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Abstract. We examine the ranks of operators in semi-finite C∗-algebras
as measured by their densely defined lower semicontinuous traces. We
first prove that a unital simple C∗-algebra whose extreme tracial bound-
ary is nonempty and finite contains positive operators of every possible
rank, independent of the property of strict comparison. We then turn
to nonunital simple algebras and establish criteria that imply that the
Cuntz semigroup is recovered functorially from the Murray-von Neu-
mann semigroup and the space of densely defined lower semicontinu-
ous traces. Finally, we prove that these criteria are satisfied by not-
necessarily-unital approximately subhomogeneous algebras of slow di-
mension growth. Combined with results of the first-named author, this
shows that slow dimension growth coincides with Z-stability, for ap-
proximately subhomogeneous algebras.

1. Introduction

It has recently become apparent that the question of which ranks, suitably
defined, can occur in a simple and stably finite C∗-algebra has considerable
bearing on the deeper structure of the algebra. The most significant example
is due to Winter, who uses the notion of approximate divisibility of ranks
in such algebras as an essential ingredient in his proof of Z-stability for a
wide class of nuclear C∗-algebras [21]. Z-stability, in turn, is by now an
indispensable tool in the effort to classify simple separable amenable C∗-
algebras via K-theoretic data.

Several articles have appeared which concern ranks of operators in unital
C∗-algebras ([4, 5, 14, 19]); much of that work required further assumptions
on the comparability of positive operators in the sense of Cuntz. Here,
we pursue two lines of research. On the one hand, we prove that a unital
simple C∗-algebra with finitely many extreme tracial states contains positive
operators of every possible rank, regardless of separability, nuclearity, or
comparability of positive operators.

We also begin to treat the nonunital and potentially stably projection-
less cases, particularly nonunital approximately subhomogeneous algebras.
We define a measure (called the radius of divisibility) of how closely each
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linear strictly positive function on the trace space of an algebra can be
approximated by the rank function of a positive operator, and then show
that this quantity is lower semicontinuous with respect to inductive limits.
After computing this invariant for recursive subhomogeneous algebras, we
are able to explicitly describe the Cuntz semigroup of simple approximately
subhomogeneous algebras with slow dimension growth, á la Brown-Perera-
Toms [4]. In [17], the first named author shows that this structure for the
Cuntz semigroup entails Z-stability of the approximately subhomogeneous
algebra; in fact, slow dimension growth and Z-stability are equivalent for
simple approximately subhomogeneous algebras, extending the main result
of [19] to the nonunital case.

Our result for unital simple C∗-algebras with finitely many extreme traces
bears some relationship to the main result of [10], which says that for uni-
tal, simple, separable, nuclear C∗-algebras with finitely many extreme traces,
strict comparison and Z-stability are equivalent. On the one hand, their re-
sult implies ours under the additional hypotheses of separability, nuclearity,
and strict comparison. In [21], one finds another Z-stability theorem for
C∗-algebras under a number of hypotheses including (tracial) m-divisibility,
a condition related to the ranks of positive operators. Our result gives ev-
idence that one may not be surprised that the Z-stability theorem in [10]
does not have a condition about the ranks of positive operators as a hy-
pothesis: such a condition holds automatically for the algebras considered
there.

The organization of this paper is as follows. After preliminaries in Section
2, we discuss traces and C∗-algebras with compact primitive ideal space in
Section 3. Our first main result, concerning C∗-algebras with finitely many
extreme traces, is in Section 4. The radius of divisibility, and its pertinent
properties, are established in Section 5. Section 6 contains a computation of
the Cuntz semigroup for simple exact C∗-algebras, assuming that the Cuntz
semigroup enjoys certain regularity properties. Finally, we apply the theory
developed in Sections 5 and 6 to approximately subhomogeneous C∗-algebras
in Section 7.

