Fixed points of ternary involutions and applications

Richard M. Timoney Trinity College Dublin

イロト 不同下 イヨト イヨト

3

1/18

Joint work with Les Bunce

Definition

A TRO is a norm closed linear subspace $\mathcal{T}\subseteq\mathcal{B}(\mathcal{H})$ such that

$$x, y, z \in T \Rightarrow [x, y, z] := xy^*z \in T$$

Examples

$$T = A$$
. $\mathbb{M}_n(T)$. $T = \mathbb{M}_{n,m}(\mathbb{C})$. $T = pAq$. $T^{\mathrm{op}} \subseteq \mathcal{B}(\mathcal{H})^{\mathrm{op}}$.

Notation

 $\mathcal{L}_T = \operatorname{span}\{xy^* : x, y \in T\} \qquad \qquad \mathcal{R}_T = \operatorname{span}\{y^*z : y, z \in T\}$ Linking C*-algebra of T:

$$\mathfrak{L}_{\mathcal{T}} \stackrel{\mathrm{def}}{=} \begin{pmatrix} \mathscr{L}_{\mathcal{T}} & \mathcal{T} \\ \mathcal{T}^* & \mathscr{R}_{\mathcal{T}} \end{pmatrix} \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$$

Definition

A TRO is a norm closed linear subspace $\mathcal{T}\subseteq\mathcal{B}(\mathcal{H})$ such that

$$x, y, z \in T \Rightarrow [x, y, z] := xy^*z \in T$$

Examples

$$T = A. M_n(T). T = M_{n,m}(\mathbb{C}). T = pAq. T^{op} \subseteq \mathcal{B}(\mathcal{H})^{op}.$$

Notation

 $\mathscr{L}_{\mathcal{T}} = \overline{\operatorname{span}\{xy^* : x, y \in \mathcal{T}\}}$ $\mathscr{R}_{\mathcal{T}} = \overline{\operatorname{span}\{y^*z : y, Z_{\mathcal{T}}\}}$ Linking C^* -algebra of \mathcal{T} :

$$\mathfrak{L}_{\mathcal{T}} \stackrel{\text{def}}{=} \begin{pmatrix} \mathscr{L}_{\mathcal{T}} & \mathcal{T} \\ \mathcal{T}^* & \mathscr{R}_{\mathcal{T}} \end{pmatrix} \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$$

Definition

A TRO is a norm closed linear subspace $\mathcal{T}\subseteq\mathcal{B}(\mathcal{H})$ such that

$$x, y, z \in T \Rightarrow [x, y, z] := xy^*z \in T$$

Examples

$$T = A. M_n(T). T = M_{n,m}(\mathbb{C}). T = pAq. T^{op} \subseteq \mathcal{B}(\mathcal{H})^{op}.$$

Notation

 $\mathcal{L}_{\mathcal{T}} = \overline{\operatorname{span}\{xy^* : x, y \in \mathcal{T}\}} \qquad \qquad \mathcal{R}_{\mathcal{T}} = \overline{\operatorname{span}\{y^*z : y, z \text{ Linking } C^*\text{-algebra of } \mathcal{T}:}$

$$\mathfrak{L}_{\mathcal{T}} \stackrel{\mathrm{def}}{=} \begin{pmatrix} \mathscr{L}_{\mathcal{T}} & \mathcal{T} \\ \mathcal{T}^* & \mathscr{R}_{\mathcal{T}} \end{pmatrix} \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$$

Definition

A TRO is a norm closed linear subspace $\mathcal{T}\subseteq\mathcal{B}(\mathcal{H})$ such that

$$x, y, z \in T \Rightarrow [x, y, z] := xy^*z \in T$$

Examples

$$T = A. \ \mathbb{M}_n(T). \ T = \mathbb{M}_{n,m}(\mathbb{C}). \ T = pAq. \ T^{\mathrm{op}} \subseteq \mathcal{B}(\mathcal{H})^{\mathrm{op}}.$$

Notation

 $\mathscr{L}_{T} = \operatorname{span}\{xy^{*} : x, y \in T\}$ $\mathscr{R}_{T} = \operatorname{span}\{y^{*}z : y, z \in T\}$ Linking C*-algebra of T:

$$\mathfrak{L}_{\mathcal{T}} \stackrel{\mathrm{def}}{=} \begin{pmatrix} \mathscr{L}_{\mathcal{T}} & \mathcal{T} \\ \mathcal{T}^* & \mathscr{R}_{\mathcal{T}} \end{pmatrix} \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$$

Definition

A TRO is a norm closed linear subspace $\mathcal{T}\subseteq\mathcal{B}(\mathcal{H})$ such that

$$x, y, z \in T \Rightarrow [x, y, z] := xy^*z \in T$$

Examples

$$T = A$$
. $\mathbb{M}_n(T)$. $T = \mathbb{M}_{n,m}(\mathbb{C})$. $T = pAq$. $T^{\mathrm{op}} \subseteq \mathcal{B}(\mathcal{H})^{\mathrm{op}}$.

Notation

 $\mathscr{L}_T = \operatorname{span}\{xy^* : x, y \in T\}$ $\mathscr{R}_T = \operatorname{span}\{y^*z : y, z \in T\}$ Linking C^* -algebra of T:

$$\mathfrak{L}_{\mathcal{T}} \stackrel{\mathrm{def}}{=} \begin{pmatrix} \mathscr{L}_{\mathcal{T}} & \mathcal{T} \\ \mathcal{T}^* & \mathscr{R}_{\mathcal{T}} \end{pmatrix} \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$$

Definition

A TRO is a norm closed linear subspace $\mathcal{T}\subseteq\mathcal{B}(\mathcal{H})$ such that

$$x, y, z \in T \Rightarrow [x, y, z] := xy^*z \in T$$

Examples

$$T = A$$
. $\mathbb{M}_n(T)$. $T = \mathbb{M}_{n,m}(\mathbb{C})$. $T = pAq$. $T^{\mathrm{op}} \subseteq \mathcal{B}(\mathcal{H})^{\mathrm{op}}$.

Notation

 $\mathscr{L}_T = \operatorname{span}\{xy^* : x, y \in T\}$ Linking C*-algebra of T:

$$\mathfrak{L}_{\mathcal{T}} \stackrel{\text{def}}{=} \begin{pmatrix} \mathscr{L}_{\mathcal{T}} & \mathcal{T} \\ \mathcal{T}^* & \mathscr{R}_{\mathcal{T}} \end{pmatrix} \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$$

Definition

A TRO is a norm closed linear subspace $\mathcal{T}\subseteq\mathcal{B}(\mathcal{H})$ such that

$$x, y, z \in T \Rightarrow [x, y, z] := xy^*z \in T$$

Examples

$$T = A$$
. $\mathbb{M}_n(T)$. $T = \mathbb{M}_{n,m}(\mathbb{C})$. $T = pAq$. $T^{\mathrm{op}} \subseteq \mathcal{B}(\mathcal{H})^{\mathrm{op}}$.

Notation

 $\mathscr{L}_{T} = \overline{\operatorname{span}\{xy^* : x, y \in T\}}$ Linking *C**-algebra of *T*:

$$\mathscr{R}_{T} = \overline{\operatorname{span}\{y^{*}z : y, z \in T\}}$$

$$\mathfrak{L}_{\mathcal{T}} \stackrel{\text{def}}{=} \begin{pmatrix} \mathscr{L}_{\mathcal{T}} & \mathcal{T} \\ \mathcal{T}^* & \mathscr{R}_{\mathcal{T}} \end{pmatrix} \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$$

Definition

A TRO is a norm closed linear subspace $\mathcal{T}\subseteq\mathcal{B}(\mathcal{H})$ such that

$$x, y, z \in T \Rightarrow [x, y, z] := xy^*z \in T$$

Examples

$$T = A$$
. $\mathbb{M}_n(T)$. $T = \mathbb{M}_{n,m}(\mathbb{C})$. $T = pAq$. $T^{\mathrm{op}} \subseteq \mathcal{B}(\mathcal{H})^{\mathrm{op}}$.

Notation

 $\mathcal{L}_{T} = \overline{\operatorname{span}\{xy^{*} : x, y \in T\}} \qquad \qquad \mathcal{R}_{T} = \overline{\operatorname{span}\{y^{*}z : y, z \in T\}}$ Linking *C**-algebra of *T*:

$$\mathfrak{L}_{\mathcal{T}} \stackrel{\mathrm{def}}{=} egin{pmatrix} \mathscr{L}_{\mathcal{T}} & \mathcal{T} \ \mathcal{T}^* & \mathscr{R}_{\mathcal{T}} \end{pmatrix} \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$$

 $I \subseteq T$ is an *ideal* if it is a norm closed linear subspace with

 $[I, T, T] + [T, I, T] + [T, T, I] \subseteq I$

Since $x \in I \Rightarrow x = [y, y, y]$ for some $y \in I$, can omit [T, I, T] (or require only $[T, I, T] \subseteq I$).

Proposition

 $I \subseteq T$ an ideal implies $\mathscr{R}_I \subseteq \mathscr{R}_T$ an ideal (and so is $\mathscr{L}_I \subseteq \mathscr{L}_T$). Moreover

$$I = T\mathcal{R}_I = \mathcal{L}_I T$$

 $I \subseteq T$ is an *ideal* if it is a norm closed linear subspace with

$$[I, T, T] + [T, I, T] + [T, T, I] \subseteq I$$

Since $x \in I \Rightarrow x = [y, y, y]$ for some $y \in I$, can omit [T, I, T] (or require only $[T, I, T] \subseteq I$).

Proposition

 $I \subseteq T$ an ideal implies $\mathscr{R}_I \subseteq \mathscr{R}_T$ an ideal (and so is $\mathscr{L}_I \subseteq \mathscr{L}_T$). Moreover

$$I = T\mathcal{R}_I = \mathcal{L}_I T$$

 $I \subseteq T$ is an *ideal* if it is a norm closed linear subspace with

$$[I, T, T] + [T, I, T] + [T, T, I] \subseteq I$$

Since $x \in I \Rightarrow x = [y, y, y]$ for some $y \in I$, can omit [T, I, T] (or require only $[T, I, T] \subseteq I$).

