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Ternary rings of operators (TROs)

Definition

A TRO is a norm closed linear subspace T ⊆ B(H) such that

x , y , z ∈ T ⇒ [x , y , z ] := xy∗z ∈ T

Examples

T = A. Mn(T ). T = Mn,m(C). T = pAq. T op ⊆ B(H)op.

Notation

LT = span{xy∗ : x , y ∈ T} RT = span{y∗z : y , z ∈ T}
Linking C ∗-algebra of T :

LT
def
=

(
LT T
T ∗ RT

)
⊆ B(H⊕H)
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Ideals

Definition

I ⊆ T is an ideal if it is a norm closed linear subspace with

[I ,T ,T ] + [T , I ,T ] + [T ,T , I ] ⊆ I

Since x ∈ I ⇒ x = [y , y , y ] for some y ∈ I , can omit [T , I ,T ] (or
require only [T , I ,T ] ⊆ I ).

Proposition

I ⊆ T an ideal implies RI ⊆ RT an ideal (and so is LI ⊆ LT ).
Moreover

I = TRI = LIT

and J ⊆ RT an ideal implies IJ = TJ ⊆ T an ideal with RIJ = J.
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Ternary morphisms (of TROs)

Definition

φ : T1 → T2 is a ternary homomorphism if
φ[x , y , z ] = [φ(x), φ(y), φ(z)] (or φ(xy∗z) = φ(x)(φ(y))∗φ(z)).

Proposition

Ternary homomorphisms are (completely) contractive.
φ : T1 → T2 induces *-homomoprhisms Lφ : LT1 → LT2

(xy∗ 7→ φ(x)(φ(y))∗) and Rφ : RT1 → RT2 and

Lφ
def
=

(
Lφ φ

(x∗ 7→ φ(x)∗) Rφ

)
: LT1 → LT2

Definition
// Abstract TRO: (T , [·, ·, ·]).
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Corners & tripotents

LT
∼ def

=

(
LT
∼ T

T ∗ RT
∼

)
⊆ B(H⊕H)

Ex

For p =

(
I 0
0 0

)
∈ LT

∼, q = 1− p =

(
0 0
0 I

)
,

T ∼=
(

0 T
0 0

)
= p(LT )q

Definition

e ∈ T is called a tripotent if [e, e, e] = ee∗e = e (⇐⇒ e a partial
isometry)

T = ee∗Te∗e+

(
(1−ee∗)Te∗e+ee∗T (1−e∗e)

)
+(1−ee∗)T (1−e∗e)
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Peirce spaces for e ∈ T

T = ee∗Te∗e +

(
(1− ee∗)Te∗e + ee∗T (1− e∗e)

)
+ (1− ee∗)T (1− e∗e)

Notation

Tλ(e) = {x ∈ T : [e, e, x ] + [x , e, e] = λx} (λ = 0, 1, 2)

T2(e) = ee∗Te∗e

T1(e) = (1− ee∗)Te∗e + ee∗T (1− e∗e)

T0(e) = (1− ee∗)T (1− e∗e)

T2(e) “is” a C ∗-algebra (with product x · y = [x , e, y ]).

But like projections in C ∗-algebras, in general 6 ∃e ∈ T \ {0}.
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Weak*-closed TROs and biduals

If we consider TROs U ∈ B(H) that are weak*-closed (or are
Banach dual spaces), all extreme points of the unit ball are
tripotents.
Bidual or weak* closure of T can be U.
Use LU = span{xy∗ : x , y ∈ U}w

∗
, RU and(

LU U

U∗ RU

)
⊆ B(H⊕H)

Proposition (Zettl)

Weak*-closed ‘ideals’ I ⊆ U are in 1-1 correspondence with
projections z ∈ Z (RU) via I = Uz .

Definition

A W ∗-TRO U is called a left TRO if U is TRO isomorphic to Wp
for p = p∗ = p2 ∈W , W a W ∗-algebra.
U is called square if U ∼= W .
U square-free if 6 ∃I ⊆ U with I 6= {0} square.
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Left/right/square decomposition

Theorem

U a W ∗-TRO implies

U = Ul ⊕ Ur ⊕ Us

with Ul/ Ur/ Us the largest square-free left/ square-free right/
square weak*-closed ideals of U.

