
DECOMPOSITION RANK OF Z-STABLE C∗-ALGEBRAS

AARON TIKUISIS AND WILHELM WINTER

Abstract. We show that C∗-algebras of the form C(X)⊗Z, where X is com-

pact and Hausdorff and Z denotes the Jiang–Su algebra, have decomposition
rank at most 2. This amounts to a dimension reduction result for C∗-bundles

with sufficiently regular fibres. It establishes an important case of a conjecture

on the fine structure of nuclear C∗-algebras of Toms and the second named
author, even in a nonsimple setting, and gives evidence that the topological

dimension of noncommutative spaces is governed by fibres rather than base
spaces.

1. Introduction

The structure and classification theory of nuclear C∗-algebras has seen rapid pro-
gress in recent years, largely spurred by the subtle interplay between certain topo-
logical and algebraic regularity properties, such as finite topological dimension,
tensorial absorption of suitable strongly self-absorbing C∗-algebras and order com-
pleteness of homological invariants, see [12] for an overview. In the simple and
unital case, these relations were formalized by A. Toms and the second named
author as follows:

Conjecture 1.1. For a separable, simple, unital, nonelementary, stably finite and
nuclear C∗-algebra A, the following are equivalent:

(i) A has finite decomposition rank, drA <∞,
(ii) A is Z-stable, A ∼= A⊗Z,
(iii) A has strict comparison of positive elements.

Here, decomposition rank is a notion of noncommutative topological dimension
introduced in [25], Z denotes the Jiang–Su algebra introduced in [17] and strict
comparison essentially means that positive elements may be compared in terms
of tracial values of their support projections, cf. [37]. If one drops the finiteness
assumption on A, one should replace (i) by

(i’) A has finite nuclear dimension, dimnucA <∞,

where nuclear dimension [53] is a variation of the decomposition rank which can
have finite values also for infinite C∗-algebras.

The conjecture still makes sense in the nonsimple situation, provided one asks A
to have no elementary subquotients (this is a minimal requirement for Z-stability);
one also has to be slightly more careful about the definition of comparison in this
case.

Nuclearity in this context manifests itself most prominently via approximation
properties with particularly nice completely positive maps [2, 14].
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Conjecture 1.1 has a number of important consequences for the structure of
nuclear C∗-algebras and it has turned out to be pivotal for many recent classifi-
cation results, especially in view of the examples given in [35, 40, 46]. Moreover,
it highlights the striking analogy between the classification program for nuclear
C∗-algebras, cf. [9], and Connes’ celebrated classification of injective II1 factors [3].

Implications (i), (i’) =⇒ (ii) =⇒ (iii) of Conjecture 1.1 are by now known to hold
in full generality [36, 51, 52]; (iii) =⇒ (ii) has been established under certain addi-
tional structural hypotheses [30, 52], all of which in particular guarantee sufficient
divisibility properties.

Arguably, it is (ii) =⇒ (i) which remains the least well understood of these
implications. While there are promising partial results available [28, 52, 53], all of
these factorize through classification theorems of some sort. This in turn makes it
hard to explicitly identify the origin of finite dimensionality.1

In the simple purely infinite (hence O∞-stable, hence Z-stable [21, 23]) case,
one has to use Kirchberg–Phillips classification [20, 22] as well as a range result
providing models to exhaust the invariant [34] and then again Kirchberg–Phillips
classification to show that these models have finite nuclear dimension [53].2

In the simple stably finite case, at this point only approximately homogeneous
(AH) algebras or approximately subhomogeneous (ASH) algebras for which pro-
jections separate traces are covered [27, 29, 49, 50]. (This approach also includes
crossed products associated to uniquely ergodic minimal dynamical systems [44,
43].) While both of these classes after stabilizing with Z can by now be shown
directly to consist of TAI and TAF algebras [28], again finite topological dimension
will only follow from classification results [11, 27, 41, 51] and after comparing to
models which exhaust the invariant [10, 45]; see also [34] for an overview. (Note
that certain crossed products are shown directly to have finite nuclear dimension,
or even finite decomposition rank, in [16, 39]; however, Z-stability is not assumed
in these cases.)

Once again, the classification procedure does not make it entirely transparent
where the finite topological dimension comes from, but at least Elliott–Gong–Li
classification of simple AH algebras (of very slow dimension growth – later shown
to be equivalent to slow dimension growth and to Z-stability [52]) heavily relies
on Gong’s deep dimension-reduction theorem [13]. Gong gives an essentially ex-
plicit way of replacing a given AH limit decomposition with one of low topological
dimension. However, this method is technically very involved and requires both
simplicity and the given inductive limit decomposition. It does not fully explain to
what extent the two are necessary; in particular, it is in principle conceivable that
a decomposition similar to that of Gong exists for algebras of the form C(X)⊗Q
(with Q being the universal UHF algebra).

In this article we show how finite topological dimension indeed arises for algebras
of this type; in fact, we are able to cover algebras of the form C(X)⊗Z, and hence
also locally homogeneous Z-stable C∗-algebras (not necessarily simple, or with a
prescribed inductive limit structure). We hope our argument will shed new light

1We would like to point out that after this article appeared on the arXiv, Matui and Sato have
posted a very nice paper [31] in which they prove Z-stability for separable, simple, unital, nuclear
and Z-stable C∗-algebras provided these are quasidiagonal and have a unique tracial state. While
this result is restricted to the simple and monotracial case (conditions we do not need at all), it
only uses quasidiagonality as additional structural hypothesis (and this is of course much more

general than our local homogeneity). Their approach heavily relies on deep results of Connes and

of Haagerup and in a sense is almost perpendicular to ours; we believe that the two methods
nicely complement each other.

2Matui and Sato’s article [31] also contains a proof of finite nuclear dimension for simple purely
infinite C∗-algebras, which does not rely on classification.
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on the conceptual reasons why finite topological dimension should arise in the pres-
ence of sufficient C∗-algebraic regularity. Our method is based on approximately
embedding the cone over the Cuntz algebra O2 into tracially small subalgebras of
the algebra in question; these play a similar role as the small corners used in the
definition of TAF algebras [26] or the small hereditary subalgebras in property SI
[30]. We mention that we only obtain (a strong version of) finite decomposition
rank, whereas Gong’s reduction theorem yields an inductive limit decomposition;
however, for many purposes finite decomposition rank is sufficient, cf. [44, 51].

In [24], algebras of the form C(X) ⊗ O2 were shown to be approximated by
algebras of the form C(Γ)⊗O2 with Γ one-dimensional. Since O2 is by now known
to have finite nuclear dimension [53], this may be regarded as strong evidence that
the topological dimension of a C∗-bundle depends on the noncommutative size of
the fibres more than the size of the base space. (A somewhat similar phenomenon
was already observed for stable rank by Rieffel [32].)

It is remarkable that [24] does not rely on a classification result in any way. It
does, however, mix commutativity (of the structure algebra) and pure infiniteness
(of the fibres).

It is not clear from [24] whether such a dimension type reduction also occurs
in the setting of stably finite fibres. In the present article we show that it does,
by developing a method to transport [24] to the situation where the fibres are
UHF algebras (to pass to the case where each fibre is Z then requires a certain
amount of additional machinery – at least if one wants to increase the dimension
by no more than one). The crucial concept to link purely infinite and stably finite
fibres is quasidiagonality of the cone over O2, discovered by Voiculescu and by
Kirchberg [19, 47]. In many ways it is most interesting just to know that the Z-
stable C∗-algebras in our main result have finite decomposition rank, and the very
small bound that we are able to derive is secondary. Certain technicalities can be
circumvented, using [1, Lemma 3.1] in order to prove just finite decomposition rank,
as we describe in Remarks 4.8 and 4.9. We are indebted to one of the referees for
suggesting this shortcut.

One should mention that the fact that the fibres are specific strongly self-
absorbing algebras in both [24] and in our result plays an important, but in some
sense secondary role: In [24] (combined with [53]) one can replace O2 with O∞, or
in fact with any UCT Kirchberg algebra, and still arrive at finite nuclear dimension.
More generally, our result yields the respective statement if the fibres have finite
nuclear dimension and are Z-stable, e.g. in the simple, nuclear, classifiable case.