Proposition

 $I \subseteq T$ an ideal implies $\mathscr{R}_I \subseteq \mathscr{R}_T$ an ideal (and so is $\mathscr{L}_I \subseteq \mathscr{L}_T$). Moreover

$$I = T \mathcal{R}_I = \mathcal{L}_I T$$

 $I \subseteq T$ is an *ideal* if it is a norm closed linear subspace with

$$[I, T, T] + [T, I, T] + [T, T, I] \subseteq I$$

Since $x \in I \Rightarrow x = [y, y, y]$ for some $y \in I$, can omit [T, I, T] (or require only $[T, I, T] \subseteq I$).

Proposition

 $I \subseteq T$ an ideal implies $\mathscr{R}_I \subseteq \mathscr{R}_T$ an ideal (and so is $\mathscr{L}_I \subseteq \mathscr{L}_T$). Moreover

$$I = T\mathcal{R}_I = \mathcal{L}_I T$$

 $I \subseteq T$ is an *ideal* if it is a norm closed linear subspace with

$$[I, T, T] + [T, I, T] + [T, T, I] \subseteq I$$

Since $x \in I \Rightarrow x = [y, y, y]$ for some $y \in I$, can omit [T, I, T] (or require only $[T, I, T] \subseteq I$).

Proposition

 $I \subseteq T$ an ideal implies $\mathscr{R}_I \subseteq \mathscr{R}_T$ an ideal (and so is $\mathscr{L}_I \subseteq \mathscr{L}_T$). Moreover

$$I = T\mathcal{R}_I = \mathcal{L}_I T$$

Definition

 $\phi: T_1 \to T_2$ is a ternary homomorphism if $\phi[x, y, z] = [\phi(x), \phi(y), \phi(z)]$ (or $\phi(xy^*z) = \phi(x)(\phi(y))^*\phi(z)$).

Proposition

Ternary homomorphisms are (completely) contractive. $\phi: T_1 \to T_2$ induces *-homomorphisms $\mathscr{L}_{\phi}: \mathscr{L}_{T_1} \to \mathscr{L}_{T_2}$ $(xy^* \mapsto \phi(x)(\phi(y))^*)$ and $\mathscr{R}_{\phi}: \mathscr{R}_{T_1} \to \mathscr{R}_{T_2}$ and

$$\mathfrak{L}_{\phi} \stackrel{\text{def}}{=} \begin{pmatrix} \mathscr{L}_{\phi} & \phi \\ (x^* \mapsto \phi(x)^*) & \mathscr{R}_{\phi} \end{pmatrix} : \mathfrak{L}_{\mathcal{T}_1} \to \mathfrak{L}_{\mathcal{T}_2}$$

Definition

Definition

 $\phi: T_1 \to T_2$ is a ternary homomorphism if $\phi[x, y, z] = [\phi(x), \phi(y), \phi(z)]$ (or $\phi(xy^*z) = \phi(x)(\phi(y))^*\phi(z)$).

Proposition

Ternary homomorphisms are (completely) contractive.

 $\phi: T_1 \to T_2 \text{ induces *-homomorphisms } \mathscr{L}_{\phi}: \mathscr{L}_{T_1} \to \mathscr{L}_{T_2}$ $(xy^* \mapsto \phi(x)(\phi(y))^*) \text{ and } \mathscr{R}_{\phi}: \mathscr{R}_{T_1} \to \mathscr{R}_{T_2} \text{ and}$

$$\mathfrak{L}_{\phi} \stackrel{\text{def}}{=} \begin{pmatrix} \mathscr{L}_{\phi} & \phi \\ (x^* \mapsto \phi(x)^*) & \mathscr{R}_{\phi} \end{pmatrix} : \mathfrak{L}_{\mathcal{T}_1} \to \mathfrak{L}_{\mathcal{T}_2}$$

Definition

Definition

$$\phi: T_1 \to T_2$$
 is a ternary homomorphism if
 $\phi[x, y, z] = [\phi(x), \phi(y), \phi(z)]$ (or $\phi(xy^*z) = \phi(x)(\phi(y))^*\phi(z)$).

Proposition

Ternary homomorphisms are (completely) contractive. $\phi: T_1 \to T_2$ induces *-homomorphisms $\mathscr{L}_{\phi}: \mathscr{L}_{T_1} \to \mathscr{L}_{T_2}$ $(xy^* \mapsto \phi(x)(\phi(y))^*)$ and $\mathscr{R}_{\phi}: \mathscr{R}_{T_1} \to \mathscr{R}_{T_2}$ and

$$\mathfrak{L}_{\phi} \stackrel{\text{def}}{=} \begin{pmatrix} \mathscr{L}_{\phi} & \phi \\ (x^* \mapsto \phi(x)^*) & \mathscr{R}_{\phi} \end{pmatrix} : \mathfrak{L}_{\mathcal{T}_1} \to \mathfrak{L}_{\mathcal{T}_2}$$

Definition

Definition

$$\phi: T_1 \to T_2$$
 is a ternary homomorphism if
 $\phi[x, y, z] = [\phi(x), \phi(y), \phi(z)]$ (or $\phi(xy^*z) = \phi(x)(\phi(y))^*\phi(z)$).

Proposition

Ternary homomorphisms are (completely) contractive. $\phi: T_1 \to T_2$ induces *-homomorphisms $\mathscr{L}_{\phi}: \mathscr{L}_{T_1} \to \mathscr{L}_{T_2}$ $(xy^* \mapsto \phi(x)(\phi(y))^*)$ and $\mathscr{R}_{\phi}: \mathscr{R}_{T_1} \to \mathscr{R}_{T_2}$ and

Definition

Definition

$$\phi: T_1 \to T_2$$
 is a ternary homomorphism if
 $\phi[x, y, z] = [\phi(x), \phi(y), \phi(z)]$ (or $\phi(xy^*z) = \phi(x)(\phi(y))^*\phi(z)$).

Proposition

Ternary homomorphisms are (completely) contractive. $\phi: T_1 \to T_2$ induces *-homomorphisms $\mathscr{L}_{\phi}: \mathscr{L}_{T_1} \to \mathscr{L}_{T_2}$ $(xy^* \mapsto \phi(x)(\phi(y))^*)$ and $\mathscr{R}_{\phi}: \mathscr{R}_{T_1} \to \mathscr{R}_{T_2}$ and

$$\mathfrak{L}_{\phi} \stackrel{\mathrm{def}}{=} \begin{pmatrix} \mathscr{L}_{\phi} & \phi \\ (x^* \mapsto \phi(x)^*) & \mathscr{R}_{\phi} \end{pmatrix} : \mathfrak{L}_{\mathcal{T}_1} \to \mathfrak{L}_{\mathcal{T}_2}$$

Definition

Definition

$$\phi: T_1 \to T_2$$
 is a ternary homomorphism if
 $\phi[x, y, z] = [\phi(x), \phi(y), \phi(z)]$ (or $\phi(xy^*z) = \phi(x)(\phi(y))^*\phi(z)$).

Proposition

Ternary homomorphisms are (completely) contractive. $\phi: T_1 \to T_2$ induces *-homomorphisms $\mathscr{L}_{\phi}: \mathscr{L}_{T_1} \to \mathscr{L}_{T_2}$ $(xy^* \mapsto \phi(x)(\phi(y))^*)$ and $\mathscr{R}_{\phi}: \mathscr{R}_{T_1} \to \mathscr{R}_{T_2}$ and

$$\mathfrak{L}_{\phi} \stackrel{\mathrm{def}}{=} \begin{pmatrix} \mathscr{L}_{\phi} & \phi \\ (x^* \mapsto \phi(x)^*) & \mathscr{R}_{\phi} \end{pmatrix} \colon \mathfrak{L}_{\mathcal{T}_1} \to \mathfrak{L}_{\mathcal{T}_2}$$

Definition

$$\longrightarrow$$
 Abstract TRO: $(T, [\cdot, \cdot, \cdot])$.

$$\mathfrak{L}_{\mathcal{T}}^{\sim} \stackrel{\mathrm{def}}{=} \begin{pmatrix} \mathscr{L}_{\mathcal{T}}^{\sim} & \mathcal{T} \\ \mathcal{T}^{*} & \mathscr{R}_{\mathcal{T}}^{\sim} \end{pmatrix} \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$$

Ex
For
$$p = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \in \mathfrak{L}_{T}^{\sim}, q = 1 - p = \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix},$$

 $\mathcal{T} \cong \begin{pmatrix} 0 & \mathcal{T} \\ 0 & 0 \end{pmatrix} = p(\mathfrak{L}_{T})q$

Definition

 $e \in T$ is called a tripotent if $[e, e, e] = ee^*e = e$ (\iff e a partial isometry)

$$T = ee^{*}Te^{*}e + \left((1 - ee^{*})Te^{*}e + ee^{*}T(1 - e^{*}e)\right) + (1 - ee^{*})T(1 - e^{*}e)$$

$$\mathfrak{L}_{\mathcal{T}}^{\sim} \stackrel{\mathrm{def}}{=} \begin{pmatrix} \mathscr{L}_{\mathcal{T}}^{\sim} & \mathcal{T} \\ \mathcal{T}^{*} & \mathscr{R}_{\mathcal{T}}^{\sim} \end{pmatrix} \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$$

For
$$p = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \in \mathfrak{L}_{T}^{\sim}$$
, $q = 1 - p = \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix}$,
 $T \cong \begin{pmatrix} 0 & T \\ 0 & 0 \end{pmatrix} = p(\mathfrak{L}_{T})q$