2. Preliminaries

Let A be a C∗-algebra. Let us consider on (A⊗K)+ the relation a - b if
vnbv

∗
n → a for some sequence (vn) in A⊗K. Let us write a ∼ b if a - b and

b - a. In this case we say that a is Cuntz equivalent to b. Let Cu(A) denote
the set (A ⊗ K)+/ ∼ of Cuntz equivalence classes. We use [a] to denote
the class of a in Cu(A). It is clear that [a] ≤ [b] ⇔ a - b defines an order
on Cu(A). We also endow Cu(A) with an addition operation by setting
[a] + [b] := [a′ + b′], where a′ and b′ are orthogonal and Cuntz equivalent to
a and b respectively (the choice of a′ and b′ does not affect the Cuntz class
of their sum).

We shall use T (A) to denote the set of densely finite (a.k.a. densely de-
fined) traces, as defined in [11, Definition 5.2.1]. Given τ ∈ T (A) we define
a map dτ : Cu(A)→ [0,∞] by the following formula:

dτ ([a]) := lim
n→∞

τ(a1/n).
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This is well-defined. We could make this definition whenever τ is a 2-
quasitrace, but we wish to avoid defining these here. Indeed, we are only
concerned here with exact C∗-algebras, and all 2-quasitraces on an exact
C∗-algebra are traces; this was shown in [2] by reducing to the unital case,
which was proven in an unpublished manuscript of Haagerup [9]. All func-
tionals on Cu(A) (suitably-defined) are of the form dτ for a 2-quasitrace τ
[1].

Define ι : (A⊗K)+ → Lsc(T (A)), [0,∞]) by

ι(a)(τ) = dτ (a).

Then ι(a) is lower semicontinuous ([14, Proposition 2.10] in the unital case,
[7, Section 5.1] in general). When we ask which ranks of positive operators
occur, we mean: what is the range of ι?

We shall say that Cu(A) is almost unperforated if, whenever [x], [y] ∈
Cu(A) satisfy

(k + 1)[x] ≤ k[y]

for some k ∈ N, it follows that [x] ≤ [y].

3. Compact primitive ideal space and traces

Proposition 3.1. Let A be a C∗-algebra. The following statements are
equivalent:

(i) Prim(A) is compact;
(ii) there exists e ∈ A+ and ε > 0 such that (e− ε)+ is full;
(iii) there exists a full element in the Pedersen ideal of A;
(iv) there exist a, b ∈ Mn(A)+, some n, such that a is full and [a]� [b];

Proof. The equivalence of (i) and (ii) follows directly from [18, Proposition
3.5]. (ii) ⇒ (iii) is clear since (e − ε)+ is in the Pedersen ideal of A (this
is evident from the description of the Pedersen ideal in the proof of [11,
Theorem 5.6.1]).

(iii) ⇒ (iv): Let a be full and in the Pedersen ideal. We shall show that
there exists b ∈Mn(A)+ for some n such that [a]� [b].

The proof of [11, Theorem 5.6.1] shows that there exist x1, . . . , xn ∈ A+

and f1, . . . , fk ∈ Cc((0,∞))+ such that

a ≤
n∑
i=1

fi(xi).

Thus,

[a] ≤
∑
i

[fi(xi)]�
∑
i

[xi],

which is to say that if

b :=
⊕
i

xi

then [a]� [b].
(iv)⇒ (i): Given a, b as in (iv), there exists ε > 0 such that [a]� [(b−ε)+].

In particular a - (b − ε)+, whence (b − ε)+ is full. (ii) now follows for
Mn(A) by setting b = e. From the equivalence of (i) and (ii) we have that
Prim(Mn(A)) ∼= Prim(A) is compact, as required. �
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Remark. It was pointed out by George Elliott that, the equivalence of (iii)
and (iv) can be generalized to the following fact: for any C∗-algebra A, the
Pedersen ideal of A is

(3.1) {a ∈ A : ∃ b ∈ (A⊗K)+ s.t. [a]� [b] in Cu(A)}.
Indeed, one inclusion is evident from the proof of [11, Theorem 5.6.1], while
the other is shown by showing that the set (3.1) is an ideal. This turns the
equivalence of (iii) and (iv) into a more general statement (and provides an
alternate proof).