While at the current stage we only cover the case of highly homogeneous bundles,
it will be an important task to handle bundles with non-Hausdorff spectrum, e.g.
B ⊗ Z with B subhomogeneous, in order to also cover transformation group C∗-
algebras. This will be pursued in subsequent work by combining our technical
Lemma 4.7 with the methods of [49]; in preparation, we have stated 4.7 in a form
slightly more general than necessary for the current main result, Theorem 4.1. One
of the referees has raised the question of whether (local) triviality of C(X) ⊗ Z
is needed to show that it has finite decomposition rank, particularly in light of
the interesting examples of C(X)-algebras appearing in [6, 15]; in response, we
have added Section 5, in which we show that our result easily extends to nontrivial
bundles such as these examples.

We would like to take this opportunity to thank both referees for their careful
proofreading and inspiring comments.
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We remind the reader that the Jiang-Su algebra Z is an inductive limit of so-
called dimension-drop C∗-algebras
(1.1)
Zp0,p1 := {f ∈ C([0, 1],Mp0⊗Mp1) : f(0) ∈Mp0⊗C ·1p1 and f(1) ∈ C ·1p0⊗Mp1},
where p0, p1 ∈ N are coprime, and it can be defined as the unique simple, mono-
tracial limit of such algebras. It has also been realized as an inductive limit of
generalized dimension-drop algebras, which are defined as in (1.1), but with p0, p1

taken to be coprime supernatural numbers (so that Mpi denotes a UHF algebra)
[38, Theorem 3.4]. The connecting maps in this inductive limit have the crucial
feature of being trace-collapsing.

2. Decomposition rank of homomorphisms

In this section, we introduce the notions of decomposition rank and nuclear di-
mension of ∗-homomorphisms, building naturally on the respective notions for C∗-
algebras, just as nuclearity for ∗-homomorphisms arises from the completely positive
approximation property for C∗-algebras. We first recall the notion of completely
positive contractive (c.p.c.) order zero maps, cf. [48].

Definition 2.1. Let A,B be C∗-algebras and let φ : A → B be a c.p.c. map. We
say that φ has order zero if it preserves orthogonality in the sense that if a, b ∈ A+

satisfy ab = 0 then φ(a)φ(b) = 0.

Definition 2.2. Let α : A → B be a ∗-homomorphism of C∗-algebras. We say
that α has decomposition rank at most n, and denote dr (α) ≤ n, if for any finite
subset F ⊂ A and any ε > 0, there exists a finite dimensional C∗-algebra F and
c.p.c. maps

ψ : A→ F and φ : F → B

such that φ is (n+ 1)-colourable, in the sense that we can write

F = F (0) ⊕ . . .⊕ F (n)

and φ|F (i) has order zero for all i, and such that φψ is point-norm close to α, in
the sense that for a ∈ F ,

‖α(a)− φψ(a)‖ < ε.

We may define nuclear dimension of α similarly (and denote dimnuc(α) ≤ n),
where instead of requiring that φ is contractive, we only ask that φ|F (i) is contractive
for each i.

Remark 2.3. Notice that the decomposition rank (respectively nuclear dimension)
of a C∗-algebra, as defined in [25, Definition 3.1] (respectively [53, Definition 2.1])
is just the decomposition rank (respectively nuclear dimension) of the identity map.

The following generalizes some permanence properties for decomposition rank
and nuclear dimension of C∗-algebras. Proofs are omitted, as they are essentially
the same as those found in [25, 48, 53].

Proposition 2.4. Let A,B be C∗-algebras and let α : A→ B be a ∗-homomorphism.

(i) Suppose that A is locally approximated by a family of C∗-subalgebras (Aλ)Λ,
in the sense that for every finite subset F ⊂ A and every tolerance ε > 0,
there exists λ such that F ⊂ε Aλ. Then

dr (α) ≤ sup
Λ

dr (α|Aλ)

and
dimnuc(α) ≤ sup

Λ
dimnuc(α|Aλ).
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(ii) If C ⊂ A is a hereditary C∗-subalgebra, then

dr (αC) ≤ dr (α)

and
dimnuc(αC) ≤ dimnuc(α),

where αC := α|C : C → her(α(C)).

When computing the decomposition rank (or nuclear dimension), it is often
convenient to replace the codomain by its sequence algebra, defined to be

A∞ :=
(∏

NA
)
/
(⊕

NA
)
.

We shall denote by
π∞ :

∏
NA→ A∞

the quotient map, and by ι∞ : A → A∞ the canonical embedding as constant
sequences.

Proposition 2.5. Let α : A→ B be a ∗-homomorphism.
Then,

dr (α) = dr (ι∞ ◦ α)

and
dimnuc(α) = dimnuc(ι∞ ◦ α).

Proof. Straightforward, using stability of the relations defining c.p.c. order zero
maps on finite dimensional domains [25]. �

Proposition 2.6. Let D be a strongly self-absorbing C∗-algebra, as defined in [42],
and let A be a D-stable C∗-algebra.

Then
dr (A) = dr (idA ⊗ 1D)

and
dimnuc(A) = dimnuc(idA ⊗ 1D).

Proof. This follows easily from the fact that idD has approximate factorizations of
the form

D idD⊗1D−→ D ⊗D φ−→ A⊗D,
where φ is a ∗-isomorphism. �

3. C(X)-algebras and decomposition rank

For a locally compact Hausdorff space X, a C0(X)-algebra is a C∗-algebra A
equipped with a nondegenerate ∗-homomorphism C0(X) → ZM(A), called the
structure map [18, Definition 1.5]. Here,M(A) refers to the multiplier algebra of A
and ZM(A) to its centre; note that if A is unital, then so is the structure map. In
this section, we study the decomposition rank of such structure maps. Proposition
3.2 below is reminiscent of [48, Proposition 2.19] which shows that the completely
positive rank of C(X) equals the covering dimension of X.

Definition 3.1. Let A be a C0(X)-algebra and let a ∈ A. Define the support of a to
be the smallest closed set F ⊂ X such that ag = 0 whenever g ∈ C0(X\F ) ⊂ C0(X).
(This is easily seen to be well-defined.)

We note the following property of order zero maps, which was obtained in the
proof of [25, Proposition 5.1] (6th line from the bottom of page 79): if φ : A → B
is an order zero map and A is a unital C∗-algebra, then

(3.1) ‖φ(x)‖ = ‖φ(1A)‖ ‖x‖
for any x ∈ A.
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Proposition 3.2. Let X be a compact Hausdorff space, and let A be a unital
C(X)-algebra with structure map ι : C(X)→ Z(A).

The following are equivalent.

(i) dr (ι) ≤ n.
(ii) dimnuc(ι) ≤ n.
(iii) The definition of dr (ι) ≤ n holds with the additional requirements that F

is abelian and ψ is a unital ∗-homomorphism.
(iv) For any finite open cover U of X, any ε > 0, and any b ∈ C(X), there

exists an (n + 1)-colourable ε-approximate finite partition of b; that is,

positive elements b
(i)
j ∈ A for i = 0, . . . , n, j = 1, . . . , r, such that

(a) for each i, the elements b
(i)
1 , . . . , b

(i)
r are pairwise orthogonal,

(b) for each i, j, the support of b
(i)
j is contained in some open set in the

given cover U ,

(c) ‖
∑
i,j b

(i)
j − ι(b)‖ ≤ ε.

Proof. (iii) ⇒ (i) ⇒ (ii) is obvious.
(ii) ⇒ (iv): Let us first assume b = 1. Let F be a finite partition of unity such

that, for each f ∈ F , there exists Uf ∈ U such that supp f ⊂ Uf . Set

(3.2) η :=
ε

2|F|(n+ 1)
.

Use dimnuc(ι) ≤ n to obtain

C(X)
ψ−→ F (0) ⊕ . . .⊕ F (n) φ−→ A

such that ψ is c.p.c., φ|F (i) is c.p.c. and order zero for all i = 0, . . . , n, φ(ψ(f)) =η f
for f ∈ F , and φ(ψ(1)) =ε/2 1. Let

F (i) =

ri⊕
j=1

Mm(i,j).

