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Ternary rings of operators (TROs)

Definition
A TRO is a norm closed linear subspace T C B(H) such that

x,y,z€ T =[x,y,z] :=xy*ze T

T=A MyT). T=M,n(C). T =pAq. TP C B(H)P.

L1t =span{xy* : x,y € T} A1 =span{y*z:y,z€ T}
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Ideals

Definition

| C T is an ideal if it is a norm closed linear subspace with

T, TI+ [T, L, T+ [T, T,/ C

Since x € | = x = [y, y,y] for some y € [, can omit [T, /, T] (or
require only [T, /1, T] C ).

I C T an ideal implies Z; C Z7 an ideal (and so is £} C £7T).
Moreover
| =T% =%4T

and J C Z7 an ideal implies [; = TJ C T an ideal with %, = J.
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Definition

~~» Abstract TRO: (T, [, -, ]).
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T = ee*Te*e+ ((1 —ee*)Te*e+ee* T(1— e*e)) +(1—ee*)T(1—e*e)

Tae)={xeT:leex]+[x,e,e]=Ix} (A=0,1,2)

To(e) = ee* Te"e

Ti(e) = (1 —ee*)Te*e+ ee”"T(1 — e*e)
To(e) = (1 —ee*)T(1 — e*e)

But like projections in C*-algebras, in general Ae € T \ {0}.
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Definition

A W*-TRO U is called a left TRO if U is TRO isomorphic to Wp
for p=p* = p?> € W, W a W*-algebra.

U is called square if U= W.

U square-free if Al C U with | # {0} square.
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Left/right/square decomposition

Theorem
U a W*-TRO implies

U=Uo U U

with U/ Uy/ Us the largest square-free left/ square-free right/
square weak*-closed ideals of U.

For p € B(#) a projection (p # 0), U = B(H)p is a left TRO,
2y = B(H), no non-trivial (weak*-closed) ideals, square-free if
dim p(H) < dimH.

For p rank one, U = B(H)p is a left TRO, isometric to H as a
Banach space, square-free if dim# > 1. (Column Hilbert space.)
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E=Tor E=T? (eg with T = M,(C), ¢(x) = xt or
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Recall: A JC*-triple is a closed linear E C B(#) such that
a,b,c € E={a,b,c} =(ab*c+ cb*a)/2 € E

Relate to isometric theory of Banach spaces (since triple
homomorphisms 7: E — F C B(K) are contractive).

(E,{,-,-}) abstract triple has no canonical op. space structure.

Neal & Russo found that for many E, there are only a few.

TROs T give rise to at least 3 obvious concrete JC*-triples:
E=T,E=T®and E={x@®x®P:xcT}CTaT?P

These examples are reversible. In latter case E = (T @ T°P)?
where ¢(x @ y°P) = y @ x°P.
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Theorem

If E=T a TRO, then E is universally reversible <—= A TRO
homs from T onto row or column Hilbert spaces of dimension > 3.
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m E—» F

T*(E) = Mpm @M 5
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7
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E _ TRO(F)

TRO(F) = T*(E)/ ker i and only 3 valid ker 7 : {0}, {0} & M, »,
M, m @ {0}.
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If Uisa W*-TRO, ¢ a ternary involution of U, then ¢(Us) = Us,
¢(U1) = Urr ¢(Ur) = U],

U? = (U)? @ U,

Note that if U is universally reversible, so are summands U, and
U;. In fact Us is always universally reversible.
We can also pass easily from involutions ¢ of a TRO T to bidual.

If T isa TRO, T universally reversible as a JC*-triple, ¢ a ternary
involution of T, then T? is universally reversible unless there is
ternary hom : T — M,(C) with n =3 or 4 and

m($(x)) = —(x(x))".
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(Conversely) If E is a universally reversible JC*-triple, then
T = T*(E) has a canonical involution ¢ with E = T® —and T
must be universally reversible.

Proof depends on results charactierising universal reversibility of
JC*-triples in terms of ‘factor’ representations.
There are 4 classes of (Cartan) factors:
Q@ E =B(H,K) (or E=B(H)p up to isometry)
Q@ E={xeB(H):x'=x} (dimH>1)
Sdim H
Q AgimH = {X S B(H) i xt = —X}, dmH>5
© V, spin factors, spanned by the identity and n ‘spins’ (=
anticommuting (selfadjoint) unitaries with square the
identity). (n > 2)
All Cartan factor JC*-triples are dual spaces.
A factor representation is m: E — C, triple hom (for {-,-,-}) with

weak*-dense range.
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Cartan factors contain minimal tripotents, ones where
Ex(e) = {x € E:2{e,e,x} = ee*x + xe*e = 2x}
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Can rephrase using (factor) ideals in E** generated by minimal
tripotents.
For E=T a TRO, V, ruled out (restate).
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If T isa TRO, T universally reversible as a JC*-triple, ¢ a ternary
involution of T, then T is universally reversible unless there is
ternary hom : T — M,(C) with n =3 or 4 and

m(¢(x)) = —(7(x))".

| \

Idea for proof.

Pass to bidual U = T**. Extend ¢. Easy to see (T?)** = U?.
Recall

Ul = (U)? @ U,

Look at minimal tripotents e € (Us)?. Either minimal in Us or the
sum of two minimals f, g in Us exchanged by ¢.

Weak*-closed ideals of Us generated by f and g may be the same
or exchanged by ¢. Must be Type I. O

4
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Application

Theorem (Solel 2001)

Let w: U — V be a surjective linear isometry between W*-TROs.
Then there are 1, m5: U — V with 11 a TRO homomorphism,
a TRO anti-homomorphism, w1(U) L m(U) and m = w1 + .
Moreover there is a central projection z in the left W*-algebra £\
of V with m1(x) = zm(x) for x € U.
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Let w: U — V be a surjective linear isometry between W*-TROs.
Then there are 1, m5: U — V with 11 a TRO homomorphism,
a TRO anti-homomorphism, w1(U) L m(U) and m = w1 + .
Moreover there is a central projection z in the left W*-algebra £\
of V with m1(x) = zm(x) for x € U.

Proof in one case.
If U is univerally reversible with no 1-dim reps, we know
T*(U) = U U°r.

T*(U) = U U°P
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