Lemma 3.2. Let A be a C∗-algebra. If a ∈ A+ is full, then ∞[a] :=
supn n[a] is the largest element of Cu(A).

Proof. By Brown’s Theorem ([3]), we have aAa⊗K ∼= A⊗K; by identifying
these, we may assume that a is strictly positive. Let (pn) be an increasing
sequence of finite rank projections converging to 1 ∈ B(H) in the strong

operator topology, so that fn := a1/n⊗pn is an approximate unit for A⊗K.
Let b ∈ (A⊗K)+ and ε > 0 be given, and find k ∈ N large enough that

‖b1/2fkb1/2 − b‖ < ε.

It follows by [15, Proposition 2.2] that there is x ∈ A⊗K such that

(xb1/2)fk(xb
1/2)∗ = (b− ε)+,

whence

∞[a] ≥ rank(pk)[a] = [fk] ≥ [(b− ε)+].

Since ε was arbitrary we have ∞[a] ≥ [b], as required. �

Lemma 3.3. Let A be a C∗-algebra with a ∈ A+ full. If τ is a lower
semicontinuous trace on A+ with τ(a) <∞, then τ is densely finite.

Proof. It will suffice to prove that τ((b − ε)+) < ∞ for each b ∈ A+ and
ε > 0. Let b and ε be given. By Lemma 3.2 we have ∞[a] ≥ [b], so that

∞[a]� [(b− ε/2)+].

It follows that

n[a] ≥ [(b− ε/2)+]

for some n ∈ N, so we can find x ∈ A⊗K such that

x (⊕ni=1a)x∗ = (b− ε)+.
Extending τ to A⊗K we then have

τ((b− ε)+) = τ((⊕ni=1a
1/2)(x∗x)(⊕ni=1a

1/2))

≤ ‖x‖2τ(⊕ni=1a)

< ∞.
�

For any a ∈ A, set

Ta7→1(A) := {τ ∈ T (A) : τ(a) = 1}.
(In the case that A is unital and a = 1, this is of course the set of normalized
traces.)
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Proposition 3.4. Suppose that e ∈ A+ is full and in the Pedersen ideal of
A. It follows that Te7→1(A) is:

(i) a base for the cone of densely finite traces on A;
(ii) compact, in the topology of pointwise converge on the Pedersen ideal

of A;
(iii) a Choquet simplex.

Proof. (i) On the other hand, suppose τ ∈ T (A)\{0}.Then τ(e) > 0, or else
e wouldn’t be full. Also, τ(e) < ∞ since e is in the Pedersen ideal. Hence
τ ∈ R+Te7→1(A), as required.

(ii) We shall show that T (A) is closed in the topology defined in [7, Section
3.2], from which it follows that it is compact in that topology. By (i) and
[7, Proposition 3.10], the restriction of this topology to Te7→1(A) agrees with
the topology of pointwise convergence on the Pedersen ideal.

Suppose that (τi) ⊆ Te 7→1(A) is a net which converges to τ ∈ T (A). Since
e is in the Pedersen ideal, by the proof of [11, Theorem 5.6.1], let e ≤ (a−ε)+
for some a ∈ (A⊗ K)+ and ε > 0. Since [e] is full there is n ∈ N such that
[(a− ε/2)+]� n[e]; we can even arrange that [(a− ε/2)+]� n[(e− δ)+] for
sufficiently small δ. We can then find ε > 0 and x ∈ Mn(A) such that

e ≤ (a− ε)+ = x (⊕ni=1(e− δ)+)x∗.

Therefore, for any η ∈ T (A), we have

η(e) ≤ n‖x‖2η((e− δ)+) ≤ Kη((e− δ)+),

where K = n‖x‖2. Using the definition of the topology in [7, Section 3.2],
we have

1/K = lim sup τi(e)/K

≤ τi((e− δ)+)

≤ τ(e)

≤ lim inf τi(e)

= 1.