(By throwing in some zero summands if necessary, we may as well assume all the
ri’s to be equal.)

For each i = 0, . . . , n and j = 1, . . . , ri, we set

a
(i)
j :=

(
φ(ψ(1C(X))1Mm(i,j)

)− ε

2(n+ 1)

)
+

.

For each i, since φ|F (i) is order zero, a
(i)
1 , . . . , a

(i)
ri are orthogonal. We estimate

1 =ε/2 φ(ψ(1))

=

n∑
i=0

ri∑
j=1

φ(ψ(1)1Mm(i,j)
)

= (n+1)ε
2(n+1)

∑
i,j

a
(i)
j ,

where the last approximation is obtained using the fact that the inner summands
are orthogonal.

Lastly, we must verify that each a
(i)
j has support contained in an open set from

the cover U . Fix i and j. Let fi,j ∈ F maximize f 7→ ‖ψ(f)1Mm(i,j))‖. We shall

show that the support of a
(i)
j is contained in the support of fi,j by showing that

a
(i)
j |K = 0, where

K := {x ∈ X : fi,j = 0}.
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Since 1 =
∑
f∈F f , we must have

(3.3) ‖ψ(fi,j)1Mm(i,j)
‖ ≥ 1

|F|
‖ψ(1)1Mm(i,j)

‖.

Noting that

fi,j =η φ(ψ(fi,j))
≥ φ(ψ(fi,j)1Mm(i,j)

),

we must have

(3.4) ‖φ(ψ(fi,j)1Mm(i,j)
)|K‖ ≤ η.

We get

‖φ(ψ(1)1Mm(i,j)
)|K‖

(3.1)
= ‖φ(1Mm(i,j)

)|K‖ ‖ψ(1)1Mm(i,j)
‖

(3.3)

≤ ‖φ(1Mm(i,j)
)|K‖ |F| ‖ψ(fi,j)1Mm(i,j)

‖
(3.1)
= ‖φ(ψ(fi,j)1Mm(i,j)

)|K‖
(3.2),(3.4)

≤ ε

2(n+ 1)
;

therefore, a
(i)
j |K = 0, as required.

If b is not the unit, we may still assume that ‖b‖ ≤ 1 and use the argument above

to obtain an (n + 1)-colourable approximate partition of unity (a
(i)
j ) subordinate

to U . Then simply set b
(i)
j = ba

(i)
j .

(iv)⇒ (iii): It will suffice to prove the condition in (iii) assuming that F consists
of self-adjoint contractions.

Take an open cover U of X along with points xU ∈ U for every U ∈ U such that,
for any f ∈ F , U ∈ U and x ∈ U ,

(3.5) |f(x)− f(xU )| < ε

2
.

Use (iv) with b = 1 to find an (n+ 1)-colourable ε
2 -approximate partition of unity

(a
(i)
j )i=0,...,n; j=1,...,r

subordinate to U . By a standard rescaling argument, we may assume that
∑
a

(i)
j ≤

1. For each i, j, let U(i, j) ∈ U be such that supp a
(i)
j ⊂ U(i, j).

Define ψ : C(X)→ (Cr)n by

ψ(f) = (f(xU(i,j)))i=0,...,n; j=1,...,r

and define φ : (Cr)n → C(X,A) by

φ(λi,j)i=0,...,n; j=1,...,r =
∑
i,j

λi,j · a(i)
j .

Clearly, ψ is a ∗-homomorphism, while φ is c.p.c. and its restriction to each copy
of Cr is order zero.

To verify that φ ◦ ψ approximates θ in the appropriate sense, fix f ∈ F and
x ∈ X. We shall show that ‖φψ(f)(x)− f(x)‖ < ε (in the fibre A(x)). Let

S = {(i, j) ∈ {0, . . . , n} × {1, . . . , r} : x ∈ U(i, j)},

so that

φ(ψ(f))(x) =
∑

(i,j)∈S

f(xU(i,j)) · a
(i)
j (x),
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and

1 =ε/2

∑
(i,j)∈S

a
(i)
j (x).

By (3.5),

(f(x)− ε/2) ·
∑

(i,j)∈S

a
(i)
j (x) ≤

∑
(i,j)∈S

f(xU(i,j)) · a
(i)
j (x)

≤ (f(x) + ε/2) ·
∑

(i,j)∈S

a
(i)
j (x).

It follows that
φ(ψ(f)) =

∑
(i,j)∈S

f(xU(i,j)) · a
(i)
j

=ε/2 f(x) ·
∑

(i,j)∈S

a
(i)
j

=ε/2 f(x),

as required. �

Proposition 3.3. Let X be a locally compact metrizable space with finite covering
dimension, and let A be a C0(X)-algebra all of whose fibres are isomorphic to O2.
Let U ⊂ X be an open subset such that U is compact.

Then C0(U)A ∼= C0(U,O2) as C0(U)-algebras.

Proof. [5, Theorem 1.1] says that A|U ∼= C(U,O2), as C(U)-algebras. Viewing
C0(U)A as an ideal of A|U , the result follows. �

4. Decomposition rank of C0(X,Z)

In this section, we prove our main result:

Theorem 4.1. Let A be a C∗-algebra which is locally approximated by hereditary
subalgebras of C∗-algebras of the form C(X,K), with X compact Hausdorff.

Then

dr (A⊗Z) ≤ 2.

In particular, any Z-stable AH C∗-algebra has decomposition rank at most 2.

In our proof, we will make use of the huge amount of space provided by the non-
commutative fibres in two ways. First, we exhaust the identity on X by pairwise
orthogonal functions up to a tracially small hereditary subalgebra. This will be
designed to host an algebra of the form C0(Z)⊗O2, which is possible by quasidiag-
onality of the cone over O2. The first factor embedding of C0(Z) into the latter can
be approximated by 2-colourable maps as shown by Kirchberg and Rørdam (see
below). Together with the initial set of functions we obtain a 3-colourable, hence
2-dimensional, approximation of the first factor embedding of C(X) into C(X)⊗Z.

We will first carry out this construction with a UHF algebra in place of Z; a
slight modification will then allow us to pass to certain C([0, 1])-algebras with UHF
fibres, which immediately yields the general case.

In fact, if one is only concerned with showing that A⊗Z has finite decomposition
rank, our argument can be significantly shortened; using [1, Lemma 3.1], it suffices
to show that A⊗U has finite decomposition rank, when U is an infinite dimensional,
self-absorbing UHF algebra. Remarks 4.8 and 4.9 describe how one can easily
modify (and skip some long technicalities in) the arguments below, in order to
efficiently prove that A⊗Z has finite decomposition rank.

As noted above, a result of Kirchberg and Rørdam [24, Proposition 3.7] on 1-
dimensional approximations in the case of O2-fibred bundles is a crucial ingredient;
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this in turn relies on the fact that the unitary group of C(S1,O2) is connected [4].
We note the following direct consequence which is more adapted to our needs.

Theorem 4.2. For any locally compact Hausdorff space X, the decomposition rank
of the first factor embedding C0(X)→ C0(X,O2) is at most one.

Proof. Let us begin with the case that X is compact and metrizable. By [24, Propo-
sition 3.7], there exists a ∗-subalgebra A ⊂ C(X,O2) which contains C(X) ⊗ 1O2

and is isomorphic to C(Y ) where Y is compact metrizable with covering dimen-
sion at most one. Therefore, the decomposition rank of the first factor embed-
ding C(X) → C(X) ⊗ O2 is at most the decomposition rank of the inclusion
C(X)⊗ 1O2 ⊂ A, which in turn is at most drA ≤ 1.

For X compact but not metrizable, C(X) is locally approximated by finitely
generated unital subalgebras, which are of the form C(Y ) where Y is compact and
metrizable. Therefore by Proposition 2.4 (i), the claim holds in this case too.

For the case that X is not compact, we let X̃ denote the one-point compactifi-
cation of X. Then C0(X,O2) is the hereditary subalgebra of C(X̃,O2) generated
by C0(X), and therefore the result follows from Proposition 2.4 (ii). �

Remark 4.3. The preceding result also implies that dimnuc(A⊗O2) ≤ 3 for A as
in Theorem 4.1 – this can be seen using Proposition 2.6, [53, Theorem 7.4] and the
analogue of [53, Proposition 2.3 (ii)].

