x_{1} x_{2}^{*} x_{3} \cdots x_{2 n}^{*} x_{2 n+1}+x_{2 n+1} x_{2 n}^{*} \cdots x_{3} x_{2}^{*} x_{1} \in T^{\phi}
$$

Which JC*-triples?

Definition

A $J C^{*}$-triple is a closed linear $E \subseteq \mathcal{B}(\mathcal{H})$ such that

$$
a, b, c \in E \Rightarrow\{a, b, c\}=([a, b, c]+[c, b, a]) / 2 \in E
$$

Examples

$E=T$ or $E=T^{\phi}\left(e . g\right.$. with $T=\mathbb{M}_{n}(\mathbb{C}), \phi(x)=x^{t}$ or
$\left.\phi(x)=-x^{t}\right)$.
We consider 'concrete' JC*-triples E and F the 'same' if \exists Jordan triple isomorphism $\psi: E \rightarrow F(\Longleftrightarrow \psi$ an isometry $)$

Which $J C^{*}$-triples?

Definition

A $J C^{*}$-triple is a closed linear $E \subseteq \mathcal{B}(\mathcal{H})$ such that

$$
a, b, c \in E \Rightarrow\{a, b, c\}=([a, b, c]+[c, b, a]) / 2 \in E
$$

Examples

$E=T$ or $E=T^{\phi}\left(\right.$ e.g. with $T=\mathbb{M}_{n}(\mathbb{C}), \phi(x)=x^{t}$ or $\left.\phi(x)=-x^{t}\right)$.

We consider 'concrete' JC*-triples E and F the 'same' if \exists Jordan triple isomorphism $\psi: E \rightarrow F(\Longleftrightarrow \psi$ an isometry $)$

Which $J C^{*}$-triples?

Definition

A $J C^{*}$-triple is a closed linear $E \subseteq \mathcal{B}(\mathcal{H})$ such that

$$
a, b, c \in E \Rightarrow\{a, b, c\}=([a, b, c]+[c, b, a]) / 2 \in E
$$

Examples

$E=T$ or $E=T^{\phi}$ (e.g. with $T=\mathbb{M}_{n}(\mathbb{C}), \phi(x)=x^{t}$ or $\left.\phi(x)=-x^{t}\right)$.

We consider 'concrete' $J C^{*}$-triples E and F the 'same' if \exists Jordan triple isomorphism $\psi: E \rightarrow F$ an isometry)

Which $J C^{*}$-triples?

Definition

A $J C^{*}$-triple is a closed linear $E \subseteq \mathcal{B}(\mathcal{H})$ such that

$$
a, b, c \in E \Rightarrow\{a, b, c\}=([a, b, c]+[c, b, a]) / 2 \in E
$$

Examples

$E=T$ or $E=T^{\phi}$ (e.g. with $T=\mathbb{M}_{n}(\mathbb{C}), \phi(x)=x^{t}$ or $\left.\phi(x)=-x^{t}\right)$.

We consider 'concrete' $J C^{*}$-triples E and F the 'same' if \exists Jordan triple isomorphism $\psi: E \rightarrow F(\Longleftrightarrow \psi$ an isometry $)$.

On $J C^{*}$-triples

Recall: A $J C^{*}$-triple is a closed linear $E \subseteq \mathcal{B}(\mathcal{H})$ such that

$$
a, b, c \in E \Rightarrow\{a, b, c\}=\left(a b^{*} c+c b^{*} a\right) / 2 \in E
$$

Relate to isometric theory of Banach spaces (since triple homomorphisms $\pi: E \rightarrow F \subseteq \mathcal{B}(\mathcal{K})$ are contractive).
$(E,\{\cdot, \cdot, \cdot\})$ abstract triple has no canonical op. space structure.
Neal \& Russo found that for many E, there are only a few.

Example

TROs T give rise to at least 3 obvious concrete JC*-triples:
$E=T, E=T^{\mathrm{op}}$ and $E=\left\{x \oplus x^{\mathrm{op}}: x \in T\right\} \subseteq T \oplus T^{\mathrm{op}}$
These examples are reversible. In latter case $E=\left(T \oplus T^{\text {op }}\right)^{\phi}$ where $\phi\left(x \oplus y^{\circ \mathrm{p}}\right)=y \oplus x^{\mathrm{op}}$.

On $J C^{*}$-triples

Recall: A $J C^{*}$-triple is a closed linear $E \subseteq \mathcal{B}(\mathcal{H})$ such that

$$
a, b, c \in E \Rightarrow\{a, b, c\}=\left(a b^{*} c+c b^{*} a\right) / 2 \in E
$$

Relate to isometric theory of Banach spaces (since triple homomorphisms $\pi: E \rightarrow F \subseteq \mathcal{B}(\mathcal{K})$ are contractive).
($E,\{\cdot, \cdot, \cdot\}$) abstract triple has no canonical op. space structure.
Neal \& Russo found that for many E, there are only a few.
Example
TROs T give rise to at least 3 obvious concrete JC*-triples:
$E=T, E=T^{\mathrm{op}}$ and $E=\left\{x \oplus x^{\mathrm{op}}: x \in T\right\} \subseteq T \oplus T^{\mathrm{op}}$
These examples are reversible. In latter case $E=\left(T \oplus T^{\circ p}\right)^{\phi}$ where $\phi\left(x \oplus y^{\mathrm{op}}\right)=y \oplus x^{\mathrm{op}}$.