Definition

Ex

 $e \in T$ is called a tripotent if $[e, e, e] = ee^*e = e$ (\iff e a partial isometry)

$$T = ee^{*}Te^{*}e + \left((1 - ee^{*})Te^{*}e + ee^{*}T(1 - e^{*}e)\right) + (1 - ee^{*})T(1 - e^{*}e)$$

$$\mathfrak{L}_{\mathcal{T}}^{\sim} \stackrel{\mathrm{def}}{=} \begin{pmatrix} \mathscr{L}_{\mathcal{T}}^{\sim} & \mathcal{T} \\ \mathcal{T}^{*} & \mathscr{R}_{\mathcal{T}}^{\sim} \end{pmatrix} \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$$

For
$$p = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \in \mathfrak{L}_T^{\sim}$$
, $q = 1 - p = \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix}$,
 $T \cong \begin{pmatrix} 0 & T \\ 0 & 0 \end{pmatrix} = p(\mathfrak{L}_T)q$

Definition

Ex

 $e \in T$ is called a tripotent if $[e, e, e] = ee^*e = e$ (\iff e a partial isometry)

$$T = ee^{*}Te^{*}e + \left((1 - ee^{*})Te^{*}e + ee^{*}T(1 - e^{*}e)\right) + (1 - ee^{*})T(1 - e^{*}e)$$

$$\mathfrak{L}_{\mathcal{T}}^{\sim} \stackrel{\mathrm{def}}{=} \begin{pmatrix} \mathscr{L}_{\mathcal{T}}^{\sim} & \mathcal{T} \\ \mathcal{T}^{*} & \mathscr{R}_{\mathcal{T}}^{\sim} \end{pmatrix} \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$$

For
$$p = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \in \mathfrak{L}_T^{\sim}$$
, $q = 1 - p = \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix}$,
 $T \cong \begin{pmatrix} 0 & T \\ 0 & 0 \end{pmatrix} = p(\mathfrak{L}_T)q$

Definition

Ex

 $e \in \mathcal{T}$ is called a tripotent if $[e,e,e] = ee^*e = e$ (\iff e a partial isometry)

$$T = ee^{*}Te^{*}e + \left((1 - ee^{*})Te^{*}e + ee^{*}T(1 - e^{*}e)\right) + (1 - ee^{*})T(1 - e^{*}e)$$

$$\mathfrak{L}_{\mathcal{T}}^{\sim} \stackrel{\mathrm{def}}{=} \begin{pmatrix} \mathscr{L}_{\mathcal{T}}^{\sim} & \mathcal{T} \\ \mathcal{T}^{*} & \mathscr{R}_{\mathcal{T}}^{\sim} \end{pmatrix} \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$$

For
$$p = \begin{pmatrix} I & 0 \\ 0 & 0 \end{pmatrix} \in \mathfrak{L}_T^{\sim}$$
, $q = 1 - p = \begin{pmatrix} 0 & 0 \\ 0 & I \end{pmatrix}$,
 $T \cong \begin{pmatrix} 0 & T \\ 0 & 0 \end{pmatrix} = p(\mathfrak{L}_T)q$

Definition

Ex

 $e \in \mathcal{T}$ is called a tripotent if $[e,e,e] = ee^*e = e$ (\iff e a partial isometry)

$$T = ee^{*}Te^{*}e + \left((1 - ee^{*})Te^{*}e + ee^{*}T(1 - e^{*}e)\right) + (1 - ee^{*})T(1 - e^{*}e)$$

$$T = ee^{*}Te^{*}e + \left((1 - ee^{*})Te^{*}e + ee^{*}T(1 - e^{*}e)\right) + (1 - ee^{*})T(1 - e^{*}e)$$

Notation

$$T_{\lambda}(e) = \{x \in T : [e, e, x] + [x, e, e] = \lambda x\} \quad (\lambda = 0, 1, 2)$$

$$T_2(e) = ee^* Te^* e$$

$$T_1(e) = (1 - ee^*)Te^*e + ee^*T(1 - e^*e)$$
$$T_0(e) = (1 - ee^*)T(1 - e^*e)$$

But like projections in C^* -algebras, in general $\exists e \in T \setminus \{0\}$

$$T = ee^{*}Te^{*}e + \left((1 - ee^{*})Te^{*}e + ee^{*}T(1 - e^{*}e)\right) + (1 - ee^{*})T(1 - e^{*}e)$$

Notation

$$T_{\lambda}(e) = \{x \in T : [e, e, x] + [x, e, e] = \lambda x\} \quad (\lambda = 0, 1, 2)$$

$$T_2(e) = ee^* Te^* e$$

$$T_{1}(e) = (1 - ee^{*})Te^{*}e + ee^{*}T(1 - e^{*}e)$$
$$T_{0}(e) = (1 - ee^{*})T(1 - e^{*}e)$$
(e) "is" a C*-algebra (with product $x \cdot y = [x, e, y]$).

But like projections in C^* -algebras, in general $\not\exists e \in T \setminus \{0\}$.

$$T = ee^{*}Te^{*}e + \left((1 - ee^{*})Te^{*}e + ee^{*}T(1 - e^{*}e)\right) + (1 - ee^{*})T(1 - e^{*}e)$$

Notation

$$T_{\lambda}(e) = \{x \in T : [e, e, x] + [x, e, e] = \lambda x\} \quad (\lambda = 0, 1, 2)$$

$$T_2(e) = ee^* Te^* e$$

$$T_1(e) = (1 - ee^*)Te^*e + ee^*T(1 - e^*e)$$

 $T_0(e) = (1 - ee^*)T(1 - e^*e)$

 $T_2(e)$ "is" a C*-algebra (with product $x \cdot y = [x, e, y]$).

But like projections in C^* -algebras, in general $\exists e \in T \setminus \{0\}$.

6/18

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

$$T = ee^{*}Te^{*}e + \left((1 - ee^{*})Te^{*}e + ee^{*}T(1 - e^{*}e)\right) + (1 - ee^{*})T(1 - e^{*}e)$$

Notation

Т

$$T_{\lambda}(e) = \{x \in T : [e, e, x] + [x, e, e] = \lambda x\} \quad (\lambda = 0, 1, 2)$$

$$T_2(e) = ee^* Te^* e$$

$$T_1(e) = (1 - ee^*)Te^*e + ee^*T(1 - e^*e)$$

 $T_0(e) = (1 - ee^*)T(1 - e^*e)$
 $T_2(e)$ "is" a C*-algebra (with product $x \cdot y = [x, e, y]$).

But like projections in C^* -algebras, in general $earrowede Berrowed T \setminus \{0\}$.

$$T = ee^{*}Te^{*}e + \left((1 - ee^{*})Te^{*}e + ee^{*}T(1 - e^{*}e)\right) + (1 - ee^{*})T(1 - e^{*}e)$$

Notation

$$T_{\lambda}(e) = \{x \in T : [e, e, x] + [x, e, e] = \lambda x\} \quad (\lambda = 0, 1, 2)$$

$$T_2(e) = ee^* Te^* e$$

$$egin{aligned} T_1(e) &= (1 - ee^*) Te^* e + ee^* T(1 - e^* e) \ T_0(e) &= (1 - ee^*) T(1 - e^* e) \end{aligned}$$

 $T_2(e)$ "is" a C^* -algebra (with product $x \cdot y = [x, e, y]$).

But like projections in C^* -algebras, in general $\not\exists e \in T \setminus \{0\}$.

If we consider TROs $U \in \mathcal{B}(\mathcal{H})$ that are weak*-closed (or are Banach dual spaces), all extreme points of the unit ball are tripotents.

Bidual or weak* closure of T can be U. Use $\overline{\mathscr{L}_U} = \operatorname{span}\{xy^* : x, y \in U\}^{W^*}$, $\overline{\mathscr{R}_U}$ and $\begin{pmatrix}\overline{\mathscr{L}_U} & U\\ U^* & \overline{\mathscr{R}_U}\end{pmatrix} \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$

Proposition (Zettl)

Weak*-closed 'ideals' $I \subseteq U$ are in 1-1 correspondence with projections $z \in Z(\overline{\mathscr{R}_U})$ via I = Uz.

Definition

If we consider TROs $U \in \mathcal{B}(\mathcal{H})$ that are weak*-closed (or are Banach dual spaces), all extreme points of the unit ball are tripotents.

Bidual or weak* closure of T can be U.

Use $\overline{\mathscr{L}_U} = \operatorname{span}\{xy^* : x, y \in U\}^{w}$, $\overline{\mathscr{R}_U}$ and $\begin{pmatrix} \overline{\mathscr{L}_U} & U \\ U^* & \overline{\mathscr{R}_U} \end{pmatrix} \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$

Proposition (Zettl)

Weak*-closed 'ideals' $I \subseteq U$ are in 1-1 correspondence with projections $z \in Z(\overline{\mathscr{R}_U})$ via I = Uz.

Definition

If we consider TROs $U \in \mathcal{B}(\mathcal{H})$ that are weak*-closed (or are Banach dual spaces), all extreme points of the unit ball are tripotents.

Bidual or weak* closure of T can be U. Use $\overline{\mathscr{L}_U} = \overline{\operatorname{span}\{xy^* : x, y \in U\}}^{w^*}$, $\overline{\mathscr{R}_U}$ and $\begin{pmatrix} \overline{\mathscr{L}_U} & U \\ U^* & \overline{\mathscr{R}_U} \end{pmatrix} \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$

Proposition (Zettl)

Weak*-closed 'ideals' $I \subseteq U$ are in 1-1 correspondence with projections $z \in Z(\overline{\mathscr{R}_U})$ via I = Uz.

Definition

If we consider TROs $U \in \mathcal{B}(\mathcal{H})$ that are weak*-closed (or are Banach dual spaces), all extreme points of the unit ball are tripotents.

Bidual or weak* closure of T can be U. Use $\overline{\mathscr{L}_U} = \overline{\operatorname{span}\{xy^* : x, y \in U\}}^{w^*}$, $\overline{\mathscr{R}_U}$ and $\begin{pmatrix} \overline{\mathscr{L}_U} & U \\ U^* & \overline{\mathscr{R}_U} \end{pmatrix} \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$

Proposition (Zettl)

Weak*-closed 'ideals' $I \subseteq U$ are in 1-1 correspondence with projections $z \in Z(\overline{\mathscr{R}_U})$ via I = Uz.