In what follows, Dn denotes the diagonal subalgebra of Mn.

Lemma 4.4. Let I1, . . . , In ⊂ (0, 1) be nonempty closed intervals and let a1/2 ∈
C0((0, 1), Dn)+ be a function of norm 1 such that for t ∈ Is, the sth diagonal entry
of a1/2(t) is 1.

Then there exist a0, a1, e0, e1/2, e1 ∈ C([0, 1], Dn)+ such that

(i) e0 and e1 are orthogonal,
(ii) a0 + a1/2 + a1 = e0 + e1/2 + e1 = 1,
(iii) for i = 0, 1, we have ai(i) = 1n,
(iv) e0, e1 act like a unit on a0, a1 respectively,
(v) a1/2 acts like a unit on e1/2.

Proof. Since Dn
∼= Cn, it suffices to work in one coordinate at a time – that is to

say, to assume that n = 1. Then define

a0(x) :=

{
1− a1/2(x), if x is to the left of I1

0, otherwise;

a1(x) :=

{
1− a1/2(x), if x is to the right of I1

0, otherwise.

Note that since a1/2 ≡ 1 on I1, these are continuous. Now, we may find continuous
orthogonal functions e0, e1 such that e0 is 1 to the left of I1 and e1 is 1 to the right of
I1. Finally, set e1/2 := 1−(e0 +e1). Then (i), (ii), (iii) clearly hold by construction.
(iv) holds since each ai is nonzero only on one side of I1, and the corresponding ei
is identically 1 on that side. Likewise, (v) holds since e1/2 is nonzero only on I1,
where a1/2 is identically 1. �

We mention the following well-known fact explicitly for convenience. Here, ⊗
denotes the minimal tensor product.

Proposition 4.5. Let A1, A2, B1, B2 be C∗-algebras, and suppose that φ(i) : Ai →
(Bi)∞ is a ∗-homomorphism for i = 1, 2 with a c.p. lift (φ

(i)
k )N : Ai →

∏
NBi.
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Then
φ1 ⊗ φ2 = π∞ ◦ (φ

(1)
k ⊗ φ

(2)
k )N : A1 ⊗A2 → (B1 ⊗B2)∞

is a ∗-homomorphism.

Lemma 4.6. Let A be an infinite dimensional UHF algebra.
Then there exist positive orthogonal contractions

a0, a1 ∈ C([0, 1], A)∞,

a ∗-homomorphism
ψ : C0(Z,O2)→ C0((0, 1), A)∞

where Z = (0, 1]2, and a positive element c ∈ Cc(Z,C·1O2
) such that ψ(c) commutes

with a0, a1,

(4.1) a0 + a1 + ψ(c) = 1,

and for i = 0, 1, we have ai(i) = 1. In addition, there exist positive contractions
e0, e1/2, e1 ∈ C([0, 1], A)∞ such that

(i) e0, e1 are orthogonal,
(ii) e0 + e1/2 + e1 = 1,

(iii) ψ(c) acts like a unit on e1/2,
(iv) ei acts like a unit on ai for i = 0, 1,
(v) e0, e1/2, e1, a0, a1, ψ(c) all commute.

Proof. Let A = Mn1n2... where n1, n2, . . . are a sequence of natural numbers ≥ 2.
Since the cone over O2 is quasidiagonal, cf. [47] and [19, Theorem 5.1], there exists
a sequence of c.p.c. maps

φk : C0((0, 1],O2)→Mn1...nk

which are approximately multiplicative and approximately isometric, meaning that
for all a, b ∈ C0((0, 1],O2),

‖φk(a)φk(b)− φk(ab)‖ → 0

and
‖φk(a)‖ → ‖a‖

as k →∞. Fix a positive element

d ∈ Cc((0, 1],C · 1O2
)

of norm 1.
For each k, let λk denote the greatest eigenvalue of φk(d). Note that

λk = ‖φk(d)‖ → 1

as k →∞.
Fix k for a moment and let l = n1 . . . nk. Let

I1, . . . , Il

be nonempty disjoint closed intervals in (0, 1). Let

u1, . . . , ul ∈Ml

be unitaries such that, for each s, usφk(d)u∗s is a diagonal matrix whose sth diagonal
entry is λk. Let

h1, . . . , hl ∈ C0((0, 1))

be positive normalized functions with disjoint support, such that hs|Is ≡ 1 for each
s. Set Z := (0, 1]2 and define

ψk : C0(Z,O2) ∼= C0((0, 1])⊗ C0((0, 1],O2)

→ C([0, 1])⊗Ml
∼= C([0, 1],Ml) ⊂ C([0, 1], A)
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by

ψk(f ⊗ b) =

l∑
s=1

f(hs)⊗ usφk(b)u∗s.

Let f ∈ Cc((0, 1]) be a function satisfying f(1) = 1 and set

c = f ⊗ d ∈ Cc(Z,C · 1O2
).

By construction, ψk(c) ∈ C((0, 1), Dl)+, and for t ∈ Is, the sth diagonal entry is
λk. Let

c′k ∈ C([0, 1], Dl)+

be of norm 1, such that
‖c′k − ψk(c)‖ = |1− λk|

and for t ∈ Is, the sth diagonal entry is 1. Feeding

a1/2 := c′k

to Lemma 4.4, let

a0,k, a1,k, e0,k, e1/2,k, e1,k ∈ C([0, 1], Dl)+

be the output, satisfying (i)-(v) of Lemma 4.4.
Having found these for each k, set

ψ := π∞ ◦ (ψ1, ψ2, . . . ) : C0(Z,O2)→ C([0, 1], A)∞.

Set
ai := π∞(ai,1, ai,2, . . . )

for i = 0, 1 and
ei := π∞(ei,1, ei,2, . . . )

for i = 0, 1
2 , 1.

Since all unitaries in Ml (and in particular, all us’s) are in the same path com-
ponent, ψk is unitarily equivalent to α⊗ φk, where

α : C0((0, 1])→ C([0, 1])

is the ∗-homomorphism given by

f 7→ f(h1 + . . .+ hl).

From this observation and Proposition 4.5, it follows that ψ is a ∗-homomorphism.
Notice further that

ψ(c) = π∞(c′1, c
′
2, . . . ),

and therefore, drawing on the finite stage results, we see that

a0 + a1 + ψ(c) = 1

and that (i)-(v) hold. �

Lemma 4.7. Let p, q > 1 be natural numbers. Let X = [0, 1]m for some m and let
ε > 0.

Then there exist positive orthogonal elements

h0, . . . , hk ∈ C(X,Z)∞,

a ∗-homomorphism
φ : C0(Z,O2)→ C(X,Z)∞

for some locally compact, metrizable, finite dimensional space Z, and a positive
element c ∈ Cc(Z,C · 1O2

) such that φ(c) commutes with h0, . . . , hk,

h0 + . . .+ hk + φ(c) = 1,

and the support of hi has diameter at most ε for i = 0, . . . , k with respect to the `∞

metric on [0, 1]m.
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In addition, there exist positive contractions e0, e1/2, e1 ∈ C(X,Z)∞ such that

(i) e0, e1 are orthogonal,
(ii) e0 + e1/2 + e1 = 1,

(iii) ej is identically 1 on {j} × [0, 1]m−1, for j = 0, 1,
(iv) φ(c) acts like a unit on e1/2,
(v) e0 + e1 acts like a unit on hi for all i = 0, . . . , k,

(vi) e0, e1/2, e1, h0, . . . , hk, φ(c) all commute.

Remark 4.8. This lemma of course holds with a self-absorbing UHF algebra in
place of Z (since such a UHF algebra contains Z). But, in fact, this variation is
shown in Steps 1 and 2 of the proof below, and, as we will see in Remark 4.9, this
variation is sufficient to prove that A⊗Z as in Theorem 4.1 has finite decomposition
rank. A reader only interested in showing finite decomposition rank may therefore
skip the third step of the proof below.