On $J C^{*}$-triples

Recall: A $J C^{*}$-triple is a closed linear $E \subseteq \mathcal{B}(\mathcal{H})$ such that

$$
a, b, c \in E \Rightarrow\{a, b, c\}=\left(a b^{*} c+c b^{*} a\right) / 2 \in E
$$

Relate to isometric theory of Banach spaces (since triple homomorphisms $\pi: E \rightarrow F \subseteq \mathcal{B}(\mathcal{K})$ are contractive).
$(E,\{\cdot, \cdot, \cdot\})$ abstract triple has no canonical op. space structure.
Neal \& Russo found that for many E, there are only a few.
Example
TROs T give rise to at least 3 obvious concrete JC*-triples:
$E=T, E=T^{\mathrm{op}}$ and $E=\left\{x \oplus x^{\mathrm{op}}: x \in T\right\} \subseteq T \oplus T^{\mathrm{op}}$
These examples are reversible. In latter case $E=\left(T \oplus T^{\mathrm{op}}\right)^{\phi}$ where $\phi\left(x \oplus y^{\mathrm{op}}\right)=y \oplus x^{\mathrm{op}}$.

On $J C^{*}$-triples

Recall: A $J C^{*}$-triple is a closed linear $E \subseteq \mathcal{B}(\mathcal{H})$ such that

$$
a, b, c \in E \Rightarrow\{a, b, c\}=\left(a b^{*} c+c b^{*} a\right) / 2 \in E
$$

Relate to isometric theory of Banach spaces (since triple homomorphisms $\pi: E \rightarrow F \subseteq \mathcal{B}(\mathcal{K})$ are contractive).
$(E,\{\cdot, \cdot, \cdot\})$ abstract triple has no canonical op. space structure.
Neal \& Russo found that for many E, there are only a few.
\square
These examples are reversible. In latter case $E=\left(T \oplus T^{\mathrm{op}}\right)^{\phi}$ where $\phi\left(x \oplus y^{\mathrm{op}}\right)=y \oplus x^{\mathrm{op}}$

On $J C^{*}$-triples

Recall: A $J C^{*}$-triple is a closed linear $E \subseteq \mathcal{B}(\mathcal{H})$ such that

$$
a, b, c \in E \Rightarrow\{a, b, c\}=\left(a b^{*} c+c b^{*} a\right) / 2 \in E
$$

Relate to isometric theory of Banach spaces (since triple homomorphisms $\pi: E \rightarrow F \subseteq \mathcal{B}(\mathcal{K})$ are contractive).
$(E,\{\cdot, \cdot, \cdot\})$ abstract triple has no canonical op. space structure.
Neal \& Russo found that for many E, there are only a few.

Example

TROs T give rise to at least 3 obvious concrete $J C^{*}$-triples:

These examples are reversible. In latter case $E=\left(T \oplus T^{\circ p}\right)^{C}$ where $\phi\left(x \oplus y^{\mathrm{op}}\right)=y \oplus x^{\mathrm{op}}$.

On $J C^{*}$-triples

Recall: A $J C^{*}$-triple is a closed linear $E \subseteq \mathcal{B}(\mathcal{H})$ such that

$$
a, b, c \in E \Rightarrow\{a, b, c\}=\left(a b^{*} c+c b^{*} a\right) / 2 \in E
$$

Relate to isometric theory of Banach spaces (since triple homomorphisms $\pi: E \rightarrow F \subseteq \mathcal{B}(\mathcal{K})$ are contractive).
$(E,\{\cdot, \cdot, \cdot\})$ abstract triple has no canonical op. space structure.
Neal \& Russo found that for many E, there are only a few.

Example

TROs T give rise to at least 3 obvious concrete $J C^{*}$-triples: $E=T, E=T^{\mathrm{op}}$ and $E=\left\{x \oplus x^{\mathrm{op}}: x \in T\right\} \subseteq T \oplus T^{\mathrm{op}}$

These examples are reversible. In latter case $E=\left(T \oplus T^{\circ p}\right)^{q}$ where $\phi\left(x \oplus y^{\mathrm{op}}\right)=y \oplus x^{\mathrm{op}}$.

On $J C^{*}$-triples

Recall: A $J C^{*}$-triple is a closed linear $E \subseteq \mathcal{B}(\mathcal{H})$ such that

$$
a, b, c \in E \Rightarrow\{a, b, c\}=\left(a b^{*} c+c b^{*} a\right) / 2 \in E
$$

Relate to isometric theory of Banach spaces (since triple homomorphisms $\pi: E \rightarrow F \subseteq \mathcal{B}(\mathcal{K})$ are contractive).
$(E,\{\cdot, \cdot, \cdot\})$ abstract triple has no canonical op. space structure.
Neal \& Russo found that for many E, there are only a few.

Example

TROs T give rise to at least 3 obvious concrete $J C^{*}$-triples: $E=T, E=T^{\mathrm{op}}$ and $E=\left\{x \oplus x^{\mathrm{op}}: x \in T\right\} \subseteq T \oplus T^{\mathrm{op}}$

These examples are reversible. In latter case $E=\left(T \oplus T^{\mathrm{op}}\right)^{\phi}$ where $\phi\left(x \oplus y^{\mathrm{op}}\right)=y \oplus x^{\mathrm{op}}$.

Universal property of $T^{*}(E)$

Theorem (Bunce, Feely, T (Math. Zeit. 2011))
 For each $J C^{*}$-triple E there is a largest $T R O T^{*}(E)$ generated by (triple isomorphic copies of) E

Definition

A $I C^{*}$-trinle E is called universally reversible if $\pi(E)$ is reversible for each triple hom $\pi: E \rightarrow \mathcal{B}(\mathcal{K})$
\exists canonical ternary involution $\phi_{E}: T^{*}(E) \rightarrow T^{*}(E)$ fixing $\alpha_{E}(E)$ E is UR \qquad $\alpha_{E}(E)$ reversible

Universal property of $T^{*}(E)$

Theorem (Bunce, Feely, T (Math. Zeit. 2011))
For each $J C^{*}$-triple E there is a largest $T R O T^{*}(E)$ generated by (triple isomorphic copies of) E

Definition
A JC*-triple E is called universally reversible if $\pi(E)$ is reversible for each triple hom $\pi: E \rightarrow \mathcal{B}(\mathcal{K})$
\exists canonical ternary involution $\phi_{E}: T^{*}(E) \rightarrow T^{*}(E)$ fixing $\alpha_{E}(E)$. E is UR \qquad $\alpha_{E}(E)$ reversible

Universal property of $T^{*}(E)$

Theorem (Bunce, Feely, T (Math. Zeit. 2011))
For each $J C^{*}$-triple E there is a largest $\operatorname{TRO} T^{*}(E)$ generated by (triple isomorphic copies of) E

Definition

A $J C^{*}$-triple E is called universally reversible if $\pi(E)$ is reversible for each triple hom $\pi: E \rightarrow \mathcal{B}(\mathcal{K})$.