Example

For p ∈ B(H) a projection (p 6= 0), U = B(H)p is a left TRO,
LU = B(H), no non-trivial (weak*-closed) ideals, square-free if
dim p(H) < dimH.
For p rank one, U = B(H)p is a left TRO, isometric to H as a
Banach space, square-free if dimH > 1. (Column Hilbert space.)
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Involutions and fixed points

Definition

An involution of a C ∗-algebra A is Φ: A→ A such that Φ is
C-linear, Φ(Φ(a)) = a, Φ(ab) = Φ(b)Φ(a), and Φ(a∗) = Φ(a)∗

Definition

A ternary involution of a TRO T is φ : T → T C-linear,
φ(φ(a)) = a, φ[a, b, c] = [φ(c), φ(b), φ(a)] (or
φ(ab∗c) = φ(c)(φ(b))∗φ(a)).

Fixed points Tφ = {x ∈ T : φ(x) = x} = {x + φ(x) : x ∈ T}.
AΦ will be a (closed) Jordan *-algebra of operators (JC ∗-algebra).
Tφ will be a JC ∗-triple: closed under Jordan triple product

{a, b, c} def
= ([a, b, c] + [c , b, a])/2 = (ab∗c + cb∗a)/2

In fact Tφ is reversible:

x1x
∗
2x3 · · · x∗2nx2n+1 + x2n+1x

∗
2n · · · x3x

∗
2x1 ∈ Tφ
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Which JC ∗-triples?

Definition

A JC ∗-triple is a closed linear E ⊆ B(H) such that

a, b, c ∈ E ⇒ {a, b, c} = ([a, b, c] + [c , b, a])/2 ∈ E

Examples

E = T or E = Tφ (e.g. with T = Mn(C), φ(x) = x t or
φ(x) = −x t).

We consider ‘concrete’ JC ∗-triples E and F the ‘same’ if ∃ Jordan
triple isomorphism ψ : E → F (⇐⇒ ψ an isometry).
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On JC ∗-triples

Recall: A JC ∗-triple is a closed linear E ⊆ B(H) such that

a, b, c ∈ E ⇒ {a, b, c} = (ab∗c + cb∗a)/2 ∈ E

Relate to isometric theory of Banach spaces (since triple
homomorphisms π : E → F ⊆ B(K) are contractive).

(E , {·, ·, ·}) abstract triple has no canonical op. space structure.

Neal & Russo found that for many E , there are only a few.

Example

TROs T give rise to at least 3 obvious concrete JC ∗-triples:
E = T , E = T op and E = {x ⊕ xop : x ∈ T} ⊆ T ⊕ T op

These examples are reversible. In latter case E = (T ⊕ T op)φ

where φ(x ⊕ yop) = y ⊕ xop.

11 / 18



On JC ∗-triples

Recall: A JC ∗-triple is a closed linear E ⊆ B(H) such that

a, b, c ∈ E ⇒ {a, b, c} = (ab∗c + cb∗a)/2 ∈ E

Relate to isometric theory of Banach spaces (since triple
homomorphisms π : E → F ⊆ B(K) are contractive).

(E , {·, ·, ·}) abstract triple has no canonical op. space structure.

Neal & Russo found that for many E , there are only a few.

Example

TROs T give rise to at least 3 obvious concrete JC ∗-triples:
E = T , E = T op and E = {x ⊕ xop : x ∈ T} ⊆ T ⊕ T op

These examples are reversible. In latter case E = (T ⊕ T op)φ

where φ(x ⊕ yop) = y ⊕ xop.

11 / 18



On JC ∗-triples

Recall: A JC ∗-triple is a closed linear E ⊆ B(H) such that

a, b, c ∈ E ⇒ {a, b, c} = (ab∗c + cb∗a)/2 ∈ E

Relate to isometric theory of Banach spaces (since triple
homomorphisms π : E → F ⊆ B(K) are contractive).