Proof. This will be proven in three steps. In Step 1, we will prove the statement of
the proposition with Z replaced by a UHF algebra of infinite type and with m = 1.
In Step 2, we will still replace A by a UHF algebra of infinite type, but allow any
m ∈ N. Step 3 will be the proof of the proposition.

Step 1. Let A be a UHF algebra of infinite type. Let

a0, a1, ψ, c, e
′
0, e
′
1/2, e

′
1, Z

be as in Lemma 4.6, with e′i in place of ei. Note that each ai has a positive
normalized lift

(ai,j)
∞
j=1 ∈

∏
N C([0, 1], A)

such that ai,j(t) = δi,t1 for all i, t = 0, 1 and all j; likewise, each e′i, i = 0, 1
2 , 1 has

a positive normalized lift

(e′i,j)
∞
j=1 ∈

∏
N C([0, 1], A)

such that, for i = 0, 1, e′i,j(i) = 1.
Let k ≥ 2/ε be a natural number. For i = 0, . . . , k, j ∈ N, and t ∈ [0, 1], set

(4.2) hi,j(t) :=


0, if t ≤ i−1

k or t ≥ i+1
k ,

a1,j(kt− (i− 1)), if t ∈
[
i−1
k , ik

]
,

a0,j(kt− i), if t ∈
[
i
k ,

i+1
k

]
.

Note that the endpoint conditions on ai,j make hi,j well-defined and continuous on
[0, 1]. Likewise, set

(4.3) ei,j(t) :=


e′i,j(0), if t = 0,

e′i,j(1), if t ≥ 1
k ,

e′i,j(kt), if t ∈
[
0, 1

k

]
.

Set
hi := π∞(hi,1, hi,2, . . . ), ei := π∞(ei,1, ei,2, . . . ) ∈ C([0, 1], A)∞

for i = 0, 1. Choose a c.p.c. lift for ψ, i.e., c.p.c. maps

ψj : C0(Z,O2)→ C0((0, 1), A) ⊂ C([0, 1], A)

such that
ψ := π∞ ◦ (ψ1, ψ2, . . . ).

Define
φj : C0(Z,O2)→ C([0, 1], A)

by

(4.4) φj(a)(t) = ψj(a)(kt− i),
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if i ∈ N is such that t ∈
[
i
k ,

i+1
k

]
. Note that this is well-defined since the image of

ψj is contained in C0((0, 1), A). Use (φj)
∞
j=1 to define

φ = π∞ ◦ (φ1, φ2, . . . ) : C0(Z,O2)→ C([0, 1], A)∞.

Then φ is a ∗-homomorphism.
Let us first show that h0 + . . .+ hk + φ(c) = 1, and then that (i)-(vi) hold. For

t ∈ [0, 1], let i be such that t ∈
[
i
k ,

i+1
k

]
. Then by (4.2), we have for all i,

hi(t) = a0(kt− i), hi+1(t) = a1(kt− i) and hj(t) = 0

for j 6= i, i+ 1. Thus,

(h0 + . . .+ hk + φ(c))(t)
(4.4)
= a0(kt− i) + a1(kt− i) + ψ(c)(kt− i)

(4.1)
= 1.

Properties (i) and (ii) hold by Lemma 4.6 (i) and (ii), and since for each t ∈ [0, 1],
there exists s such that ej(t) = e′j(s) for j = 0, 1

2 , 1 (by (4.3)). Property (iii) holds
since ei(i) = e′i(i) (by (4.3)) and since ai(i) = 1.

(iv): e1/2 is supported on
[
0, 1

k

]
, so it suffices to show that

(φ(c)e1/2)(t) = e1/2(t)

for t ∈
[
0, 1

k

]
. But for such t,

(φ(c)e1/2)(t)
(4.3),(4.4)

= ψ(c)(kt)e′1/2(kt)

Lemma 4.6 (iii)
= e′1/2(kt)

(4.3)
= e1/2(t).

(v): By a similar computation (this time using Lemma 4.6 (iv)), we see that
e0a0 = a0, while e1ai = ai for i = 1, . . . , k.

(vi) is clear from (4.2), (4.3), (4.4), and Lemma 4.6 (v).
Finally, also, for each i, the support of hi is contained in

[
i−1
k , i+1

k

]
, which has

diameter at most ε.

Step 2. From Step 1, let

g0, . . . , gk′ ∈ C([0, 1], A)∞

be orthogonal positive contractions,

ψ : C0(Y,O2)→ C([0, 1], A)∞

be a ∗-homomorphism for some locally compact, metrizable, finite dimensional
space Y , and d ∈ Cc(Y,C · 1O2) a positive contraction such that ψ(d) commutes
with g0, . . . , gk′ ,

g0 + . . .+ gk′ + ψ(d) = 1

and the support of gi has diameter at most ε for i = 0, . . . , k′; furthermore, let

e′0, e
′
1/2, e

′
1 ∈ C([0, 1], A)∞

be such that

(i’) e′0, e
′
1 are orthogonal,

(ii’) e′0 + e′1/2 + e′1 = 1,

(iii’) e′j is identically 1 on {j} × [0, 1]m−1, for j = 0, 1,
(iv’) ψ(d) acts like a unit on e′1/2,

(v’) e′0 + e′1 acts like a unit on gi for all i = 0, . . . , k′,
(vi’) e′0, e

′
1/2, e

′
1, g0, . . . , gk′ , ψ(d) all commute.
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For i = (i1, . . . , im) ∈ {0, . . . , k′}m, set

hi := gi1 ⊗ . . .⊗ gim ∈ (C([0, 1], A)⊗m)∞,

where we have used the canonical inclusion

(C([0, 1], A)∞)⊗m → (C([0, 1], A)⊗m)∞,

cf. Proposition 4.5.
Then {hi} is a set of pairwise orthogonal positive contractions, and each one has

support with diameter at most ε (recall that we are using the `∞ metric on [0, 1]m).
Proposition 4.5 gives us a ∗-homomorphism

φ′ := (ψ∼)⊗m : C := (C0(Y,O2)∼)⊗m →
(
C([0, 1],Mn∞)⊗m

)
∞ .

Set
c := 1− (1− d)⊗m ∈ C.

We can easily see that φ′(c) commutes with each hi; a simple computation shows
that ∑

i

hi + φ′(c) = 1.

Setting
ei := e′i ⊗ 1⊗(m−1) for i = 0, 1

2 , 1,

it is easy to see that (i),(ii),(iii),(v), and (vi) hold (with φ′ in place of φ). To see
that (iv) holds, we compute

φ′(c)e1/2 = (1− (1− ψ(d))⊗m)(e′1/2 ⊗ 1⊗(m−1))

= φ′(c)− (e′1/2 − ψ(d)e′1/2)⊗ (1− ψ(d))⊗(m−1)

(iv’)
= φ′(c)

We may set
k := (k′ + 1)m − 1

and relabel the hi as h0, . . . hk.
All that remains is to modify φ′ to make it a map whose domain is C0(Z,O2)

for some Z. Set
Z ′ := (Y q {∞})×m.

Then C may be identified with a certain C(Z ′)-subalgebra of C(Z ′,O⊗m2 ). All of
the fibres of C are isomorphic to O2 except for the fibre at (∞, . . . ,∞), which is C.
One can easily verify that the element c is in C0(U,C ·1O⊗m2

) where U is some open

subset of Z ′ whose closure does not contain (∞, . . . ,∞). Let Z be an open subset of
Z ′ such that U ⊂ Z and whose closure does not contain (∞, . . . ,∞); in particular, Z
is a compact subset of Z ′\{(∞, . . . ,∞)}. By Proposition 3.3, C0(Z)C ∼= C0(Z,O2)
as C0(Z)-algebras. With this identification, we have c ∈ Cc(Z,C · 1O2

) (since c is
in the image of the structure map, which is fixed by the isomorphism C0(Z)C ∼=
C0(Z,O2)), and we may define

φ := φ′|C0(Z)C : C0(Z,O2)→ C(X,A)∞.