Definition

If we consider TROs $U \in \mathcal{B}(\mathcal{H})$ that are weak*-closed (or are Banach dual spaces), all extreme points of the unit ball are tripotents.

Bidual or weak* closure of T can be U. Use $\overline{\mathscr{L}_U} = \overline{\operatorname{span}\{xy^* : x, y \in U\}}^{w^*}$, $\overline{\mathscr{R}_U}$ and $\begin{pmatrix} \overline{\mathscr{L}_U} & U \\ U^* & \overline{\mathscr{R}_U} \end{pmatrix} \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$

Proposition (Zettl)

Weak*-closed 'ideals' $I \subseteq U$ are in 1-1 correspondence with projections $z \in Z(\overline{\mathscr{R}_U})$ via I = Uz.

Definition

If we consider TROs $U \in \mathcal{B}(\mathcal{H})$ that are weak*-closed (or are Banach dual spaces), all extreme points of the unit ball are tripotents.

Bidual or weak* closure of T can be U. Use $\overline{\mathscr{L}_U} = \overline{\operatorname{span}\{xy^* : x, y \in U\}}^{w^*}$, $\overline{\mathscr{R}_U}$ and $\begin{pmatrix} \overline{\mathscr{L}_U} & U \\ U^* & \overline{\mathscr{R}_U} \end{pmatrix} \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$

Proposition (Zettl)

Weak*-closed 'ideals' $I \subseteq U$ are in 1-1 correspondence with projections $z \in Z(\overline{\mathscr{R}_U})$ via I = Uz.

Definition

Weak*-closed TROs and biduals

If we consider TROs $U \in \mathcal{B}(\mathcal{H})$ that are weak*-closed (or are Banach dual spaces), all extreme points of the unit ball are tripotents.

Bidual or weak* closure of T can be U. Use $\overline{\mathscr{L}_U} = \overline{\operatorname{span}\{xy^* : x, y \in U\}}^{W^*}$, $\overline{\mathscr{R}_U}$ and $\begin{pmatrix} \overline{\mathscr{L}_U} & U \\ U^* & \overline{\mathscr{R}_U} \end{pmatrix} \subseteq \mathcal{B}(\mathcal{H} \oplus \mathcal{H})$

Proposition (Zettl)

Weak*-closed 'ideals' $I \subseteq U$ are in 1-1 correspondence with projections $z \in Z(\overline{\mathscr{R}_U})$ via I = Uz.

Definition

A W^* -TRO U is called a *left TRO* if U is TRO isomorphic to Wp for $p = p^* = p^2 \in W$, W a W^* -algebra. U is called *square* if $U \cong W$. U square-free if $\not\supseteq I \subseteq U$ with $I \neq \{0\}$ square.

U a W*-TRO implies

 $\textit{U} = \textit{U}_{l} \oplus \textit{U}_{r} \oplus \textit{U}_{s}$

with $U_l/U_r/U_s$ the largest square-free left/ square-free right/ square weak*-closed ideals of U.

Example

U a W*-TRO implies

$$U = U_{\rm l} \oplus U_{
m r} \oplus U_{
m s}$$

with $U_l/U_r/U_s$ the largest square-free left/ square-free right/ square weak*-closed ideals of U.

Example

U a W*-TRO implies

$$U = U_{\rm l} \oplus U_{
m r} \oplus U_{
m s}$$

with $U_l/U_r/U_s$ the largest square-free left/ square-free right/ square weak*-closed ideals of U.

Example

U a W*-TRO implies

$$U = U_{\rm l} \oplus U_{
m r} \oplus U_{
m s}$$

with $U_l/U_r/U_s$ the largest square-free left/ square-free right/ square weak*-closed ideals of U.

Example

Definition

An *involution* of a C*-algebra A is $\Phi: A \to A$ such that Φ is \mathbb{C} -linear, $\Phi(\Phi(a)) = a$, $\Phi(ab) = \Phi(b)\Phi(a)$, and $\Phi(a^*) = \Phi(a)^*$

Definition

A ternary involution of a TRO T is $\phi: T \to T$ C-linear, $\phi(\phi(a)) = a, \ \phi[a, b, c] = [\phi(c), \phi(b), \phi(a)]$ (or $\phi(ab^*c) = \phi(c)(\phi(b))^*\phi(a)).$

Fixed points $T^{\phi} = \{x \in T : \phi(x) = x\} = \{x + \phi(x) : x \in T\}.$ A^{Φ} will be a (closed) Jordan *-algebra of operators (*JC**-algebra). T^{ϕ} will be a *JC**-triple: closed under Jordan triple product

$$\{a, b, c\} \stackrel{\text{def}}{=} ([a, b, c] + [c, b, a])/2 = (ab^*c + cb^*a)/2$$

In fact T^{ϕ} is reversible:

$$x_1 x_2^* x_3 \cdots x_{2n}^* x_{2n+1} + x_{2n+1} x_{2n}^* \cdots x_3 x_2^* x_1 \in T^{\phi}$$

Definition

An *involution* of a C*-algebra A is $\Phi: A \to A$ such that Φ is \mathbb{C} -linear, $\Phi(\Phi(a)) = a$, $\Phi(ab) = \Phi(b)\Phi(a)$, and $\Phi(a^*) = \Phi(a)^*$

Definition

A ternary involution of a TRO T is $\phi: T \to T$ C-linear, $\phi(\phi(a)) = a, \ \phi[a, b, c] = [\phi(c), \phi(b), \phi(a)]$ (or $\phi(ab^*c) = \phi(c)(\phi(b))^*\phi(a)).$

Fixed points $T^{\phi} = \{x \in T : \phi(x) = x\} = \{x + \phi(x) : x \in T\}.$ A^{Φ} will be a (closed) Jordan *-algebra of operators (*JC**-algebra). T^{ϕ} will be a *JC**-triple: closed under Jordan triple product

 $\{a, b, c\} \stackrel{ ext{def}}{=} ([a, b, c] + [c, b, a])/2 = (ab^*c + cb^*a)/2$

In fact T^{ϕ} is reversible:

 $x_{1}x_{2}^{*}x_{3}\cdots x_{2n}^{*}x_{2n+1} + x_{2n+1}x_{2n}^{*}\cdots x_{3}x_{2}^{*}x_{1} \in T^{\phi}$

Definition

An *involution* of a C*-algebra A is $\Phi: A \to A$ such that Φ is \mathbb{C} -linear, $\Phi(\Phi(a)) = a$, $\Phi(ab) = \Phi(b)\Phi(a)$, and $\Phi(a^*) = \Phi(a)^*$

Definition

A ternary involution of a TRO T is $\phi: T \to T$ C-linear, $\phi(\phi(a)) = a, \ \phi[a, b, c] = [\phi(c), \phi(b), \phi(a)]$ (or $\phi(ab^*c) = \phi(c)(\phi(b))^*\phi(a)).$

Fixed points $T^{\phi} = \{x \in T : \phi(x) = x\} = \{x + \phi(x) : x \in T\}.$ A^{ϕ} will be a (closed) Jordan *-algebra of operators (*JC**-algebra). T^{ϕ} will be a *JC**-triple: closed under Jordan triple product

 $\{a, b, c\} \stackrel{ ext{def}}{=} ([a, b, c] + [c, b, a])/2 = (ab^*c + cb^*a)/2$

In fact T^{ϕ} is reversible:

 $x_1 x_2^* x_3 \cdots x_{2n}^* x_{2n+1} + x_{2n+1} x_{2n}^* \cdots x_3 x_2^* x_1 \in \mathcal{T}^{\phi}$

Definition

An *involution* of a C*-algebra A is $\Phi: A \to A$ such that Φ is \mathbb{C} -linear, $\Phi(\Phi(a)) = a$, $\Phi(ab) = \Phi(b)\Phi(a)$, and $\Phi(a^*) = \Phi(a)^*$

Definition

A ternary involution of a TRO T is $\phi: T \to T$ C-linear, $\phi(\phi(a)) = a, \ \phi[a, b, c] = [\phi(c), \phi(b), \phi(a)]$ (or $\phi(ab^*c) = \phi(c)(\phi(b))^*\phi(a)).$

Fixed points $T^{\phi} = \{x \in T : \phi(x) = x\} = \{x + \phi(x) : x \in T\}.$ A^{Φ} will be a (closed) Jordan *-algebra of operators (*JC**-algebra). T^{ϕ} will be a *JC**-triple: closed under Jordan triple product

 $\{a, b, c\} \stackrel{ ext{def}}{=} ([a, b, c] + [c, b, a])/2 = (ab^*c + cb^*a)/2$

In fact T^{ϕ} is reversible:

 $x_1 x_2^* x_3 \cdots x_{2n}^* x_{2n+1} + x_{2n+1} x_{2n}^* \cdots x_3 x_2^* x_1 \in T^{\phi}$

Definition

An *involution* of a C*-algebra A is $\Phi: A \to A$ such that Φ is \mathbb{C} -linear, $\Phi(\Phi(a)) = a$, $\Phi(ab) = \Phi(b)\Phi(a)$, and $\Phi(a^*) = \Phi(a)^*$

Definition

A ternary involution of a TRO T is $\phi: T \to T$ C-linear, $\phi(\phi(a)) = a, \ \phi[a, b, c] = [\phi(c), \phi(b), \phi(a)]$ (or $\phi(ab^*c) = \phi(c)(\phi(b))^*\phi(a)).$

Fixed points $T^{\phi} = \{x \in T : \phi(x) = x\} = \{x + \phi(x) : x \in T\}.$ A^{Φ} will be a (closed) Jordan *-algebra of operators (*JC**-algebra). T^{ϕ} will be a *JC**-triple: closed under Jordan triple product

$$\{a, b, c\} \stackrel{ ext{def}}{=} ([a, b, c] + [c, b, a])/2 = (ab^*c + cb^*a)/2$$