(E , {·, ·, ·}) abstract triple has no canonical op. space structure.

Neal & Russo found that for many E , there are only a few.

Example

TROs T give rise to at least 3 obvious concrete JC ∗-triples:
E = T , E = T op and E = {x ⊕ xop : x ∈ T} ⊆ T ⊕ T op

These examples are reversible. In latter case E = (T ⊕ T op)φ

where φ(x ⊕ yop) = y ⊕ xop.

11 / 18



On JC ∗-triples

Recall: A JC ∗-triple is a closed linear E ⊆ B(H) such that

a, b, c ∈ E ⇒ {a, b, c} = (ab∗c + cb∗a)/2 ∈ E

Relate to isometric theory of Banach spaces (since triple
homomorphisms π : E → F ⊆ B(K) are contractive).

(E , {·, ·, ·}) abstract triple has no canonical op. space structure.

Neal & Russo found that for many E , there are only a few.

Example

TROs T give rise to at least 3 obvious concrete JC ∗-triples:
E = T , E = T op and E = {x ⊕ xop : x ∈ T} ⊆ T ⊕ T op

These examples are reversible. In latter case E = (T ⊕ T op)φ

where φ(x ⊕ yop) = y ⊕ xop.

11 / 18



On JC ∗-triples

Recall: A JC ∗-triple is a closed linear E ⊆ B(H) such that

a, b, c ∈ E ⇒ {a, b, c} = (ab∗c + cb∗a)/2 ∈ E

Relate to isometric theory of Banach spaces (since triple
homomorphisms π : E → F ⊆ B(K) are contractive).

(E , {·, ·, ·}) abstract triple has no canonical op. space structure.

Neal & Russo found that for many E , there are only a few.

Example

TROs T give rise to at least 3 obvious concrete JC ∗-triples:
E = T , E = T op and E = {x ⊕ xop : x ∈ T} ⊆ T ⊕ T op

These examples are reversible. In latter case E = (T ⊕ T op)φ

where φ(x ⊕ yop) = y ⊕ xop.

11 / 18



On JC ∗-triples

Recall: A JC ∗-triple is a closed linear E ⊆ B(H) such that

a, b, c ∈ E ⇒ {a, b, c} = (ab∗c + cb∗a)/2 ∈ E

Relate to isometric theory of Banach spaces (since triple
homomorphisms π : E → F ⊆ B(K) are contractive).

(E , {·, ·, ·}) abstract triple has no canonical op. space structure.

Neal & Russo found that for many E , there are only a few.

Example

TROs T give rise to at least 3 obvious concrete JC ∗-triples:
E = T , E = T op and E = {x ⊕ xop : x ∈ T} ⊆ T ⊕ T op

These examples are reversible. In latter case E = (T ⊕ T op)φ

where φ(x ⊕ yop) = y ⊕ xop.

11 / 18



On JC ∗-triples

Recall: A JC ∗-triple is a closed linear E ⊆ B(H) such that

a, b, c ∈ E ⇒ {a, b, c} = (ab∗c + cb∗a)/2 ∈ E

Relate to isometric theory of Banach spaces (since triple
homomorphisms π : E → F ⊆ B(K) are contractive).

(E , {·, ·, ·}) abstract triple has no canonical op. space structure.

Neal & Russo found that for many E , there are only a few.

Example

TROs T give rise to at least 3 obvious concrete JC ∗-triples:
E = T , E = T op and E = {x ⊕ xop : x ∈ T} ⊆ T ⊕ T op

These examples are reversible. In latter case E = (T ⊕ T op)φ

where φ(x ⊕ yop) = y ⊕ xop.

11 / 18



Universal property of T ∗(E )

Theorem (Bunce, Feely, T (Math. Zeit. 2011))

For each JC ∗-triple E there is a largest TRO T ∗(E ) generated by
(triple isomorphic copies of) E

T ∗(E )

π̃

""

E

αE

OO

π
// T

Definition

A JC ∗-triple E is called universally reversible if π(E ) is reversible
for each triple hom π : E → B(K).