Step 3. Let p0, p1 be coprime natural numbers. Since Zp∞0 ,p∞1
(as defined in [38,

Section 2]) embeds unitally into Z ([36, Proposition 2.2]), it suffices to do this part
with Zp∞0 ,p∞1

in place of Z.
From Step 2, for i = 0, 1, we may find

h
(i)
0 , . . . , h

(i)
k ∈ C(X,Mp∞i

)∞,

a ∗-homomorphism
φi : C0(Zi,O2)→ C(X,Mp∞i

)∞
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for some locally compact, metrizable, finite dimensional space Zi, and a positive
element

ci ∈ Cc(Zi,C · 1O2)

such that φi commutes with h
(i)
0 , . . . , h

(i)
k ,

h
(i)
0 + . . .+ h

(i)
k + φi(ci) = 1,

and the support of h
(i)
j has diameter at most ε for j = 1, . . . , k. We may also find

e
(i)
l for l = 0, 1

2 , 1 satisfying (i)-(vi).
From Lemma 4.6, let

a0, a1, e
′
0, e
′
1/2, e

′
1 ∈ C

([
1
3 ,

2
3

]
, A
)
∞

be positive orthogonal contractions,

ψ : C0(Y,O2)→ C0

((
1
3 ,

2
3

)
,M(p0p1)∞

)
∞

be a ∗-homomorphism, for some locally compact, metrizable, finite dimensional
space Y , and let

d ∈ Cc(Z,C · 1O2
)

be positive such that ψ(d) commutes with a0, a1,

a0 + a1 + ψ(d) = 1,

a0

(
1
3

)
= a1

(
2
3

)
= 1, and such that (i)-(v) of Lemma 4.6 hold. We continuously

extend a0, a1, e
′
0, e
′
1/2, e

′
1 to [0, 1] by allowing them to be constant on

[
0, 1

3

]
and on[

2
3 , 1
]
.

Upon choosing an isomorphism

M(p0p1)∞ ⊗Mp∞0
⊗Mp∞1

∼= Mp∞0
⊗Mp∞1

and using the diagonal restriction C(X,Mp∞0
)∞ ⊗ C(X,Mp∞1

)∞ → C(X,Mp∞0
⊗

Mp∞1
)∞, we obtain a ∗-homomorphism

ρ : C([0, 1],M(p0p1)∞)∞ ⊗ C(X,Mp∞0
)∞ ⊗ C(X,Mp∞1

)∞

→ C([0, 1]×X,M(p0p1)∞ ⊗Mp∞0
⊗Mp∞1

)∞
∼= C([0, 1]×X,Mp∞0

⊗Mp∞1
)∞,

and define

ĥ0,j := ρ(a0 ⊗ h(0)
j ⊗ 1C(X,Mp∞1

)∞) and

ĥ1,j := ρ(a1 ⊗ 1C(X,Mp∞0
)∞ ⊗ h

(1)
j )

for j = 1, . . . , k. Note that ai has a lift

(ai,k)∞k=1 ∈
∏

N C([0, 1],M(p0p1)∞)

such that ai,k(t) ∈ C · 1 for t = 0, 1, and consequently,

ĥi,j ∈ C(X,Zp∞0 ,p∞1
)∞.

Define a ∗-homomorphism

φ := ρ ◦ (idC([0,1]) · (ψ∼)⊗ (φ∼0 )⊗ (φ∼1 )) :

C([0, 1])⊗ C0(Y,O2)∼ ⊗ C0(Z0,O2)∼ ⊗ C0(Z1,O2)∼

→ C([0, 1]×X,Mp∞0
⊗Mp∞1

)∞.

Let
Y ′ := {y ∈ Y : d(y) > 0}

and
Z ′i := {z ∈ Zi : ci(z) 6= 0},
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and using these, set

C := C∗
(
C0 [0, 1)⊗ 1C0(Y,O2)∼ ⊗ C0(Z ′0,O2)⊗ 1C0(Z1,O2)∼ ,

C0 (0, 1]⊗ 1C0(Y,O2)∼ ⊗ 1C0(Z0,O2)∼ ⊗ C0(Z ′1,O2),

1C([0,1]) ⊗ C0(Y ′,O2)⊗ 1C0(Z0,O2)∼ ⊗ 1C0(Z1,O2)∼

)
.

Using Proposition 3.3 as in Step 2, C is a subalgebra of some C0(Z)-algebra

D ⊂ C[0, 1]⊗ C0(Y,O2)∼ ⊗ C0(Z0,O2)⊗ C0(Z1,O2),

for some open subset Z of

[0, 1]× (Y ′ ∪ {∞})× (Z ′0 ∪∞)× (Z ′1 ∪∞),

and D is isomorphic, as a C0(Z)-algebra, to C0(Z,O2), via an isomorphism taking
C into Cc(Z,O2). One easily sees that φ(C) ⊂ C(X,Zp0,p1).

Let f0 ∈ C0[0, 1)+ be identically 1 on
[
0, 2

3

]
, and let f1 ∈ C0(0, 1]+ be identically

1 on
[

1
3 , 1
]
. Set

ĉ := f0 ⊗ 1⊗ c0 ⊗ 1 + f1 ⊗ 1⊗ 1⊗ c1 + 1⊗ d⊗ 1⊗ 1 ∈ C.
Identifying D with C0(Z,O2), we see that ĉ ∈ Cc(Z,C · 1O2). It is straightforward

to check that φ(ĉ) commutes with ĥi,j for all i, j, and we may easily compute

φ(ĉ) +
∑
i,j

ĥi,j ≥ 1.

Let g ∈ C0(0,∞] be the function g(t) = max{t, 1} and set

c := g(ĉ).

Then by commutativity, it follows that

(4.5) φ(c) +
∑
i,j

ĥi,j ≥ 1.

Let g0, g1/2, g1 ∈ C(X)+ be a partition of unity such that gj is identically 1 on

{j}× [0, 1]m−1 for j = 0, 1, g0 is supported on
[
0, 1

3

]
× [0, 1]m−1, and g1 is supported

on
[

2
3 , 1
]
× [0, 1]m−1. Let us define

(4.6) ej := ρ(e′0 ⊗ e
(0)
j ⊗ 1 + e′1 ⊗ 1⊗ e(1)

j ) + gjρ(e′1/2 ⊗ 1⊗ 1)

for j = 0, 1
2 , 1. It is clear by their definitions that e0, e1/2, e1, ĥ0, . . . , ĥk, φ(c) all

commute.
Let us now check that (e0 + e1)ĥi,j = ĥi,j . Certainly,

(e0 + e1)ĥ0,j
(4.6)
=

(
ρ
(
e′0 ⊗ (e

(0)
0 + e

(0)
1 )⊗ 1 + e′1 ⊗ 1⊗ (e

(1)
0 ⊗ e

(1)
1 )
)

+(g0 + g1)ρ(e′1/2 ⊗ 1⊗ 1)
)
ρ(a0 ⊗ h(0)

j ⊗ 1)

Lemma 4.6

(ii),(iv)
= ρ

(
a0 ⊗

(
(e

(0)
0 + e

(0)
1 )h

(0)
j

)
⊗ 1
)

Step 2 (v)
= ρ(a0 ⊗ h(0)

j ⊗ 1) = ĥ0,j ,

and likewise, (e0 + e1)ĥ1,j = ĥ1,j as required.
Since all terms in (4.5) commute, it is easy to see that for any ε > 0, there exist

orthogonal elements h̃i,j ≤ ĥi,j which commute with e0, e1/2, e1 and φ(c), such that

φ(c) +
∑
i,j

h̃i,j =ε 1.
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Then, by a diagonal sequence argument, it follows that there exist orthogonal ele-

ments hi,j with supports contained in those of ĥi,j which commute with e0, e1/2, e1

and φ(c), such that

φ(c) +
∑
i,j

hi,j = 1,

and

(e0 + e1)hi,j = hi,j .

Hence, (v) holds.
Now let us verify (i)-(iv).
(i) holds using the following orthogonalities:

e
(i)
0 ⊥ e

(i)
1 , i=0,1

g0 ⊥ g1

e′0 ⊥ e′1
ρ(1⊗ e(0)

j ⊗ 1) ⊥ g1−j , j=0,1,

ρ(1⊗ 1⊗ e(1)
j ) ⊥ g1−j , j=0,1.