Universal property of $T^{*}(E)$

Theorem (Bunce, Feely, T (Math. Zeit. 2011))
For each JC*-triple E there is a largest $\operatorname{TRO} T^{*}(E)$ generated by (triple isomorphic copies of) E

Definition

A $J C^{*}$-triple E is called universally reversible if $\pi(E)$ is reversible for each triple hom $\pi: E \rightarrow \mathcal{B}(\mathcal{K})$.
\exists canonical ternary involution $\phi_{E}: T^{*}(E) \rightarrow T^{*}(E)$ fixing $\alpha_{E}(E)$.

Universal property of $T^{*}(E)$

Theorem (Bunce, Feely, T (Math. Zeit. 2011))

For each $J C^{*}$-triple E there is a largest $\operatorname{TRO} T^{*}(E)$ generated by (triple isomorphic copies of) E

Definition

A $J C^{*}$-triple E is called universally reversible if $\pi(E)$ is reversible for each triple hom $\pi: E \rightarrow \mathcal{B}(\mathcal{K})$.
\exists canonical ternary involution $\phi_{E}: T^{*}(E) \rightarrow T^{*}(E)$ fixing $\alpha_{E}(E)$. E is UR $\Longleftrightarrow \alpha_{E}(E)$ reversible

Universal property of $T^{*}(E)$

Theorem (Bunce, Feely, T (Math. Zeit. 2011))

For each $J C^{*}$-triple E there is a largest $\operatorname{TRO} T^{*}(E)$ generated by (triple isomorphic copies of) E

Definition

A $J C^{*}$-triple E is called universally reversible if $\pi(E)$ is reversible for each triple hom $\pi: E \rightarrow \mathcal{B}(\mathcal{K})$.
\exists canonical ternary involution $\phi_{E}: T^{*}(E) \rightarrow T^{*}(E)$ fixing $\alpha_{E}(E)$.
E is UR $\Longleftrightarrow \alpha_{E}(E)$ reversible $\Longleftrightarrow E=\left(T^{*}(E)\right)^{\phi_{E}}$

Theorem
If $E=T$ a $T R O$, then E is universally reversible $\Longleftrightarrow \nexists T R O$ homs from T onto row or column Hilbert spaces of dimension ≥ 3. If \nexists on any dimension bar dimension 2,

Example

$E=\mathbb{M}_{n, m}(\mathbb{C}) \subset T^{*}(E)=\mathbb{M}_{n, m}(\mathbb{C}) \oplus \mathbb{M}_{m, n}(\mathbb{C})$ via $x \mapsto x \oplus x^{t}$ if $\min (n, m)>1$
In this case, given any $J C^{*}$-triple $F \subseteq \mathcal{B}(K)$ and a linear isometry $\pi: E \rightarrow F$

$$
T^{*}(E)=\mathbb{M}_{n, m} \oplus \mathbb{M}_{m, n}
$$

$\operatorname{TRO}(F) \cong T^{*}(E) / \operatorname{ker} \tilde{\pi}$ and only 3 valid $\operatorname{ker} \tilde{\pi}:\{0\},\{0\} \oplus \mathbb{M}_{m, n}$, $\mathbb{M}_{n, m} \oplus\{0\}$.

Theorem
If $E=T$ a $T R O$, then E is universally reversible $\Longleftrightarrow \nexists T R O$ homs from T onto row or column Hilbert spaces of dimension ≥ 3. If \nexists on any dimension bar dimension $2, T^{*}(E)=T \oplus T^{\mathrm{op}}$.

Theorem
If $E=T$ a $T R O$, then E is universally reversible $\Longleftrightarrow \nexists T R O$ homs from T onto row or column Hilbert spaces of dimension ≥ 3. If \nexists on any dimension bar dimension $2, T^{*}(E)=T \oplus T^{\mathrm{op}}$.

Example

$E=\mathbb{M}_{n, m}(\mathbb{C}) \subset T^{*}(E)=\mathbb{M}_{n, m}(\mathbb{C}) \oplus \mathbb{M}_{m, n}(\mathbb{C})$ via $x \mapsto x \oplus x^{t}$ if $\min (n, m)>1$.
In this case, given any $J C^{*}$-triple $F \subseteq \mathcal{B}(K)$ and a linear isometry
$\pi: E \rightarrow F$

$$
T^{*}(E)=\mathbb{M}_{n, m} \oplus \mathbb{M}_{m, n}
$$

$\operatorname{TRO}(F) \cong T^{*}(E) / \operatorname{ker} \tilde{\pi}$ and only 3 valid $\operatorname{ker} \tilde{\pi}:\{0\},\{0\} \oplus \mathbb{M}_{m, n}$,
$\mathbb{M}_{n, m} \oplus\{0\}$.

Theorem
If $E=T$ a $T R O$, then E is universally reversible $\Longleftrightarrow \nexists T R O$ homs from T onto row or column Hilbert spaces of dimension ≥ 3. If \nexists on any dimension bar dimension $2, T^{*}(E)=T \oplus T^{\mathrm{op}}$.