In fact T^{ϕ} is reversible:

 $x_1 x_2^* x_3 \cdots x_{2n}^* x_{2n+1} + x_{2n+1} x_{2n}^* \cdots x_3 x_2^* x_1 \in T^{\phi}$

Definition

An *involution* of a C*-algebra A is $\Phi: A \to A$ such that Φ is \mathbb{C} -linear, $\Phi(\Phi(a)) = a$, $\Phi(ab) = \Phi(b)\Phi(a)$, and $\Phi(a^*) = \Phi(a)^*$

Definition

A ternary involution of a TRO T is $\phi: T \to T$ C-linear, $\phi(\phi(a)) = a, \ \phi[a, b, c] = [\phi(c), \phi(b), \phi(a)]$ (or $\phi(ab^*c) = \phi(c)(\phi(b))^*\phi(a)).$

Fixed points $T^{\phi} = \{x \in T : \phi(x) = x\} = \{x + \phi(x) : x \in T\}.$ A^{Φ} will be a (closed) Jordan *-algebra of operators (*JC**-algebra). T^{ϕ} will be a *JC**-triple: closed under Jordan triple product

$$\{\mathsf{a},\mathsf{b},\mathsf{c}\} \stackrel{\mathrm{def}}{=} ([\mathsf{a},\mathsf{b},\mathsf{c}]+[\mathsf{c},\mathsf{b},\mathsf{a}])/2 = (\mathsf{a}\mathsf{b}^*\mathsf{c}+\mathsf{c}\mathsf{b}^*\mathsf{a})/2$$

In fact T^{ϕ} is *reversible*:

$$x_1 x_2^* x_3 \cdots x_{2n}^* x_{2n+1} + x_{2n+1} x_{2n}^* \cdots x_3 x_2^* x_1 \in T^{\phi}$$

A JC^* -triple is a closed linear $E \subseteq \mathcal{B}(\mathcal{H})$ such that

$$a, b, c \in E \Rightarrow \{a, b, c\} = ([a, b, c] + [c, b, a])/2 \in E$$

Examples

$$E = T$$
 or $E = T^{\phi}$ (e.g. with $T = \mathbb{M}_n(\mathbb{C}), \ \phi(x) = x^t$ or $\phi(x) = -x^t$).

A JC^* -triple is a closed linear $E \subseteq \mathcal{B}(\mathcal{H})$ such that

$$a, b, c \in E \Rightarrow \{a, b, c\} = ([a, b, c] + [c, b, a])/2 \in E$$

Examples

$$E = T$$
 or $E = T^{\phi}$ (e.g. with $T = \mathbb{M}_n(\mathbb{C}), \phi(x) = x^t$ or $\phi(x) = -x^t$).

A JC^* -triple is a closed linear $E \subseteq \mathcal{B}(\mathcal{H})$ such that

$$(a, b, c \in E \Rightarrow \{a, b, c\} = ([a, b, c] + [c, b, a])/2 \in E$$

Examples

$$E = T$$
 or $E = T^{\phi}$ (e.g. with $T = \mathbb{M}_n(\mathbb{C}), \phi(x) = x^t$ or $\phi(x) = -x^t$).

A JC^* -triple is a closed linear $E \subseteq \mathcal{B}(\mathcal{H})$ such that

$$[a, b, c \in E \Rightarrow \{a, b, c\} = ([a, b, c] + [c, b, a])/2 \in E$$

Examples

$$E = T$$
 or $E = T^{\phi}$ (e.g. with $T = \mathbb{M}_n(\mathbb{C}), \phi(x) = x^t$ or $\phi(x) = -x^t$).

Recall: A JC^* -triple is a closed linear $E \subseteq \mathcal{B}(\mathcal{H})$ such that

$$a, b, c \in E \Rightarrow \{a, b, c\} = (ab^*c + cb^*a)/2 \in E$$

Relate to isometric theory of Banach spaces (since triple homomorphisms $\pi: E \to F \subseteq \mathcal{B}(\mathcal{K})$ are contractive).

 $(E, \{\cdot, \cdot, \cdot\})$ abstract triple has no canonical op. space structure.

Neal & Russo found that for many E, there are only a few.

Example

TROs *T* give rise to at least 3 obvious concrete *JC**-triples: E = T, $E = T^{op}$ and $E = \{x \oplus x^{op} : x \in T\} \subseteq T \oplus T^{op}$

Recall: A *JC*^{*}-triple is a closed linear $E \subseteq \mathcal{B}(\mathcal{H})$ such that

$$a, b, c \in E \Rightarrow \{a, b, c\} = (ab^*c + cb^*a)/2 \in E$$

Relate to isometric theory of Banach spaces (since triple homomorphisms $\pi: E \to F \subseteq \mathcal{B}(\mathcal{K})$ are contractive).

 $(E, \{\cdot, \cdot, \cdot\})$ abstract triple has no canonical op. space structure.

Neal & Russo found that for many E, there are only a few.

Example

TROs *T* give rise to at least 3 obvious concrete *JC**-triples: E = T, $E = T^{op}$ and $E = \{x \oplus x^{op} : x \in T\} \subseteq T \oplus T^{op}$

Recall: A *JC*^{*}-triple is a closed linear $E \subseteq \mathcal{B}(\mathcal{H})$ such that

$$a, b, c \in E \Rightarrow \{a, b, c\} = (ab^*c + cb^*a)/2 \in E$$

Relate to isometric theory of Banach spaces (since triple homomorphisms $\pi: E \to F \subseteq \mathcal{B}(\mathcal{K})$ are contractive).

 $(E, \{\cdot, \cdot, \cdot\})$ abstract triple has no canonical op. space structure.

Neal & Russo found that for many E, there are only a few.

Example

TROs *T* give rise to at least 3 obvious concrete *JC**-triples: E = T, $E = T^{op}$ and $E = \{x \oplus x^{op} : x \in T\} \subseteq T \oplus T^{op}$

Recall: A *JC*^{*}-triple is a closed linear $E \subseteq \mathcal{B}(\mathcal{H})$ such that

$$a, b, c \in E \Rightarrow \{a, b, c\} = (ab^*c + cb^*a)/2 \in E$$

Relate to isometric theory of Banach spaces (since triple homomorphisms $\pi: E \to F \subseteq \mathcal{B}(\mathcal{K})$ are contractive).

 $(E, \{\cdot, \cdot, \cdot\})$ abstract triple has no canonical op. space structure.

Neal & Russo found that for many E, there are only a few.

Example

TROs *T* give rise to at least 3 obvious concrete *JC**-triples: E = T, $E = T^{op}$ and $E = \{x \oplus x^{op} : x \in T\} \subseteq T \oplus T^{op}$

Recall: A *JC*^{*}-triple is a closed linear $E \subseteq \mathcal{B}(\mathcal{H})$ such that

$$a, b, c \in E \Rightarrow \{a, b, c\} = (ab^*c + cb^*a)/2 \in E$$

Relate to isometric theory of Banach spaces (since triple homomorphisms $\pi: E \to F \subseteq \mathcal{B}(\mathcal{K})$ are contractive).

 $(E, \{\cdot, \cdot, \cdot\})$ abstract triple has no canonical op. space structure.

Neal & Russo found that for many E, there are only a few.

Example

TROs *T* give rise to at least 3 obvious concrete *JC**-triples: E = T, $E = T^{op}$ and $E = \{x \oplus x^{op} : x \in T\} \subseteq T \oplus T^{op}$

Recall: A *JC*^{*}-triple is a closed linear $E \subseteq \mathcal{B}(\mathcal{H})$ such that

$$a, b, c \in E \Rightarrow \{a, b, c\} = (ab^*c + cb^*a)/2 \in E$$

Relate to isometric theory of Banach spaces (since triple homomorphisms $\pi: E \to F \subseteq \mathcal{B}(\mathcal{K})$ are contractive).

 $(E, \{\cdot, \cdot, \cdot\})$ abstract triple has no canonical op. space structure.

Neal & Russo found that for many E, there are only a few.

Example

TROS *T* give rise to at least 3 obvious concrete JC^* -triples: E = T, $E = T^{\text{op}}$ and $E = \{x \oplus x^{\text{op}} : x \in T\} \subseteq T \oplus T^{\text{op}}$

These examples are reversible. In latter case $E = (T \oplus T^{op})^{\phi}$ where $\phi(x \oplus y^{op}) = y \oplus x^{op}$.

Recall: A *JC*^{*}-triple is a closed linear $E \subseteq \mathcal{B}(\mathcal{H})$ such that

$$a, b, c \in E \Rightarrow \{a, b, c\} = (ab^*c + cb^*a)/2 \in E$$

Relate to isometric theory of Banach spaces (since triple homomorphisms $\pi: E \to F \subseteq \mathcal{B}(\mathcal{K})$ are contractive).

 $(E, \{\cdot, \cdot, \cdot\})$ abstract triple has no canonical op. space structure.

Neal & Russo found that for many E, there are only a few.

Example

TROs *T* give rise to at least 3 obvious concrete JC^* -triples: E = T, $E = T^{\text{op}}$ and $E = \{x \oplus x^{\text{op}} : x \in T\} \subseteq T \oplus T^{\text{op}}$

For each JC^* -triple E there is a largest TRO $T^*(E)$ generated by (triple isomorphic copies of) E

Definition

A *JC*^{*}-triple *E* is called *universally reversible* if $\pi(E)$ is reversible for each triple hom $\pi: E \to \mathcal{B}(\mathcal{K})$.

 $\exists \text{ canonical ternary involution } \phi_E \colon T^*(E) \to T^*(E) \text{ fixing } \alpha_E(E).$ $E \text{ is UR } \iff \alpha_E(E) \text{ reversible } \iff E = (T^*(E))^{\phi_E}$

For each JC^* -triple E there is a largest TRO $T^*(E)$ generated by (triple isomorphic copies of) E

Definition

A *JC*^{*}-triple *E* is called *universally reversible* if $\pi(E)$ is reversible for each triple hom $\pi: E \to \mathcal{B}(\mathcal{K})$.