Therefore, τ is a nonzero, densely finite trace on A. It follows from [7,
Proposition 3.10], that since e is in the Pedersen ideal,

τ(e) = lim τi(e) = 1.

Hence, τ ∈ Te7→1(A) as required.
(iii) The cone of densely finite traces is, by [12, Corollary 3.3] and [13,

Theorem 3.1] a lattice cone. It follows from this and (i),(ii) that Te 7→1(A) is
a Choquet simplex. �

4. C∗-algebras with finitely many extreme traces

Suppose that the Pedersen ideal of A contains a full element e, which we
also ask to be positive. We may clearly identify Lsc(T (A), (0,∞]) with the
space

LAff(Te7→1(A), (0,∞])

of lower semicontinuous affine functions Te7→1(A) to (0,∞].
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Proposition 4.1. Suppose that A has a full positive element e in its Ped-
ersen ideal. Then, the range of ι contains all of Lsc(T (A), (0,∞]) if and
only if the range of ι contains a uniformly dense subset of continuous affine
functions Te7→1(A) → (0,∞). Moreover, in this case, Lsc(T (A), (0,∞]) ⊂
ι(Cu(A)\V (A)).

Proof. ⇒ is obvious. Conversely, suppose that ι contains a uniformly dense
subset of continuous affine functions as above. By [8, Theorem 11.8], every
function in Lsc(T (A), (0,∞]) is the supremum of continuous linear functions
T (A) → (0,∞) (strictly speaking, [8, Theorem 11.8] deals with functions
whose codomain is R, but the same proof works for codomain (0,∞]). By
[6], we may in fact obtain each function in Lsc(T (A), (0,∞]) as an increasing
net of continuous linear functions. Since A is separable, T (A) is metrizable
and we can in fact replace such a net by a sequence. The proof of this last
statement doesn’t quite go as one might expect, so we separate the argument
as its own lemma.

Lemma 4.2. Let X be a metrizable compact Hausdorff space. Suppose
that f : X → [0,∞] is a lower semicontinuous function which is the point-
wise supremum of an increasing net (fα) of lower semicontinuous functions.
Then f is the pointwise supremum of an increasing sequence (fαi).

Proof. Let (qk)
∞
k=1 be a dense sequence in [0,∞). For each k, f−1((qk,∞])

is open, and since X is metrizable, it is σ-compact. Therefore, we can find
an increasing sequence of open sets (Uk,i)

∞
i=1, each of which has compact

closure, with union f−1((qk,∞]); moreover Uk,i ⊆ f−1((qk,∞]) for each i.

By using the compactness of Uk,i, lower semicontinuity of each fα and the
fact that the net (fα) is increasing, we can find αi such that fαi(x) > qk
for all x ∈ Uk,i, i = 1, . . . , k. This condition, together with density of {qk},
forces f to be the pointwise supremum of (fαi). As the net (fα) is increasing,
it is clear that we can arrange that (fαi) is increasing. �

We now have that for f ∈ Lsc(T (A), (0,∞]), there exists an increasing
sequence (fn) of continuous linear functions T (A) → (0,∞) whose point-
wise supremum is f . By hypothesis, let S be a uniformly dense subset of
continuous affine functions from Te 7→1(A) to (0,∞)) that is contained in the
range of ι. By compactness of Te7→1(A), let δ1 ∈ (0, 1) such that f1(τ) > δ1
for all τ ∈ Te7→1(A). Then there exists g1 ∈ S such that

f1(τ)− δ1 < g1(τ) < f1(τ)

for all τ ∈ Te7→1(A). Since f2(τ) ≥ f1(τ) > g1(τ), we may likewise pick
δ2 ∈ (0, 1/2) such that

f2(τ)− δ2 > g1(τ)

for all τ ∈ Te7→1(A). Then there exists g2 ∈ S such that

f2(τ)− g1(τ)− δ2 < g2(τ) < f2(τ)− g1(τ)

for all τ ∈ Te7→1(A). That is to say,

f2 − δ2 < g1 + g2 < f2.
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We may continue this process, finding a sequence of numbers δn ∈ (0, 1/n)
and functions gn ∈ S such that

fn − δn < g1 + · · ·+ gn < fn.