Example

$E=\mathbb{M}_{n, m}(\mathbb{C}) \subset T^{*}(E)=\mathbb{M}_{n, m}(\mathbb{C}) \oplus \mathbb{M}_{m, n}(\mathbb{C})$ via $x \mapsto x \oplus x^{t}$ if $\min (n, m)>1$.
In this case, given any $J C^{*}$-triple $F \subseteq \mathcal{B}(K)$ and a linear isometry $\pi: E \rightarrow F$

Theorem
If $E=T$ a $T R O$, then E is universally reversible $\Longleftrightarrow \nexists T R O$ homs from T onto row or column Hilbert spaces of dimension ≥ 3. If \nexists on any dimension bar dimension $2, T^{*}(E)=T \oplus T^{\mathrm{op}}$.

Example

$E=\mathbb{M}_{n, m}(\mathbb{C}) \subset T^{*}(E)=\mathbb{M}_{n, m}(\mathbb{C}) \oplus \mathbb{M}_{m, n}(\mathbb{C})$ via $x \mapsto x \oplus x^{t}$ if $\min (n, m)>1$.
In this case, given any $J C^{*}$-triple $F \subseteq \mathcal{B}(K)$ and a linear isometry $\pi: E \rightarrow F$

$$
T^{*}(E)=\mathbb{M}_{n, m} \oplus \mathbb{M}_{m, n}
$$

$\mathrm{TRO}(F) \cong T^{*}(E) / \operatorname{ker} \tilde{\pi}$ and only 3 valid $\operatorname{ker} \tilde{\pi}$

Theorem

If $E=T$ a $T R O$, then E is universally reversible $\Longleftrightarrow \nexists T R O$ homs from T onto row or column Hilbert spaces of dimension ≥ 3. If \nexists on any dimension bar dimension $2, T^{*}(E)=T \oplus T^{\mathrm{op}}$.

Example

$E=\mathbb{M}_{n, m}(\mathbb{C}) \subset T^{*}(E)=\mathbb{M}_{n, m}(\mathbb{C}) \oplus \mathbb{M}_{m, n}(\mathbb{C})$ via $x \mapsto x \oplus x^{t}$ if $\min (n, m)>1$.
In this case, given any $J C^{*}$-triple $F \subseteq \mathcal{B}(K)$ and a linear isometry $\pi: E \rightarrow F$

$$
T^{*}(E)=\mathbb{M}_{n, m} \oplus \mathbb{M}_{m, n}
$$

$\operatorname{TRO}(F) \cong T^{*}(E) / \operatorname{ker} \tilde{\pi}$ and only 3 valid $\operatorname{ker} \tilde{\pi}$

Theorem

If $E=T$ a $T R O$, then E is universally reversible $\Longleftrightarrow \nexists T R O$ homs from T onto row or column Hilbert spaces of dimension ≥ 3. If \nexists on any dimension bar dimension $2, T^{*}(E)=T \oplus T^{\mathrm{op}}$.

Example

$E=\mathbb{M}_{n, m}(\mathbb{C}) \subset T^{*}(E)=\mathbb{M}_{n, m}(\mathbb{C}) \oplus \mathbb{M}_{m, n}(\mathbb{C})$ via $x \mapsto x \oplus x^{t}$ if $\min (n, m)>1$.
In this case, given any $J C^{*}$-triple $F \subseteq \mathcal{B}(K)$ and a linear isometry $\pi: E \rightarrow F$

$$
T^{*}(E)=\mathbb{M}_{n, m} \oplus \mathbb{M}_{m, n}
$$

$\operatorname{TRO}(F) \cong T^{*}(E) / \operatorname{ker} \tilde{\pi}$ and only 3 valid $\operatorname{ker} \tilde{\pi}:\{0\},\{0\} \oplus \mathbb{M}_{m, n}$, $\mathbb{M}_{n, m} \oplus\{0\}$.

Theorem

If U is a $W^{*}-T R O, \phi$ a ternary involution of U, then $\phi\left(U_{s}\right)=U_{s}$, $\phi\left(U_{1}\right)=U_{r}, \phi\left(U_{r}\right)=U_{l}$,

$$
U^{\phi} \cong\left(U_{\mathrm{s}}\right)^{\phi} \oplus U_{\mathrm{r}}
$$

Note that if U is universally reversible, so are summands U_{1} and U_{r}. In fact U_{s} is always universally reversible. We can also pass easily from involutions ϕ of a TRO T to bidual

Theorem
If T is a TRO, T universally reversible as a $J C^{*}$-triple, ϕ a ternary involution of T, then T^{ϕ} is universally reversible unless there is ternary hom $\pi: T \rightarrow \mathbb{M}_{n}(\mathbb{C})$ with $n=3$ or 4 and
$\pi(\phi(x))=-(\pi(x))^{t}$

Theorem

If U is a $W^{*}-T R O, \phi$ a ternary involution of U, then $\phi\left(U_{s}\right)=U_{s}$, $\phi\left(U_{1}\right)=U_{r}, \phi\left(U_{r}\right)=U_{1}$,

$$
U^{\phi} \cong\left(U_{\mathrm{s}}\right)^{\phi} \oplus U_{\mathrm{r}}
$$

Note that if U is universally reversible, so are summands U_{1} and U_{r}. We can also pass easily from involutions ϕ of a TRO T to bidual
\square
If T is a TRO, T universally reversible as a $J C^{*}$-triple, ϕ a ternary
involution of T, then T^{ϕ} is universally reversible unless there is
ternary hom $\pi: T \rightarrow \mathbb{M}_{n}(\mathbb{C})$ with $n=3$ or 4 and
$\pi(\phi(x))=-(\pi(x))^{t}$

Theorem

If U is a $W^{*}-T R O, \phi$ a ternary involution of U, then $\phi\left(U_{s}\right)=U_{s}$, $\phi\left(U_{1}\right)=U_{r}, \phi\left(U_{r}\right)=U_{1}$,

$$
U^{\phi} \cong\left(U_{\mathrm{s}}\right)^{\phi} \oplus U_{\mathrm{r}}
$$

Note that if U is universally reversible, so are summands U_{1} and U_{r}. In fact U_{s} is always universally reversible.