(ii): We compute

ε0 + e1/2 + e1
(4.6)
= ρ

(
e′0 ⊗

(
e

(0)
0 + e

(0)
1/2 + e

(0)
1

)
⊗ 1

+e′1 ⊗ 1⊗
(
e

(1)
0 + e

(1)
1/2 + e

(1)
1

))
+(g0 + g1/2 + g1)ρ(e′1/2 ⊗ 1⊗ 1)

Step 2 (ii)
= ρ

((
e′0 + e′1 + e′1/2

)
⊗ 1⊗ 1

)
Lemma 4.6(ii)

= 1

(iii): For x ∈ {j} × [0, 1]m−1,

ej(x)
Step 2 (iii)

= e′0 + e′1 + gj(x)e′1/2
Lemma 4.6 (ii)

= 1.

(iv) follows from the fact that φ(ĉ)e1/2 = e1/2φ(ĉ) ≥ e1/2, by considering irre-
ducible representations of C∗(φ(ĉ), e1/2). �

Proof of Theorem 4.1. By Proposition 2.4 (i) and [25, Proposition 3.8], it suffices to
verify the theorem for C∗-algebras A of the form C(X,K) where X is compact and
Hausdorff. By [25, (3.5)], it suffices to prove it for A = C(X). Again by Proposition
2.4 (i), it suffices to assume that C(X) is finitely generated. Finally, when C(X) is
finitely generated, it is a quotient of C([0, 1]m) for some m, and so by [25, (3.3)],
the result reduces to showing that drC(X,Z) ≤ 2 for X = [0, 1]m. By Proposition
2.6, we must show that the first factor embedding C(X,Z) → C(X,Z) ⊗ Z has
decomposition rank at most 2.

We will do this in two steps. In Step 1, we will use Lemma 4.7 to show that the
first factor embedding ι0 : C(X) → C(X) ⊗ Z has decomposition rank at most 2.
In Step 2, we will use Step 1, with X replaced by X × [0, 1], to prove the theorem.

Step 1. Due to Proposition 2.5, it suffices to replace ι0 by its composition with
the inclusion C(X)⊗Z ⊂ (C(X)⊗Z)∞; that is, ι0 is now

C(X) ∼= C(X)⊗ 1Z ⊂ C(X)⊗Z ⊂ (C(X)⊗Z)∞.
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To show that dr ι0 ≤ 2, we verify condition (iv) of Proposition 3.2. Let U be an
open cover of X and let ε > 0. By the Lebesgue Covering Lemma, we may possibly
reduce ε so that U is refined by the set of all open sets of diameter at most ε. Then,
it suffices to assume that U is in fact the set of all open sets of diameter at most ε.

Let h0, . . . , hk, φ, c be as in Lemma 4.7. By Theorem 4.2 and condition (iv) of
Proposition 3.2, we may find

b
(i)
j ∈ C0(X × Z,O2) ∼= C(X)⊗ C0(Z)⊗O2

for i = 0, 1, j = 0, . . . , r such that

(i) for each i = 0, 1, the elements b
(i)
0 , . . . , b

(i)
r are pairwise orthogonal,

(ii) for each i, j, the support of b
(i)
j is contained in U × Z for some U ∈ U ,

(iii)
∥∥∑

i,j b
(i)
j − 1C(X) ⊗ c

∥∥ < ε (note that c ∈ C0(Z)⊗ 1O2
).

Define
φ̂ : C0(X × Z,O2) ∼= C(X)⊗ C0(Z,O2)→ C(X,Z)∞

by φ̂(f ⊗ a) = fφ(a). This is a ∗-homomorphism. For i = 0, 1 and j = 0, . . . , r, set

a
(i)
j := φ̂(b

(i)
j ),

and, for j = 0, 1 . . . , k, set

a
(2)
j := hj .

Since φ̂ is a homomorphism, a
(i)
0 , . . . , a

(i)
r are pairwise orthogonal for i = 0, 1.

Also, by the definition of φ̂ and the choice of b
(i)
j , the support of each a

(i)
j is contained

in some set in U , for i = 0, 1. Since the supports of the hj have diameter at most

ε, the respective statement holds for the a
(2)
j as well. Finally,∑

i,j

a
(i)
j = φ̂

( ∑
i=0,1

k∑
j=0

b
(i)
j

)
+

k∑
j=0

hj

=ε φ̂(1⊗ c) +

k∑
j=0

hj

= φ(c) +

k∑
j=0

hj

= 1,

as required.

Step 2. Since Z is an inductive limit of algebras of the form Zp,q (for p, q ∈ N),
by Proposition 2.4 (i), it suffices to show that the decomposition rank of the first
factor embedding

(4.7) ι := idC(X,Zp,q) ⊗ 1Z : C(X,Zp,q)→ C(X,Zp,q)⊗Z
is at most 2. The proof will combine Step 1 with the idea of Proposition 3.2 (iv)
⇒ (iii).

For t ∈ [0, 1], we let evt : Zp,q → Mp ⊗Mq denote the point-evaluation at t,
while we also let

ev0 :Zp,q →Mp,

ev1 :Zp,q →Mq

denote the irreducible representations which satisfy

ev0(·) = ev0(·)⊗ 1Mq
and

ev1(·) = 1Mp ⊗ ev1(·).
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Let F ⊂ C(X,Zp,q) be the finite set to approximate, and let ε > 0 be the
tolerance. Let us assume that F consists of contractions. Let U be an open cover
of X × [0, 1], such that, for all f ∈ F and U ∈ U , if (x, t), (x′, t′) ∈ U then

‖evt(f(x))− evt′(f(x′))‖ < ε/2.

Let us also assume that no U ∈ U intersects both X × {0} and X × {1}.
Using Step 1 (with X × [0, 1] in place of X) and Proposition 3.2 (iv), we may

find a 3-colourable ε
2 -approximate partition of unity

(a
(i)
j )i=0,1,2;j=0,...,r ⊂ C(X × [0, 1])⊗Z

subordinate to U , and such that ∑
a

(i)
j ≤ 1.

Upon replacing U by a subcover if necessary, we may clearly assume that U is of

the form (U
(i)
j )i=0,1,2;j=0,...,r, with the support of each a

(i)
j being contained in U

(i)
j .

For each i, j, we shall choose a matrix algebra F
(i)
j and produce maps

C(X,Zp,q)
ψ

(i)
j−→ F

(i)
j

φ
(i)
j−→ C(X,Zp,q)⊗Z.

We distinguish three cases, depending on properties of the set U
(i)
j ∈ U . In every

case, we arrange that

φ
(i)
j ψ

(i)
j (f) = a

(i)
j ⊗ ev

t
(i)
j

(f(x
(i)
j )),

where (x
(i)
j , t

(i)
j ) is a point from U

(i)
j , and we make sense of the right-hand side by

using the canonical identification of C(X,Zp,q)⊗Z with a subalgebra of

C(X × [0, 1])⊗Z ⊗Mp ⊗Mq

(determined by boundary conditions at X × {0} and at X × {1}).

Case 1. If U
(i)
j ∩ (X × {0}) 6= ∅, then let (x

(i)
j , t

(i)
j = 0) be a point in this

intersection. We set F
(i)
j := Mp and define

ψ
(i)
j (f) = ev0(f(x

(i)
j )),

φ
(i)
j (T ) = a

(i)
j ⊗ T ⊗ 1Mq

,

By assumption U
(i)
j ∩ (X × {1}) = ∅, so for all x ∈ X,

ev1(φ
(i)
j (T )(x)) = 0,

and therefore, the range of φ
(i)
j lies in C(X,Zp,q)⊗Z.

Case 2. If U
(i)
j ∩ (X × {1}) 6= ∅, then as in Case 1, let (x

(i)
j , t

(i)
j = 1) be a point

in this intersection. We set F
(i)
j := Mq and define

ψ
(i)
j (f) = ev1(f(x

(i)
j )), and

φ
(i)
j (T ) = a

(i)
j ⊗ 1Mp

⊗ T.
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Case 3. If U
(i)
j ∩ (X × {0}) = ∅ and U

(i)
j ∩ (X × {1}) = ∅, then let (x

(i)
j , t

(i)
j ) be

any point in U
(i)
j . We set F

(i)
j := Mp ⊗Mq and define

ψ
(i)
j (f) = ev

t
(i)
j

(f(x
(i)
j )), and

φ
(i)
j (T ) = a

(i)
j ⊗ T.