∃ canonical ternary involution φE : T ∗(E )→ T ∗(E ) fixing αE (E ).
E is UR ⇐⇒ αE (E ) reversible ⇐⇒ E = (T ∗(E ))φE

12 / 18



Universal property of T ∗(E )

Theorem (Bunce, Feely, T (Math. Zeit. 2011))

For each JC ∗-triple E there is a largest TRO T ∗(E ) generated by
(triple isomorphic copies of) E

T ∗(E )

π̃

""

E

αE

OO

π
// T

Definition

A JC ∗-triple E is called universally reversible if π(E ) is reversible
for each triple hom π : E → B(K).

∃ canonical ternary involution φE : T ∗(E )→ T ∗(E ) fixing αE (E ).
E is UR ⇐⇒ αE (E ) reversible ⇐⇒ E = (T ∗(E ))φE

12 / 18



Universal property of T ∗(E )

Theorem (Bunce, Feely, T (Math. Zeit. 2011))

For each JC ∗-triple E there is a largest TRO T ∗(E ) generated by
(triple isomorphic copies of) E

T ∗(E )

π̃

""

E

αE

OO

π
// T

Definition

A JC ∗-triple E is called universally reversible if π(E ) is reversible
for each triple hom π : E → B(K).

∃ canonical ternary involution φE : T ∗(E )→ T ∗(E ) fixing αE (E ).
E is UR ⇐⇒ αE (E ) reversible ⇐⇒ E = (T ∗(E ))φE

12 / 18



Universal property of T ∗(E )

Theorem (Bunce, Feely, T (Math. Zeit. 2011))

For each JC ∗-triple E there is a largest TRO T ∗(E ) generated by
(triple isomorphic copies of) E

T ∗(E )

π̃

""

E

αE

OO

π
// T

Definition

A JC ∗-triple E is called universally reversible if π(E ) is reversible
for each triple hom π : E → B(K).

∃ canonical ternary involution φE : T ∗(E )→ T ∗(E ) fixing αE (E ).
E is UR ⇐⇒ αE (E ) reversible ⇐⇒ E = (T ∗(E ))φE

12 / 18



Universal property of T ∗(E )

Theorem (Bunce, Feely, T (Math. Zeit. 2011))

For each JC ∗-triple E there is a largest TRO T ∗(E ) generated by
(triple isomorphic copies of) E

T ∗(E )

π̃

""

E

αE

OO

π
// T

Definition

A JC ∗-triple E is called universally reversible if π(E ) is reversible
for each triple hom π : E → B(K).

∃ canonical ternary involution φE : T ∗(E )→ T ∗(E ) fixing αE (E ).
E is UR ⇐⇒ αE (E ) reversible ⇐⇒ E = (T ∗(E ))φE

12 / 18



Universal property of T ∗(E )

Theorem (Bunce, Feely, T (Math. Zeit. 2011))

For each JC ∗-triple E there is a largest TRO T ∗(E ) generated by
(triple isomorphic copies of) E

T ∗(E )

π̃

""

E

αE

OO

π
// T

Definition

A JC ∗-triple E is called universally reversible if π(E ) is reversible
for each triple hom π : E → B(K).

∃ canonical ternary involution φE : T ∗(E )→ T ∗(E ) fixing αE (E ).
E is UR ⇐⇒ αE (E ) reversible ⇐⇒ E = (T ∗(E ))φE

12 / 18



Theorem

If E = T a TRO, then E is universally reversible ⇐⇒ 6 ∃ TRO
homs from T onto row or column Hilbert spaces of dimension ≥ 3.
If 6 ∃ on any dimension bar dimension 2, T ∗(E ) = T ⊕ T op.