We can also pass easily from involutions ϕ of a TRO T to bidual.

Theorem

If U is a $W^{*}-T R O, \phi$ a ternary involution of U, then $\phi\left(U_{s}\right)=U_{s}$, $\phi\left(U_{1}\right)=U_{r}, \phi\left(U_{r}\right)=U_{1}$,

$$
U^{\phi} \cong\left(U_{\mathrm{s}}\right)^{\phi} \oplus U_{\mathrm{r}}
$$

Note that if U is universally reversible, so are summands U_{1} and U_{r}. In fact U_{s} is always universally reversible. We can also pass easily from involutions ϕ of a TRO T to bidual.

Theorem

If U is a $W^{*}-T R O, \phi$ a ternary involution of U, then $\phi\left(U_{s}\right)=U_{s}$, $\phi\left(U_{1}\right)=U_{r}, \phi\left(U_{r}\right)=U_{1}$,

$$
U^{\phi} \cong\left(U_{\mathrm{s}}\right)^{\phi} \oplus U_{\mathrm{r}}
$$

Note that if U is universally reversible, so are summands U_{1} and U_{r}. In fact U_{s} is always universally reversible. We can also pass easily from involutions ϕ of a TRO T to bidual.

Theorem

If T is a $T R O, T$ universally reversible as a $J C^{*}$-triple, ϕ a ternary involution of T, then T^{ϕ} is universally reversible unless there is ternary hom $\pi: T \rightarrow \mathbb{M}_{n}(\mathbb{C})$ with $n=3$ or 4 and $\pi(\phi(x))=-(\pi(x))^{t}$.

Remark

(Conversely) If E is a universally reversible $J C^{*}$-triple, then $T=T^{*}(E)$ has a canonical involution ϕ with $E=T^{\phi}$ - and T must be universally reversible.

Proof depends on results charactierising universal reversibility of $J C^{*}$-triples in terms of 'factor' representations. There are 4 classes of (Cartan) factors:
(1) $E=\mathcal{B}(H, K)$ (or $E=\mathcal{B}(\mathcal{H}) p$ up to isometry)
(2) $E=\left\{x \in \mathcal{B}(\mathcal{H}): x^{t}=x\right\}(\operatorname{dim} H>1)$ $S_{\text {dim } H}$
(3) $A_{\operatorname{dim} H}=\left\{x \in \mathcal{B}(\mathcal{H}): x^{t}=-x\right\}, \operatorname{dim} H \geq 5$
(4) V_{n} spin factors, spanned by the identity and n 'spins' ($=$ anticommuting (selfadjoint) unitaries with square the identity). $(n \geq 2)$
All Cartan factor $J C^{*}$-triples are dual spaces.
A factor representation is $\pi: E \rightarrow C$, triple hom (for $\{\cdot, \cdot$,$\}) with$ weak*-dense range.

Remark

(Conversely) If E is a universally reversible $J C^{*}$-triple, then $T=T^{*}(E)$ has a canonical involution ϕ with $E=T^{\phi}$ - and T must be universally reversible.

> Proof depends on results charactierising universal reversibility of $J C^{*}$-triples in terms of 'factor' representations. There are 4 classes of (Cartan) factors: (1) $E=\mathcal{B}(H, K)($ or $E=\mathcal{B}(\mathcal{H}) p$ up to isometry) (2) $E=\left\{x \in \mathcal{B}(\mathcal{H}): x^{t}=x\right\}(\operatorname{dim} H>1)$ $S_{\text {dim } H}$
> (3) $A_{\mathrm{dim} H}=\{x \in \mathcal{B}(\mathcal{H})$ $\left.x^{t}=-x\right\}, \operatorname{dim} H \geq 5$
> - V_{n} spin factors, spanned by the identity and n 'spins' ($=$ anticommuting (selfadjoint) unitaries with square the identity). ($n \geq 2$)
> All Cartan factor JC*-triples are dual spaces.
> A factor representation is $\pi: E \rightarrow C$, triple hom (for $\{\cdot, \cdot, \cdot\}$) with weak*-dense range.

Remark

(Conversely) If E is a universally reversible $J C^{*}$-triple, then $T=T^{*}(E)$ has a canonical involution ϕ with $E=T^{\phi}$ - and T must be universally reversible.

Proof depends on results charactierising universal reversibility of $J C^{*}$-triples in terms of 'factor' representations.
(1) $E=\mathcal{B}(H, K)$ (or $E=\mathcal{B}(\mathcal{H}) p$ up to isometry)
(2) $E=\left\{x \in \mathcal{B}(\mathcal{H}): x^{t}=x\right\}(\operatorname{dim} H>1)$
(3) $A_{\operatorname{dim} H}=\{x \in \mathcal{B}(\mathcal{H})$
(V_{n} spin factors, spanned by the identity and n 'spins' (= anticommuting (selfadjoint) unitaries with square the identity). ($n \geq 2$)
All Cartan factor JC*-triples are dual spaces.
A factor representation is $\pi: E \rightarrow C$, triple hom (for $\{\cdot, \cdot, \cdot\}$) with weak*-dense range.

Remark

(Conversely) If E is a universally reversible $J C^{*}$-triple, then $T=T^{*}(E)$ has a canonical involution ϕ with $E=T^{\phi}$ - and T must be universally reversible.