We now set F =
⊕

i,j F
(i)
j and use (ψ

(i)
j ) and (φ

(i)
j ) to define

C(X,Zp,q)
ψ−→ F

φ−→ C(X,Zp,q)⊗Z.

We have that ψ is c.p.c. since all of its components are. Each φ
(i)
j is c.p. and order

zero. For each i, j1, j2, if j1 6= j2 then the images of φ
(i)
j1

and φ
(i)
j2

are orthogonal.
Thus, for each i,

φ|⊕
j F

(i)
j

is order zero. Also, φ(1) =
∑
a

(i)
j ≤ 1, so that φ is contractive.

Finally, let f ∈ F and let us check that φψ(f) =ε f . As in the proof of Proposi-

tion 3.2 (iv) ⇒ (iii), we have for each i, j that if x ∈ U (i)
j then

ev
t
(i)
j

(f(x
(i)
j )) =ε/2 evt(f(x)),

and therefore,

evt(f(x))− ε

2
· 1Mp⊗Mq

≤ ev
t
(i)
j

(f(x
(i)
j )) ≤ evt(f(x)) +

ε

2
· 1Mp⊗Mq

.

Since a
(i)
j commutes with f , this gives

a
(i)
j (x, t)

(
evt(f(x))− ε

2
· 1Mp⊗Mq

)
≤ a(i)

j (x, t)ev
t
(i)
j

(f(x
(i)
j ))

≤ a(i)
j (x, t)

(
evt(f(x)) +

ε

2
· 1Mp⊗Mq

)
.

Moreover, since a
(i)
j vanishes outside of U

(i)
j , these inequalities continue to hold for

all x ∈ X and all t ∈ [0, 1].
Summing over i, j, we find that∑

i,j

a
(i)
j (x, t)

(
evt(f(x))− ε

2
· 1Mp⊗Mq

)
≤

∑
i,j

a
(i)
j (x, t)ev

t
(i)
j

(f(x
(i)
j ))

≤
∑
i,j

a
(i)
j (x, t)

(
evt(f(x)) +

ε

2
· 1Mp⊗Mq

)
and therefore,

evt(f(x)) =ε/2

∑
i,j

a
(i)
j (x, t)evt(f(x))

=ε/2

∑
i,j

a
(i)
j (x, t)ev

t
(i)
j

(f(x
(i)
j ))

= evt(φψ(f)(x)).

Since this holds for all x ∈ X, t ∈ [0, 1], this means that ‖f − φψ(f)‖ < ε, as
required. �
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Remark 4.9. Here we describe how one can give a shorter proof that A ⊗ Z has
decomposition rank at most 5, for A as in Theorem 4.1. Since A⊗Z is an inductive
limit of A ⊗ Zp∞,q∞ , it suffices to show that the latter has decomposition rank at
most 5. This algebra is a C([0, 1])-algebra, whose fibres are all of the form A ⊗ U
where U is a self-absorbing UHF algebra. Hence, by [1, Lemma 3.1], A⊗Zp∞,q∞ has
decomposition rank at most 5 = (dim[0, 1]+1)(2+1)−1 if we show that A⊗U has
decomposition rank at most 2 for every infinite dimensional, self-absorbing UHF
algebra.

As in the first paragraph of the proof above, it suffices to show that the first-factor
embedding C(X,U)→ C(X,U)⊗U has decomposition rank at most 2, when X =
[0, 1]m. Since U is a limit of finite dimensional C∗-algebras, by Proposition 2.4 (i),
the decomposition rank of this first-factor embedding agrees with the decomposition
rank of the first-factor embedding ι0 : C(X) → C(X) ⊗ U . Then following Step
1 of the above proof verbatim, except with U in place of Z, shows that this ι0
has decomposition rank at most 2; moreover, we only need to use the variation of
Lemma 4.7 where Z is replaced by U , and as explained in Remark 4.8, the proof
of that lemma can be simplified in that case.

5. Z-stable C(X)-algebras

The proof of [1, Lemma 3.1] actually shows the following.

Lemma 5.1. Let X be a compact metric space, let A be a C(X)-algebra and let B
be a unital C∗-algebra. Denote by ιC(X) : C(X)→ C(X)⊗B and ιA : A→ A⊗B
the first-factor embeddings. Then

(5.1) dr ιA ≤ (dr ιC(X) + 1)
(

max
x∈X

drA(x) + 1
)
− 1

and

(5.2) dimnucιA ≤ (dimnucιC(X) + 1)
(

max
x∈X

dimnucA(x) + 1
)
− 1.

Proof. Although this is essentially the same as the proof of [1, Lemma 3.1], we
provide a detailed proof of (5.1) for the readers convenience.

Set k := maxx∈X drA(x) and l := dr ιC(X). Let F ⊂ A be a finite subset and let
ε > 0. Without loss of generality, F consists of self-adjoint contractions. As shown
in the proof of [1, Lemma 3.1], there exists an open cover U of X such that, for each
U ∈ U , there exists a finite dimensional C∗-algebra FU and c.p.c. maps ψU : A →
FU , φU : FU → A such that φU is (k + 1)-colourable and φUψU (a)(x) = ε

2
a(x), for

all a ∈ F and all x ∈ U . By Proposition 3.2 (iv), let (b
(i)
j )j=1,...,r; i=0,...,l ⊂ C(X)⊗B

be an (l + 1)-colourable, ε
2 -approximate partition of 1, subordinate to U , and by a

rescaling argument, we may assume that b
(i)
j ≤ 1 for each i, j. Hence, for each i, j,

we may pick some U
(i)
j ∈ U which contains the support of b

(i)
j . Define

ψ :=
⊕
i,j

ψ
U

(i)
j

: A→
⊕
i,j

F
U

(i)
j

and φ :
⊕

i,j FU(i)
j
→ A⊗B by

φ((a
(i)
j )) :=

∑
i,j

φ
U

(i)
j

(a
(i)
j )⊗ b(i)j .

One readily verifies that φ is (k + 1)(l + 1)-colourable, and, as in the proof of
Proposition 3.2 (iv) ⇒ (iii), that φψ(a) =ε a⊗ 1B , for all a ∈ F . �
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Corollary 5.2. If A is a Z-stable C(X)-algebra whose fibres have decomposition
rank (resp. nuclear dimension) bounded by M then the decomposition rank (resp.
nuclear dimension) of A is at most 3(M + 1)− 1.

Proof. We shall apply Lemma 5.1 with Z in place of B. Using the notation of
Lemma 5.1, Theorem 4.1 tells us that dimnucιC(X) ≤ dr ιC(X) ≤ 2. Thus, if the
fibres of A have decomposition rank at most M , then by Lemma 5.1, dr ιA ≤
(2 + 1)(M + 1)− 1. �

This shows in particular that the C(X)-algebra in [15, Example 4.7] (which is
Z-stable by [8]) has decomposition rank at most 2, and that the C(X)-algebra E
in [6, Section 3] (which is Z-stable since it is an extension of patently Z-stable C∗-
algebras) has nuclear dimension at most 5. On the other hand, the C(X)-algebra
in [15, Example 4.8] is not Z-stable, and it is shown in joint work of the first-named
author and Robert that it does not have finite nuclear dimension [33, Section 7.4].

Another immediate application is the following strengthening of Theorem 4.1.
See [7] for a discussion of C(X)-algebras with fibres D⊗K, where D is either Z or
an infinite dimensional UHF algebra.

Corollary 5.3. If A is a Z-stable C(X)-algebra whose fibres are all AF algebras
tensored by Z, then drA ≤ 2.

Proof. It suffices to show that B := A ⊗ Zp∞,q∞ has decomposition rank at most
2. Note that B is a Z-stable C(X × [0, 1])-algebra with AF fibres. Therefore, by
Corollary 5.2, drB is at most 3(0 + 1)− 1 = 2, as required. �
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