Evidently, for all τ ∈ Te 7→1(A), we have

f(τ) = sup fn(τ) =

∞∑
n=1

gn(τ).

Since gn ∈ S, we have gn = ι(an) for some an ∈ (A⊗K)+ with ‖an‖ < 1/2n.
Then we have

∞∑
n=1

gn = ι(⊕∞n=1an),

as required.
The last statement of the proposition follows since [⊕∞n=1an] is the supre-

mum of the strictly increasing sequence [⊕Nn=1an]. �

Proposition 4.3. Let A be unital, such that ∂eT (A) is compact and to-
tally disconnected. Then every continuous function ∂eT (A)→ (0,∞) is the
uniform limit of functions in the range of ι.

Proof. Let f : ∂eT (A)→ (0,∞) be a continuous function and let ε > 0. By
[5, Lemma 4.1], for each point τ ∈ ∂eT (A), there exists aτ ∈ (A⊗K)+ and
a neighbourhood Uτ of τ such that

|dγ(aτ )− f(γ)| < ε/3

for all γ ∈ Uτ . By continuity of f , we may, by possibly shrinking Uτ , also
assume that |f(γ) − f(τ)| < ε/3 for γ ∈ Uτ . Also, by the hypothesis that
∂eT (A) is completely disconnected, we may assume that Uτ is closed.

By compactness of ∂eT (A), let Uτ1 , . . . , Uτn be a finite subcover. By
shrinking some of the sets, we may in fact assume that Uτ1 , . . . , Uτn are
pairwise disjoint.

Using [5, Lemma 4.5] with aτi , let bi ∈ (A⊗K)+ be such that

dτ (bi) = aτi(τ)

for all τ ∈ Uτi , and

dτ (bi) <
ε

3(n− 1)
for τ 6∈ Uτi .

Set a = b1 ⊕ · · · ⊕ bn. Then for τ ∈ ∂eT (A), let i be such that τ ∈ Uτi .
Then

|dτ (b)− f(τ)|

≤
∑
j 6=i
|dτ (bj)|+ |dτ (bi)− dτ (ai)|+ |dτ (ai)− f(τi)|+ |f(τi)− f(τ)|

< (n− 1)
ε

3(n− 1)
+ 0 + ε/3 + ε/3 = ε,

as required. �

Corollary 4.4. If A is unital and simple and ∂eT (A) is finite then ι is onto.

Proof. This follows from Propositions 4.1 and 4.3. �
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5. The radius of divisibility

Abstracting the technique in the proof of [19, Theorem 3.4], we introduce
an invariant of the Cuntz semigroup called the radius of divisibility. This
name is inspired by the fact (shown in Proposition 7.1) that it shares roughly
the same relationship to the matricial-to-topological dimension of a recursive
subhomogeneous algebra as does the radius of comparison, as defined in
[20, Definition 4.1]. In fact, much as the radius of comparison has been
used to show that simple approximately subhomogeneous algebras with slow
dimension growth have strict comparison in their Cuntz semigroups, the
radius of divisibility will be used in Corollary 7.2 to show that the Cuntz
semigroups of such algebras are also almost divisible.

Although we can phrase the following definition for general e, it is prob-
ably only useful in the case that e is full and in the Pedersen ideal of A.

Definition 5.1. Let A be a C∗-algebra and let e ∈ A+. The radius of
density of A with respect to e is the infimum of real numbers r > 0 such
that, for any continuous linear function f : T (A) → (0,∞), there exists
a ∈ (A⊗K)+ such that for all τ ∈ T (A),

|dτ (a)− f(τ)| ≤ rdτ (e).

We denote this quantity by rod(A, e).

For a Choquet simplex C, let us denote by Aff(C) the set of continuous
affine maps C to R, and by Aff(C)++ the subset of Aff(C) whose range is
contained in (0,∞).