Proof depends on results charactierising universal reversibility of $J C^{*}$-triples in terms of 'factor' representations.
There are 4 classes of (Cartan) factors:
(1) $E=\mathcal{B}(H, K)$ (or $E=\mathcal{B}(\mathcal{H}) p$ up to isometry)
 weak*-dense range.

Remark

(Conversely) If E is a universally reversible $J C^{*}$-triple, then $T=T^{*}(E)$ has a canonical involution ϕ with $E=T^{\phi}$ - and T must be universally reversible.

Proof depends on results charactierising universal reversibility of $J C^{*}$-triples in terms of 'factor' representations.
There are 4 classes of (Cartan) factors:
(1) $E=\mathcal{B}(H, K)$ (or $E=\mathcal{B}(\mathcal{H}) p$ up to isometry)
(2) $E=\left\{x \in \mathcal{B}(\mathcal{H}): x^{t}=x\right\}(\operatorname{dim} H>1)$

- V_{n} spin factors, spanned by the identity and n 'spins' (= anticommuting (selfadjoint) unitaries with square the identity). ($n \geq 2$)
All Cartan factor JC*-triples are dual spaces.
A factor representation is $\pi: E \rightarrow C$, triple hom (for $\{$

Remark

(Conversely) If E is a universally reversible $J C^{*}$-triple, then $T=T^{*}(E)$ has a canonical involution ϕ with $E=T^{\phi}$ - and T must be universally reversible.

Proof depends on results charactierising universal reversibility of $J C^{*}$-triples in terms of 'factor' representations.
There are 4 classes of (Cartan) factors:
(1) $E=\mathcal{B}(H, K)$ (or $E=\mathcal{B}(\mathcal{H}) p$ up to isometry)
(2) $E=\left\{x \in \mathcal{B}(\mathcal{H}): x^{t}=x\right\}(\operatorname{dim} H>1)$
$S_{\text {dim } H}$
(3) $A_{\operatorname{dim} H}=\left\{x \in \mathcal{B}(\mathcal{H}): x^{t}=-x\right\}, \operatorname{dim} H \geq 5$
(9) V_{n} spin factors, spanned by the identity and n 'spins' ($=$ anticommuting (selfadjoint) unitaries with square the identity). ($n \geq 2$)
All Cartan factor JC
A factor representat
weak*-dense range.
triples are dual spaces.

Remark

(Conversely) If E is a universally reversible $J C^{*}$-triple, then $T=T^{*}(E)$ has a canonical involution ϕ with $E=T^{\phi}$ - and T must be universally reversible.

Proof depends on results charactierising universal reversibility of $J C^{*}$-triples in terms of 'factor' representations.
There are 4 classes of (Cartan) factors:
(1) $E=\mathcal{B}(H, K)$ (or $E=\mathcal{B}(\mathcal{H}) p$ up to isometry)
(2) $E=\left\{x \in \mathcal{B}(\mathcal{H}): x^{t}=x\right\}(\operatorname{dim} H>1)$
$S_{\text {dim } H}$
(3) $A_{\operatorname{dim} H}=\left\{x \in \mathcal{B}(\mathcal{H}): x^{t}=-x\right\}, \operatorname{dim} H \geq 5$
(9) V_{n} spin factors, spanned by the identity and n 'spins' ($=$ anticommuting (selfadjoint) unitaries with square the identity). ($n \geq 2$)
All Cartan factor JC*-triples are dual spaces.
weak*-dense range.

Remark

(Conversely) If E is a universally reversible $J C^{*}$-triple, then $T=T^{*}(E)$ has a canonical involution ϕ with $E=T^{\phi}$ - and T must be universally reversible.

Proof depends on results charactierising universal reversibility of $J C^{*}$-triples in terms of 'factor' representations.
There are 4 classes of (Cartan) factors:
(1) $E=\mathcal{B}(H, K)$ (or $E=\mathcal{B}(\mathcal{H}) p$ up to isometry)
(2) $E=\left\{x \in \mathcal{B}(\mathcal{H}): x^{t}=x\right\}(\operatorname{dim} H>1)$
$S_{\text {dim } H}$
(3) $A_{\operatorname{dim} H}=\left\{x \in \mathcal{B}(\mathcal{H}): x^{t}=-x\right\}, \operatorname{dim} H \geq 5$
(9) V_{n} spin factors, spanned by the identity and n 'spins' ($=$ anticommuting (selfadjoint) unitaries with square the identity). ($n \geq 2$)
All Cartan factor JC*-triples are dual spaces.
A factor representation is $\pi: E \rightarrow C$, triple hom (for $\{\cdot, \cdot, \cdot\}$) with weak*-dense range.

Theorem (JLMS 2013)

If E is a JC*-triple, E universally reversible \Longleftrightarrow it has no factor representations onto Hilbert spaces of dimension ≥ 3 or V_{n} for $n \geq 4$.
If U is a JW^{*}-triple (dual space, or has a weak*-closed realisation in $\mathcal{B}(\mathcal{H})$), need only consider weak*-continuous representations onto factors.
E is univerally reversible $\Longleftrightarrow E^{* *}$ is.
 $U=(\operatorname{ker} \pi) \oplus_{\infty}(\operatorname{ker} \pi)^{\perp}$

Cartan factors contain minimal tripotents, ones where

has $\operatorname{dim} E_{2}(e)=1$

Corellary

Can rephrase using (factor) ideals in $E^{* *}$ generated by minimal
tripotents.
For $E=T$ a $T R O, V_{n}$ ruled out (restate).

Theorem (JLMS 2013)

If E is a JC*-triple, E universally reversible \Longleftrightarrow it has no factor representations onto Hilbert spaces of dimension ≥ 3 or V_{n} for $n \geq 4$.
If U is a JW**-triple (dual space, or has a weak*-closed realisation in $\mathcal{B}(\mathcal{H})$), need only consider weak*-continuous representations onto factors.