 $\exists \text{ canonical ternary involution } \phi_E \colon T^*(E) \to T^*(E) \text{ fixing } \alpha_E(E).$ $E \text{ is UR } \iff \alpha_E(E) \text{ reversible } \iff E = (T^*(E))^{\phi_E}$

For each JC^* -triple E there is a largest TRO $T^*(E)$ generated by (triple isomorphic copies of) E

Definition

A *JC*^{*}-triple *E* is called *universally reversible* if $\pi(E)$ is reversible for each triple hom $\pi: E \to \mathcal{B}(\mathcal{K})$.

 $\exists \text{ canonical ternary involution } \phi_E \colon T^*(E) \to T^*(E) \text{ fixing } \alpha_E(E).$ $E \text{ is UR } \iff \alpha_E(E) \text{ reversible } \iff E = (T^*(E))^{\phi_E}$

For each JC^* -triple E there is a largest TRO $T^*(E)$ generated by (triple isomorphic copies of) E

Definition

A *JC*^{*}-triple *E* is called *universally reversible* if $\pi(E)$ is reversible for each triple hom $\pi: E \to \mathcal{B}(\mathcal{K})$.

 $\exists \text{ canonical ternary involution } \phi_E \colon T^*(E) \to T^*(E) \text{ fixing } \alpha_E(E).$ $E \text{ is UR } \iff \alpha_E(E) \text{ reversible } \iff E = (T^*(E))^{\phi_E}$

For each JC^* -triple E there is a largest TRO $T^*(E)$ generated by (triple isomorphic copies of) E

Definition

A *JC*^{*}-triple *E* is called *universally reversible* if $\pi(E)$ is reversible for each triple hom $\pi: E \to \mathcal{B}(\mathcal{K})$.

 $\exists \text{ canonical ternary involution } \phi_E \colon T^*(E) \to T^*(E) \text{ fixing } \alpha_E(E).$ $E \text{ is UR } \iff \alpha_E(E) \text{ reversible } \iff E = (\mathcal{T}^*(E))^{\phi_E}$

For each JC^* -triple E there is a largest TRO $T^*(E)$ generated by (triple isomorphic copies of) E

Definition

A *JC*^{*}-triple *E* is called *universally reversible* if $\pi(E)$ is reversible for each triple hom $\pi: E \to \mathcal{B}(\mathcal{K})$.

 $\exists \text{ canonical ternary involution } \phi_E \colon T^*(E) \to T^*(E) \text{ fixing } \alpha_E(E).$ $E \text{ is UR } \iff \alpha_E(E) \text{ reversible } \iff E = (T^*(E))^{\phi_E}$

If E = T a TRO, then E is universally reversible $\iff \nexists$ TRO homs from T onto row or column Hilbert spaces of dimension ≥ 3 . If \nexists on any dimension bar dimension 2, $T^*(E) = T \oplus T^{\text{op}}$.

Example

 $E = \mathbb{M}_{n,m}(\mathbb{C}) \subset T^*(E) = \mathbb{M}_{n,m}(\mathbb{C}) \oplus \mathbb{M}_{m,n}(\mathbb{C}) \text{ via } x \mapsto x \oplus x^t \text{ if } \min(n,m) > 1.$ In this case, given any JC^* -triple $F \subseteq \mathcal{B}(K)$ and a linear isometry $\pi \colon E \twoheadrightarrow F$

If E = T a TRO, then E is universally reversible $\iff \not\exists$ TRO homs from T onto row or column Hilbert spaces of dimension ≥ 3 . If $\not\exists$ on any dimension bar dimension 2, $T^*(E) = T \oplus T^{\text{op}}$.

Example

 $E = \mathbb{M}_{n,m}(\mathbb{C}) \subset T^*(E) = \mathbb{M}_{n,m}(\mathbb{C}) \oplus \mathbb{M}_{m,n}(\mathbb{C}) \text{ via } x \mapsto x \oplus x^t \text{ if } \min(n,m) > 1.$ In this case, given any JC^* -triple $F \subseteq \mathcal{B}(K)$ and a linear isometry $\pi \colon E \twoheadrightarrow F$

If E = T a TRO, then E is universally reversible $\iff \not\exists$ TRO homs from T onto row or column Hilbert spaces of dimension ≥ 3 . If $\not\exists$ on any dimension bar dimension 2, $T^*(E) = T \oplus T^{\text{op}}$.

Example

 $E = \mathbb{M}_{n,m}(\mathbb{C}) \subset T^*(E) = \mathbb{M}_{n,m}(\mathbb{C}) \oplus \mathbb{M}_{m,n}(\mathbb{C})$ via $x \mapsto x \oplus x^t$ if $\min(n,m) > 1$.

In this case, given any JC^* -triple $F \subseteq \mathcal{B}(K)$ and a linear isometry $\pi: E \twoheadrightarrow F$

If E = T a TRO, then E is universally reversible $\iff \not\exists$ TRO homs from T onto row or column Hilbert spaces of dimension ≥ 3 . If $\not\exists$ on any dimension bar dimension 2, $T^*(E) = T \oplus T^{\text{op}}$.

Example

 $E = \mathbb{M}_{n,m}(\mathbb{C}) \subset T^*(E) = \mathbb{M}_{n,m}(\mathbb{C}) \oplus \mathbb{M}_{m,n}(\mathbb{C}) \text{ via } x \mapsto x \oplus x^t \text{ if } \min(n,m) > 1.$ In this case, given any JC^* -triple $F \subseteq \mathcal{B}(K)$ and a linear isometry $\pi \colon E \twoheadrightarrow F$

TRO(F) $\cong T^*(E)/\ker \tilde{\pi}$ and only 3 valid ker $\tilde{\pi}$: {0}, {0} $\oplus \mathbb{M}_{m,n}$, $\mathbb{M}_{n,m} \oplus \{0\}$.

If E = T a TRO, then E is universally reversible $\iff \not\exists$ TRO homs from T onto row or column Hilbert spaces of dimension ≥ 3 . If $\not\exists$ on any dimension bar dimension 2, $T^*(E) = T \oplus T^{\text{op}}$.

Example

 $E = \mathbb{M}_{n,m}(\mathbb{C}) \subset T^*(E) = \mathbb{M}_{n,m}(\mathbb{C}) \oplus \mathbb{M}_{m,n}(\mathbb{C}) \text{ via } x \mapsto x \oplus x^t \text{ if } \min(n,m) > 1.$ In this case, given any JC^* -triple $F \subseteq \mathcal{B}(K)$ and a linear isometry $\pi \colon E \twoheadrightarrow F$

If E = T a TRO, then E is universally reversible $\iff \not\exists$ TRO homs from T onto row or column Hilbert spaces of dimension ≥ 3 . If $\not\exists$ on any dimension bar dimension 2, $T^*(E) = T \oplus T^{\text{op}}$.

Example

 $E = \mathbb{M}_{n,m}(\mathbb{C}) \subset T^*(E) = \mathbb{M}_{n,m}(\mathbb{C}) \oplus \mathbb{M}_{m,n}(\mathbb{C}) \text{ via } x \mapsto x \oplus x^t \text{ if } \min(n,m) > 1.$ In this case, given any JC^* -triple $F \subseteq \mathcal{B}(K)$ and a linear isometry $\pi \colon E \twoheadrightarrow F$

If E = T a TRO, then E is universally reversible $\iff \not\exists$ TRO homs from T onto row or column Hilbert spaces of dimension ≥ 3 . If $\not\exists$ on any dimension bar dimension 2, $T^*(E) = T \oplus T^{\text{op}}$.

Example

 $E = \mathbb{M}_{n,m}(\mathbb{C}) \subset T^*(E) = \mathbb{M}_{n,m}(\mathbb{C}) \oplus \mathbb{M}_{m,n}(\mathbb{C}) \text{ via } x \mapsto x \oplus x^t \text{ if } \min(n,m) > 1.$ In this case, given any JC^* -triple $F \subseteq \mathcal{B}(K)$ and a linear isometry $\pi \colon E \twoheadrightarrow F$

If U is a W*-TRO, ϕ a ternary involution of U, then $\phi(U_s) = U_s$, $\phi(U_l) = U_r$, $\phi(U_r) = U_l$,

 $U^{\phi}\cong (U_{\mathrm{s}})^{\phi}\oplus U_{\mathrm{r}}$

Note that if U is universally reversible, so are summands $U_{\rm l}$ and $U_{\rm r}$. In fact $U_{\rm s}$ is always universally reversible. We can also pass easily from involutions ϕ of a TRO T to bidual

Theorem

If T is a TRO, T universally reversible as a JC^* -triple, ϕ a ternary involution of T, then T^{ϕ} is universally reversible unless there is ternary hom $\pi: T \to \mathbb{M}_n(\mathbb{C})$ with n = 3 or 4 and $\pi(\phi(x)) = -(\pi(x))^t$.

If U is a W*-TRO, ϕ a ternary involution of U, then $\phi(U_s) = U_s$, $\phi(U_l) = U_r$, $\phi(U_r) = U_l$,

 $U^{\phi}\cong (U_{\mathrm{s}})^{\phi}\oplus U_{\mathrm{r}}$

Note that if U is universally reversible, so are summands $U_{\rm l}$ and $U_{\rm r}$. In fact $U_{\rm s}$ is always universally reversible. We can also pass easily from involutions ϕ of a TRO T to bidual

Theorem

If T is a TRO, T universally reversible as a JC*-triple, ϕ a ternary involution of T, then T^{ϕ} is universally reversible unless there is ternary hom $\pi: T \to \mathbb{M}_n(\mathbb{C})$ with n = 3 or 4 and $\pi(\phi(x)) = -(\pi(x))^t$.