Example

E = Mn,m(C) ⊂ T ∗(E ) = Mn,m(C)⊕Mm,n(C) via x 7→ x ⊕ x t if
min(n,m) > 1.
In this case, given any JC ∗-triple F ⊆ B(K ) and a linear isometry
π : E � F

T ∗(E ) = Mn,m ⊕Mm,n

π̃

))

E

αE

OO

π
// TRO(F )

TRO(F ) ∼= T ∗(E )/ ker π̃ and only 3 valid ker π̃ : {0}, {0} ⊕Mm,n,
Mn,m ⊕ {0}.
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Theorem

If U is a W ∗-TRO, φ a ternary involution of U, then φ(Us) = Us,
φ(Ul) = Ur, φ(Ur) = Ul,

Uφ ∼= (Us)
φ ⊕ Ur

Note that if U is universally reversible, so are summands Ul and
Ur. In fact Us is always universally reversible.
We can also pass easily from involutions φ of a TRO T to bidual.

Theorem

If T is a TRO, T universally reversible as a JC ∗-triple, φ a ternary
involution of T , then Tφ is universally reversible unless there is
ternary hom π : T � Mn(C) with n = 3 or 4 and
π(φ(x)) = −(π(x))t .
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Remark

(Conversely) If E is a universally reversible JC ∗-triple, then
T = T ∗(E ) has a canonical involution φ with E = Tφ — and T
must be universally reversible.

Proof depends on results charactierising universal reversibility of
JC ∗-triples in terms of ‘factor’ representations.
There are 4 classes of (Cartan) factors:

1 E = B(H,K ) (or E = B(H)p up to isometry)
2 E = {x ∈ B(H) : x t = x} (dimH > 1)

SdimH

3 AdimH = {x ∈ B(H) : x t = −x}, dimH ≥ 5
4 Vn spin factors, spanned by the identity and n ‘spins’ (=

anticommuting (selfadjoint) unitaries with square the
identity). (n ≥ 2)

All Cartan factor JC ∗-triples are dual spaces.
A factor representation is π : E → C , triple hom (for {·, ·, ·}) with
weak*-dense range.
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Theorem (JLMS 2013)

If E is a JC ∗-triple, E universally reversible ⇐⇒ it has no factor
representations onto Hilbert spaces of dimension ≥ 3 or Vn for
n ≥ 4.
If U is a JW ∗-triple (dual space, or has a weak*-closed realisation
in B(H)), need only consider weak*-continuous representations
onto factors.
E is univerally reversible ⇐⇒ E ∗∗ is.
Since π : U → C weak*-continuous has ker π a weak*-closed ideal,
U = (ker π)⊕∞ (ker π)⊥.

Cartan factors contain minimal tripotents, ones where

E2(e) = {x ∈ E : 2{e, e, x} = ee∗x + xe∗e = 2x}
has dimE2(e) = 1.

Corollary

Can rephrase using (factor) ideals in E ∗∗ generated by minimal
tripotents.
For E = T a TRO, Vn ruled out (restate). 16 / 18
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Theorem

If T is a TRO, T universally reversible as a JC ∗-triple, φ a ternary
involution of T , then Tφ is universally reversible unless there is
ternary hom π : T � Mn(C) with n = 3 or 4 and
π(φ(x)) = −(π(x))t .

Idea for proof.

Pass to bidual U = T ∗∗. Extend φ. Easy to see (Tφ)∗∗ = Uφ.
Recall

Uφ ∼= (Us)
φ ⊕ Ur

Look at minimal tripotents e ∈ (Us)
φ. Either minimal in Us or the

sum of two minimals f , g in Us exchanged by φ.
Weak*-closed ideals of Us generated by f and g may be the same
or exchanged by φ. Must be Type I.
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Application

Theorem (Solel 2001)

Let π : U → V be a surjective linear isometry between W ∗-TROs.
Then there are π1, π2 : U → V with π1 a TRO homomorphism, π2

a TRO anti-homomorphism, π1(U) ⊥ π2(U) and π = π1 + π2.
Moreover there is a central projection z in the left W ∗-algebra LV

of V with π1(x) = zπ(x) for x ∈ U.

Proof in one case.

If U is univerally reversible with no 1-dim reps, we know
T ∗(U) = U ⊕ Uop.

T ∗(U) = U ⊕ Uop

π̃

''
U

αU

OO

π
// V
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