Cartan factors contain minimal tripotents, ones where

has $\operatorname{dim} E_{2}(e)=1$

Corollary

Can rephrase using (factor) ideals in $E^{* *}$ generated by minimal
tripotents.

Theorem (JLMS 2013)

If E is a JC*-triple, E universally reversible \Longleftrightarrow it has no factor representations onto Hilbert spaces of dimension ≥ 3 or V_{n} for $n \geq 4$.
If U is a JW**-triple (dual space, or has a weak*-closed realisation in $\mathcal{B}(\mathcal{H})$), need only consider weak*-continuous representations onto factors.
E is univerally reversible $\Longleftrightarrow E^{* *}$ is.
Cartan factors contain minimal tripotents, ones where

has $\operatorname{dim} E_{2}(e)=1$
\square
Can rephrase using (factor) ideals in $E^{* *}$ generated by minimal
trinotents

Theorem (JLMS 2013)

If E is a JC*-triple, E universally reversible \Longleftrightarrow it has no factor representations onto Hilbert spaces of dimension ≥ 3 or V_{n} for
$n \geq 4$.
If U is a JW^{*}-triple (dual space, or has a weak*-closed realisation in $\mathcal{B}(\mathcal{H})$), need only consider weak*-continuous representations onto factors.
E is univerally reversible $\Longleftrightarrow E^{* *}$ is.
Since $\pi: U \rightarrow C$ weak *-continuous has $\operatorname{ker} \pi$ a weak*-closed ideal, $U=(\operatorname{ker} \pi) \oplus_{\infty}(\operatorname{ker} \pi)^{\perp}$.

Cartan factors contain minimal tripotents, ones where
has $\operatorname{dim} E_{2}(e)=1$.
\square
tripotents.

Theorem (JLMS 2013)

If E is a JC*-triple, E universally reversible \Longleftrightarrow it has no factor representations onto Hilbert spaces of dimension ≥ 3 or V_{n} for $n \geq 4$.
If U is a JW^{*}-triple (dual space, or has a weak*-closed realisation in $\mathcal{B}(\mathcal{H})$), need only consider weak*-continuous representations onto factors.
E is univerally reversible $\Longleftrightarrow E^{* *}$ is.
Since $\pi: U \rightarrow C$ weak*-continuous has $\operatorname{ker} \pi$ a weak*-closed ideal, $U=(\operatorname{ker} \pi) \oplus_{\infty}(\operatorname{ker} \pi)^{\perp}$.

Cartan factors contain minimal tripotents, ones where

$$
E_{2}(e)=\left\{x \in E: 2\{e, e, x\}=e e^{*} x+x e^{*} e=2 x\right\}
$$

has $\operatorname{dim} E_{2}(e)=1$.

\square

Theorem (JLMS 2013)

If E is a JC*-triple, E universally reversible \Longleftrightarrow it has no factor representations onto Hilbert spaces of dimension ≥ 3 or V_{n} for $n \geq 4$.
If U is a JW^{*}-triple (dual space, or has a weak*-closed realisation in $\mathcal{B}(\mathcal{H})$), need only consider weak*-continuous representations onto factors.
E is univerally reversible $\Longleftrightarrow E^{* *}$ is.
Since $\pi: U \rightarrow C$ weak*-continuous has $\operatorname{ker} \pi$ a weak*-closed ideal, $U=(\operatorname{ker} \pi) \oplus_{\infty}(\operatorname{ker} \pi)^{\perp}$.

Cartan factors contain minimal tripotents, ones where

$$
E_{2}(e)=\left\{x \in E: 2\{e, e, x\}=e e^{*} x+x e^{*} e=2 x\right\}
$$

has $\operatorname{dim} E_{2}(e)=1$.

Corollary

Can rephrase using (factor) ideals in $E^{* *}$ generated by minimal tripotents.

Theorem (JLMS 2013)

If E is a JC*-triple, E universally reversible \Longleftrightarrow it has no factor representations onto Hilbert spaces of dimension ≥ 3 or V_{n} for $n \geq 4$.
If U is a JW^{*}-triple (dual space, or has a weak*-closed realisation in $\mathcal{B}(\mathcal{H})$), need only consider weak*-continuous representations onto factors.
E is univerally reversible $\Longleftrightarrow E^{* *}$ is.
Since $\pi: U \rightarrow C$ weak*-continuous has $\operatorname{ker} \pi$ a weak*-closed ideal, $U=(\operatorname{ker} \pi) \oplus_{\infty}(\operatorname{ker} \pi)^{\perp}$.

Cartan factors contain minimal tripotents, ones where

$$
E_{2}(e)=\left\{x \in E: 2\{e, e, x\}=e e^{*} x+x e^{*} e=2 x\right\}
$$

has $\operatorname{dim} E_{2}(e)=1$.

Corollary

Can rephrase using (factor) ideals in $E^{* *}$ generated by minimal tripotents.
For $E=T$ a $T R O, V_{n}$ ruled out (restate).

Theorem

If T is a $T R O, T$ universally reversible as a $J C^{*}$-triple, ϕ a ternary involution of T, then T^{ϕ} is universally reversible unless there is ternary hom $\pi: T \rightarrow \mathbb{M}_{n}(\mathbb{C})$ with $n=3$ or 4 and $\pi(\phi(x))=-(\pi(x))^{t}$.

Idea for proof

Pass to bidual $U=T^{* *}$. Extend ϕ. Easy to see $\left(T^{\phi}\right)^{* *}=U^{\phi}$
Recall

$$
U^{\phi} \cong\left(U_{\mathrm{s}}\right)^{\phi} \oplus U_{\mathrm{r}}
$$

Look at minimal tripotents $e \in\left(U_{\mathrm{s}}\right)^{\phi}$. Either minimal in U_{s} or the sum of two minimals f, g in U_{s} exchanged by ϕ.
Weak*-closed ideals of U_{s} generated by f and g may be the same or exchanged by ϕ. Must be Type I.