If U is a W*-TRO, ϕ a ternary involution of U, then $\phi(U_s) = U_s$, $\phi(U_l) = U_r$, $\phi(U_r) = U_l$,

 $U^{\phi}\cong (U_{\mathrm{s}})^{\phi}\oplus U_{\mathrm{r}}$

Note that if U is universally reversible, so are summands U_l and U_r . In fact U_s is always universally reversible.

We can also pass easily from involutions ϕ of a TRO T to bidual.

Theorem

If T is a TRO, T universally reversible as a JC*-triple, ϕ a ternary involution of T, then T^{ϕ} is universally reversible unless there is ternary hom $\pi: T \to \mathbb{M}_n(\mathbb{C})$ with n = 3 or 4 and $\pi(\phi(x)) = -(\pi(x))^t$.

If U is a W*-TRO, ϕ a ternary involution of U, then $\phi(U_s) = U_s$, $\phi(U_l) = U_r$, $\phi(U_r) = U_l$,

$$U^{\phi}\cong (U_{\mathrm{s}})^{\phi}\oplus U_{\mathrm{r}}$$

Note that if U is universally reversible, so are summands $U_{\rm l}$ and $U_{\rm r}$. In fact $U_{\rm s}$ is always universally reversible. We can also pass easily from involutions ϕ of a TRO T to bidual.

Theorem

If T is a TRO, T universally reversible as a JC*-triple, ϕ a ternary involution of T, then T^{ϕ} is universally reversible unless there is ternary hom $\pi: T \to \mathbb{M}_n(\mathbb{C})$ with n = 3 or 4 and $\pi(\phi(x)) = -(\pi(x))^t$.

If U is a W*-TRO, ϕ a ternary involution of U, then $\phi(U_s) = U_s$, $\phi(U_l) = U_r$, $\phi(U_r) = U_l$,

$$U^{\phi} \cong (U_{\mathrm{s}})^{\phi} \oplus U_{\mathrm{r}}$$

Note that if U is universally reversible, so are summands $U_{\rm l}$ and $U_{\rm r}$. In fact $U_{\rm s}$ is always universally reversible. We can also pass easily from involutions ϕ of a TRO T to bidual.

Theorem

If T is a TRO, T universally reversible as a JC*-triple, ϕ a ternary involution of T, then T^{ϕ} is universally reversible unless there is ternary hom $\pi: T \twoheadrightarrow M_n(\mathbb{C})$ with n = 3 or 4 and $\pi(\phi(x)) = -(\pi(x))^t$.

(Conversely) If *E* is a universally reversible JC^* -triple, then $T = T^*(E)$ has a canonical involution ϕ with $E = T^{\phi}$ — and T must be universally reversible.

Proof depends on results charactierising universal reversibility of JC^* -triples in terms of 'factor' representations. There are 4 classes of (Cartan) factors:

- $E = \mathcal{B}(H, K)$ (or $E = \mathcal{B}(\mathcal{H})p$ up to isometry)
- $E = \{ x \in \mathcal{B}(\mathcal{H}) : x^t = x \} (\dim H > 1)$ S_{dim H}

O V_n spin factors, spanned by the identity and n 'spins' (= anticommuting (selfadjoint) unitaries with square the identity). (n ≥ 2)

All Cartan factor *JC**-triples are dual spaces.

(Conversely) If *E* is a universally reversible JC^* -triple, then $T = T^*(E)$ has a canonical involution ϕ with $E = T^{\phi}$ — and *T* must be universally reversible.

Proof depends on results charactierising universal reversibility of JC^* -triples in terms of 'factor' representations. There are 4 classes of (Cartan) factors:

- $E = \mathcal{B}(H, K)$ (or $E = \mathcal{B}(\mathcal{H})p$ up to isometry)
- $E = \{ x \in \mathcal{B}(\mathcal{H}) : x^t = x \} (\dim H > 1)$ S_{dim H}

O V_n spin factors, spanned by the identity and n 'spins' (= anticommuting (selfadjoint) unitaries with square the identity). (n ≥ 2)

All Cartan factor *JC**-triples are dual spaces.

(Conversely) If *E* is a universally reversible JC^* -triple, then $T = T^*(E)$ has a canonical involution ϕ with $E = T^{\phi}$ — and *T* must be universally reversible.

Proof depends on results charactierising universal reversibility of JC^* -triples in terms of 'factor' representations.

There are 4 classes of (Cartan) factors:

•
$$E = \mathcal{B}(H, K)$$
 (or $E = \mathcal{B}(\mathcal{H})p$ up to isometry)

$$E = \{x \in \mathcal{B}(\mathcal{H}) : x^t = x\} (\dim H > 1)$$

V_n spin factors, spanned by the identity and n 'spins' (= anticommuting (selfadjoint) unitaries with square the identity). (n ≥ 2)

All Cartan factor JC^* -triples are dual spaces.

(Conversely) If *E* is a universally reversible JC^* -triple, then $T = T^*(E)$ has a canonical involution ϕ with $E = T^{\phi}$ — and *T* must be universally reversible.

Proof depends on results charactierising universal reversibility of JC^* -triples in terms of 'factor' representations. There are 4 classes of (Cartan) factors:

•
$$E = \mathcal{B}(H, K)$$
 (or $E = \mathcal{B}(\mathcal{H})p$ up to isometry)

$$E = \{ x \in \mathcal{B}(\mathcal{H}) : x^t = x \} (\dim H > 1)$$

Odim H

3
$$A_{\dim H} = \{x \in \mathcal{B}(\mathcal{H}) : x^t = -x\}, \dim H \ge 5$$

O V_n spin factors, spanned by the identity and n 'spins' (= anticommuting (selfadjoint) unitaries with square the identity). (n ≥ 2)

All Cartan factor JC^* -triples are dual spaces.

(Conversely) If *E* is a universally reversible JC^* -triple, then $T = T^*(E)$ has a canonical involution ϕ with $E = T^{\phi}$ — and *T* must be universally reversible.

Proof depends on results charactierising universal reversibility of JC^* -triples in terms of 'factor' representations. There are 4 classes of (Cartan) factors:

9
$$E = \mathcal{B}(H, K)$$
 (or $E = \mathcal{B}(\mathcal{H})p$ up to isometry)

$$E = \{ x \in \mathcal{B}(\mathcal{H}) : x^t = x \} (\dim H > 1)$$

 $S_{\dim H}$

V_n spin factors, spanned by the identity and n 'spins' (= anticommuting (selfadjoint) unitaries with square the identity). (n ≥ 2)

All Cartan factor JC^* -triples are dual spaces.

(Conversely) If *E* is a universally reversible JC^* -triple, then $T = T^*(E)$ has a canonical involution ϕ with $E = T^{\phi}$ — and *T* must be universally reversible.

Proof depends on results charactierising universal reversibility of JC^* -triples in terms of 'factor' representations. There are 4 classes of (Cartan) factors:

(
$$E = \mathcal{B}(H, K)$$
 (or $E = \mathcal{B}(\mathcal{H})p$ up to isometry)

$$E = \{x \in \mathcal{B}(\mathcal{H}) : x^t = x\} \text{ (dim } H > 1)$$

$$S_{\text{dim } H}$$

V_n spin factors, spanned by the identity and n 'spins' (= anticommuting (selfadjoint) unitaries with square the identity). (n ≥ 2)

All Cartan factor *JC**-triples are dual spaces.

(Conversely) If *E* is a universally reversible JC^* -triple, then $T = T^*(E)$ has a canonical involution ϕ with $E = T^{\phi}$ — and *T* must be universally reversible.

Proof depends on results charactierising universal reversibility of JC^* -triples in terms of 'factor' representations. There are 4 classes of (Cartan) factors:

•
$$E = \mathcal{B}(H, K)$$
 (or $E = \mathcal{B}(\mathcal{H})p$ up to isometry)

$$E = \{x \in \mathcal{B}(\mathcal{H}) : x^t = x\} \text{ (dim } H > 1)$$

$$S_{\text{dim } H}$$

V_n spin factors, spanned by the identity and n 'spins' (= anticommuting (selfadjoint) unitaries with square the identity). (n ≥ 2)

All Cartan factor JC^* -triples are dual spaces.

(Conversely) If *E* is a universally reversible JC^* -triple, then $T = T^*(E)$ has a canonical involution ϕ with $E = T^{\phi}$ — and *T* must be universally reversible.

Proof depends on results charactierising universal reversibility of JC^* -triples in terms of 'factor' representations. There are 4 classes of (Cartan) factors:

•
$$E = \mathcal{B}(H, K)$$
 (or $E = \mathcal{B}(\mathcal{H})p$ up to isometry)

$$E = \{x \in \mathcal{B}(\mathcal{H}) : x^t = x\} \text{ (dim } H > 1)$$

$$S_{\text{dim } H}$$

V_n spin factors, spanned by the identity and n 'spins' (= anticommuting (selfadjoint) unitaries with square the identity). (n ≥ 2)

All Cartan factor JC^* -triples are dual spaces.

If E is a JC*-triple, E universally reversible \iff it has no factor representations onto Hilbert spaces of dimension ≥ 3 or V_n for $n \ge 4$.

If U is a JW*-triple (dual space, or has a weak*-closed realisation in $\mathcal{B}(\mathcal{H})$), need only consider weak*-continuous representations onto factors.

E is univerally reversible $\iff E^{**}$ is.

Since $\pi: U \to C$ weak*-continuous has ker π a weak*-closed ideal, $U = (\ker \pi) \oplus_{\infty} (\ker \pi)^{\perp}$.

Cartan factors contain minimal tripotents, ones where

$$E_2(e) = \{x \in E : 2\{e, e, x\} = ee^*x + xe^*e = 2x\}$$

has dim $E_2(e) = 1$.

Corollary

Can rephrase using (factor) ideals in E^{**} generated by minimal tripotents. For E = T a TRO, V_n ruled out (restate).

うへで 16/18

If E is a JC*-triple, E universally reversible \iff it has no factor representations onto Hilbert spaces of dimension ≥ 3 or V_n for $n \ge 4$.

If U is a JW*-triple (dual space, or has a weak*-closed realisation in $\mathcal{B}(\mathcal{H})$), need only consider weak*-continuous representations onto factors.