Theorem

If T is a $T R O, T$ universally reversible as a $J C^{*}$-triple, ϕ a ternary involution of T, then T^{ϕ} is universally reversible unless there is ternary hom $\pi: T \rightarrow \mathbb{M}_{n}(\mathbb{C})$ with $n=3$ or 4 and $\pi(\phi(x))=-(\pi(x))^{t}$.

Idea for proof.
 Pass to bidual $U=T^{* *}$. Extend ϕ. Easy to see $\left(T^{\phi}\right)^{* *}=U^{\phi}$.

Recall

Look at minimal tripotents $e \in\left(U_{S}\right)^{\phi}$. Either minimal in U_{S} or the sum of two minimals f, g in U_{s} exchanged by ϕ. Weak*-closed ideals of U_{s} generated by f and g may be the same or exchanged by ϕ. Must be Type I.

Theorem

If T is a $T R O, T$ universally reversible as a $J C^{*}$-triple, ϕ a ternary involution of T, then T^{ϕ} is universally reversible unless there is ternary hom $\pi: T \rightarrow \mathbb{M}_{n}(\mathbb{C})$ with $n=3$ or 4 and $\pi(\phi(x))=-(\pi(x))^{t}$.

Idea for proof.

Pass to bidual $U=T^{* *}$. Extend ϕ. Easy to see $\left(T^{\phi}\right)^{* *}=U^{\phi}$. Recall

$$
U^{\phi} \cong\left(U_{\mathrm{s}}\right)^{\phi} \oplus U_{\mathrm{r}}
$$

Look at minimal tripotents $e \in\left(U_{\mathrm{s}}\right)^{\phi}$. Either minimal in U_{s} or the sum of two minimals f, g in U_{s} exchanged by ϕ. Weak*-closed ideals of U_{s} generated by f and g may be the same or exchanged by ϕ. Must be Type I.

Theorem

If T is a $T R O, T$ universally reversible as a $J C^{*}$-triple, ϕ a ternary involution of T, then T^{ϕ} is universally reversible unless there is ternary hom $\pi: T \rightarrow \mathbb{M}_{n}(\mathbb{C})$ with $n=3$ or 4 and $\pi(\phi(x))=-(\pi(x))^{t}$.

Idea for proof.

Pass to bidual $U=T^{* *}$. Extend ϕ. Easy to see $\left(T^{\phi}\right)^{* *}=U^{\phi}$.
Recall

$$
U^{\phi} \cong\left(U_{\mathrm{s}}\right)^{\phi} \oplus U_{\mathrm{r}}
$$

Look at minimal tripotents $e \in\left(U_{\mathrm{s}}\right)^{\phi}$. Either minimal in U_{s} or the sum of two minimals f, g in U_{s} exchanged by ϕ.

Theorem

If T is a $T R O, T$ universally reversible as a $J C^{*}$-triple, ϕ a ternary involution of T, then T^{ϕ} is universally reversible unless there is ternary hom $\pi: T \rightarrow \mathbb{M}_{n}(\mathbb{C})$ with $n=3$ or 4 and $\pi(\phi(x))=-(\pi(x))^{t}$.

Idea for proof.

Pass to bidual $U=T^{* *}$. Extend ϕ. Easy to see $\left(T^{\phi}\right)^{* *}=U^{\phi}$.
Recall

$$
U^{\phi} \cong\left(U_{\mathrm{s}}\right)^{\phi} \oplus U_{\mathrm{r}}
$$

Look at minimal tripotents $e \in\left(U_{\mathrm{s}}\right)^{\phi}$. Either minimal in U_{s} or the sum of two minimals f, g in U_{s} exchanged by ϕ.
Weak*-closed ideals of U_{s} generated by f and g may be the same or exchanged by ϕ. Must be Type I.

Application

Theorem (Solel 2001)

Let $\pi: U \rightarrow V$ be a surjective linear isometry between W^{*}-TROs. Then there are $\pi_{1}, \pi_{2}: U \rightarrow V$ with π_{1} a TRO homomorphism, π_{2} a TRO anti-homomorphism, $\pi_{1}(U) \perp \pi_{2}(U)$ and $\pi=\pi_{1}+\pi_{2}$. Moreover there is a central projection z in the left W^{*}-algebra $\overline{\mathscr{L}} V$ of V with $\pi_{1}(x)=z \pi(x)$ for $x \in U$.

Proof in one case.

If U is univerally reversible with no 1-dim reps, we know $T^{*}(U)=U \oplus U^{\circ p}$

Application

Theorem (Solel 2001)

Let $\pi: U \rightarrow V$ be a surjective linear isometry between W^{*}-TROs. Then there are $\pi_{1}, \pi_{2}: U \rightarrow V$ with π_{1} a TRO homomorphism, π_{2} a $T R O$ anti-homomorphism, $\pi_{1}(U) \perp \pi_{2}(U)$ and $\pi=\pi_{1}+\pi_{2}$. Moreover there is a central projection z in the left W^{*}-algebra $\overline{\mathscr{L}} V$ of V with $\pi_{1}(x)=z \pi(x)$ for $x \in U$.

Proof in one case.

If U is univerally reversible with no 1-dim reps, we know $T^{*}(U)=U \oplus U^{\mathrm{op}}$.

$$
\begin{aligned}
& T^{*}(U)=U \oplus U^{\mathrm{op}} \\
& \underset{U}{\left.\alpha_{U} \uparrow\right|_{\pi} ^{\text {- }} \stackrel{\tilde{\pi}}{\longrightarrow} V}
\end{aligned}
$$