E is univerally reversible $\iff E^{**}$ is. Since $\pi: U \to C$ weak*-continuous has ker π a weak*-closed ideal, $U = (\ker \pi) \oplus_{\infty} (\ker \pi)^{\perp}$.

Cartan factors contain minimal tripotents, ones where

$$E_2(e) = \{x \in E : 2\{e, e, x\} = ee^*x + xe^*e = 2x\}$$

has dim $E_2(e) = 1$.

Corollary

Can rephrase using (factor) ideals in E^{**} generated by minimal tripotents. For E = T a TRO, V_n ruled out (restate).

うへで 16/18

If E is a JC*-triple, E universally reversible \iff it has no factor representations onto Hilbert spaces of dimension ≥ 3 or V_n for $n \ge 4$.

If U is a JW^{*}-triple (dual space, or has a weak^{*}-closed realisation in $\mathcal{B}(\mathcal{H})$), need only consider weak^{*}-continuous representations onto factors.

E is univerally reversible $\iff E^{**}$ is.

Since $\pi: U \to C$ weak*-continuous has ker π a weak*-closed ideal, $U = (\ker \pi) \oplus_{\infty} (\ker \pi)^{\perp}$.

Cartan factors contain minimal tripotents, ones where

$$E_2(e) = \{x \in E : 2\{e, e, x\} = ee^*x + xe^*e = 2x\}$$

has dim $E_2(e) = 1$.

Corollary

Can rephrase using (factor) ideals in E^{**} generated by minimal tripotents. For E = T a TRO, V_n ruled out (restate).

16/18

If E is a JC*-triple, E universally reversible \iff it has no factor representations onto Hilbert spaces of dimension ≥ 3 or V_n for $n \ge 4$.

If U is a JW^{*}-triple (dual space, or has a weak^{*}-closed realisation in $\mathcal{B}(\mathcal{H})$), need only consider weak^{*}-continuous representations onto factors.

E is univerally reversible $\iff E^{**}$ is.

Since $\pi: U \to C$ weak*-continuous has ker π a weak*-closed ideal, $U = (\ker \pi) \oplus_{\infty} (\ker \pi)^{\perp}$.

Cartan factors contain minimal tripotents, ones where

$$E_2(e) = \{x \in E : 2\{e, e, x\} = ee^*x + xe^*e = 2x\}$$

has dim $E_2(e) = 1$.

Corollary

Can rephrase using (factor) ideals in E^{**} generated by minimal tripotents. For E = T a TRO, V_n ruled out (restate).

うへで 16/18

If E is a JC*-triple, E universally reversible \iff it has no factor representations onto Hilbert spaces of dimension ≥ 3 or V_n for $n \ge 4$.

If U is a JW^{*}-triple (dual space, or has a weak^{*}-closed realisation in $\mathcal{B}(\mathcal{H})$), need only consider weak^{*}-continuous representations onto factors.

E is univerally reversible $\iff E^{**}$ is.

Since $\pi: U \to C$ weak*-continuous has ker π a weak*-closed ideal, $U = (\ker \pi) \oplus_{\infty} (\ker \pi)^{\perp}$.

Cartan factors contain minimal tripotents, ones where

$$E_2(e) = \{x \in E : 2\{e, e, x\} = ee^*x + xe^*e = 2x\}$$

has dim $E_2(e) = 1$.

Corollary

Can rephrase using (factor) ideals in E^{**} generated by minimal tripotents. For E = T a TRO, V_n ruled out (restate).

If E is a JC*-triple, E universally reversible \iff it has no factor representations onto Hilbert spaces of dimension ≥ 3 or V_n for $n \ge 4$.

If U is a JW*-triple (dual space, or has a weak*-closed realisation in $\mathcal{B}(\mathcal{H})$), need only consider weak*-continuous representations onto factors.

E is univerally reversible $\iff E^{**}$ is.

Since $\pi: U \to C$ weak*-continuous has ker π a weak*-closed ideal, $U = (\ker \pi) \oplus_{\infty} (\ker \pi)^{\perp}$.

Cartan factors contain minimal tripotents, ones where

$$E_2(e) = \{x \in E : 2\{e, e, x\} = ee^*x + xe^*e = 2x\}$$

has dim $E_2(e) = 1$.

Corollary

Can rephrase using (factor) ideals in E^{**} generated by minimal tripotents.

For E = T a TRO, V_n ruled out (restate).

If E is a JC*-triple, E universally reversible \iff it has no factor representations onto Hilbert spaces of dimension ≥ 3 or V_n for $n \ge 4$.

If U is a JW^{*}-triple (dual space, or has a weak^{*}-closed realisation in $\mathcal{B}(\mathcal{H})$), need only consider weak^{*}-continuous representations onto factors.

E is univerally reversible $\iff E^{**}$ is.

Since $\pi: U \to C$ weak*-continuous has ker π a weak*-closed ideal, $U = (\ker \pi) \oplus_{\infty} (\ker \pi)^{\perp}$.

Cartan factors contain minimal tripotents, ones where

$$E_2(e) = \{x \in E : 2\{e, e, x\} = ee^*x + xe^*e = 2x\}$$

has dim $E_2(e) = 1$.

Corollary

Can rephrase using (factor) ideals in E^{**} generated by minimal tripotents. For E = T a TRO, V_n ruled out (restate).

If T is a TRO, T universally reversible as a JC^* -triple, ϕ a ternary involution of T, then T^{ϕ} is universally reversible unless there is ternary hom $\pi: T \twoheadrightarrow \mathbb{M}_n(\mathbb{C})$ with n = 3 or 4 and $\pi(\phi(x)) = -(\pi(x))^t$.

ldea for proof.

Pass to bidual $U = T^{**}$. Extend ϕ . Easy to see $(T^{\phi})^{**} = U^{\phi}$. Recall

 $U^{\phi}\cong (U_{\mathrm{s}})^{\phi}\oplus U_{\mathrm{r}}$

If T is a TRO, T universally reversible as a JC*-triple, ϕ a ternary involution of T, then T^{ϕ} is universally reversible unless there is ternary hom $\pi: T \twoheadrightarrow \mathbb{M}_n(\mathbb{C})$ with n = 3 or 4 and $\pi(\phi(x)) = -(\pi(x))^t$.

Idea for proof.

Pass to bidual $U = T^{**}$. Extend ϕ . Easy to see $(T^{\phi})^{**} = U^{\phi}$. Recall

 $U^{\phi} \cong (U_{\mathrm{s}})^{\phi} \oplus U_{\mathrm{r}}$

If T is a TRO, T universally reversible as a JC^* -triple, ϕ a ternary involution of T, then T^{ϕ} is universally reversible unless there is ternary hom $\pi: T \twoheadrightarrow \mathbb{M}_n(\mathbb{C})$ with n = 3 or 4 and $\pi(\phi(x)) = -(\pi(x))^t$.

Idea for proof.

Pass to bidual $U = T^{**}$. Extend ϕ . Easy to see $(T^{\phi})^{**} = U^{\phi}$. Recall

 $U^{\phi}\cong (U_{
m s})^{\phi}\oplus U_{
m r}$

If T is a TRO, T universally reversible as a JC*-triple, ϕ a ternary involution of T, then T^{ϕ} is universally reversible unless there is ternary hom $\pi: T \twoheadrightarrow \mathbb{M}_n(\mathbb{C})$ with n = 3 or 4 and $\pi(\phi(x)) = -(\pi(x))^t$.

Idea for proof.

Pass to bidual $U = T^{**}$. Extend ϕ . Easy to see $(T^{\phi})^{**} = U^{\phi}$. Recall

$$U^{\phi}\cong (U_{
m s})^{\phi}\oplus U_{
m r}$$

Look at minimal tripotents $e \in (U_s)^{\phi}$. Either minimal in U_s or the sum of two minimals f, g in U_s exchanged by ϕ .

Weak*-closed ideals of $U_{\rm s}$ generated by f and g may be the same or exchanged by ϕ . Must be Type I.

If T is a TRO, T universally reversible as a JC^* -triple, ϕ a ternary involution of T, then T^{ϕ} is universally reversible unless there is ternary hom $\pi: T \twoheadrightarrow \mathbb{M}_n(\mathbb{C})$ with n = 3 or 4 and $\pi(\phi(x)) = -(\pi(x))^t$.

Idea for proof.

Pass to bidual $U = T^{**}$. Extend ϕ . Easy to see $(T^{\phi})^{**} = U^{\phi}$. Recall

$$U^{\phi}\cong (U_{\mathrm{s}})^{\phi}\oplus U_{\mathrm{r}}$$

Theorem (Solel 2001)

Let $\pi: U \to V$ be a surjective linear isometry between W^* -TROs. Then there are $\pi_1, \pi_2: U \to V$ with π_1 a TRO homomorphism, π_2 a TRO anti-homomorphism, $\pi_1(U) \perp \pi_2(U)$ and $\pi = \pi_1 + \pi_2$. Moreover there is a central projection z in the left W^* -algebra $\overline{\mathscr{L}_V}$ of V with $\pi_1(x) = z\pi(x)$ for $x \in U$.

Proof in one case.

If U is univerally reversible with no 1-dim reps, we know $T^*(U) = U \oplus U^{\text{op}}$.

Theorem (Solel 2001)

Let $\pi: U \to V$ be a surjective linear isometry between W^* -TROs. Then there are $\pi_1, \pi_2: U \to V$ with π_1 a TRO homomorphism, π_2 a TRO anti-homomorphism, $\pi_1(U) \perp \pi_2(U)$ and $\pi = \pi_1 + \pi_2$. Moreover there is a central projection z in the left W^* -algebra $\overline{\mathscr{L}_V}$ of V with $\pi_1(x) = z\pi(x)$ for $x \in U$.

Proof in one case.

If U is universally reversible with no 1-dim reps, we know $\mathcal{T}^*(U) = U \oplus U^{\operatorname{op}}.$