Lemma 5.2. Let

C1
φ12←− C2

φ23←− · · ·
be an inverse sequence of Choquet simplices whose inverse limit is C. Then

(i)
⋃∞
i=1 Aff(Ci) ◦ φi∞ is uniformly dense in Aff(C); and

(ii)
⋃∞
i=1 Aff(Ci)++ ◦ φi∞ is uniformly dense in Aff(C)++.

Proof. (i) is well-known.
(ii): This is essentially contained in the proof of [19, Theorem 3.4]; how-

ever, for clarity, we will provide an explicit proof here. By (i), it suffices

to show that if f ∈ Aff(Ci) ◦ φi∞ ∩ Aff(C)++ then f ∈ Aff(Cj)++ ◦ φj∞ for
some j. Let g ∈ Aff(Ci) be such that f = g ◦ φi∞; we will in fact show
that g ◦ φij ∈ Aff(Cj)++ for some j ≥ i. For a contradiction, suppose that
this is false; that is, that for each j ≥ i, there exists xj ∈ Cj such that
g(φij(xj)) ≤ 0. Then for j ≥ i, set

γj = (γ
(k)
j )k≥i := (φij(xj), φ

i+1
j (xj), . . . , φ

j−1
j (xj), xj , xj+1, xj+2, . . . ) ∈

∞∏
k=i

Ck.

By compactness of
∏∞
k=iCk, let γ = (γ(k)) ∈

∏∞
k=iCk be a cluster point of

the sequence (γj). Since γ
(k+1)
j ◦ φkk+1 = γ

(k)
j for all k ≤ j, it follows that

γ(k+1) ◦φkk+1 = γ(k) for all k; that is, (γ(k)) defines a point γ in C. However,

f(γ) = g(φi∞(γ)) ≤ lim sup g(φij(xj)) ≤ 0;

which is a contradiction. �
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Proposition 5.3. Let

A1
φ21−→ A2

φ32−→ · · ·
be an inductive sequence of C∗-algebras whose limit is A, such that the maps

φji are injective and full. Suppose e1 is a full element in the Pedersen ideal
of A1, and set e = φ∞1 (e1). Then

(5.1) rod(A, e) ≤ lim inf rod(Ai, φ
i
1(ei)).

Proof. Set ei := φi1(e1) for all i.
Let r := lim inf rod(Ai, ei), and suppose that r′ > r. Let η = (r′ − r)/2.

Let f ∈ Aff(Te7→1(A))++. We note that Te7→1(A) = lim←−Tei 7→1(A) (this
is well-known in the unital case, and no tricks are needed to adapt the
proof to the nonunital situation). It therefore follows from Lemma 5.2 (ii)
that for all i sufficiently large, there exists g ∈ Aff(Tei 7→1(Ai)) such that
‖g ◦ φi∞ − f‖ < η. In particular, we may find such g ∈ Aff(Tei 7→1(Ai))
for some i for which rod(Ai, ei) < r + η. This means that we may find
â ∈ (Ai ⊗K)+ such that

|dτ (â)− g(τ)| ≤ r + η

for all τ ∈ Tei 7→1(Ai). Thus, with a = φ∞i (â) ∈ A, we have

|dτ (a)− f(τ)| ≤ |dτ◦φi∞(â)− g(τ)|+ |g ◦ φ∞i (τ)− f(τ)‖ ≤ r + η + η = r′.

Since r′ > r was arbitrary, this shows that rod(A) ≤ r as required. �

6. A computation of the Cuntz semigroup

In Theorem 6.2, we shall show that when A is simple and exact, Cu(A) is
almost unperforated, and the range of ι is uniformly dense, then Cu(A) can in
fact be explicitly described purely in terms of the cone of traces T (A) paired
with the Murray-von Neumann semigroup V (A). Succinctly, we show that
Cu(A) has the form described in [7, Corollary 6.8]. This sort of computation
isn’t particularly new — such Cuntz semigroup computations were pioneered
by Brown, Perera, and the second-named author in [4], although with more
hypotheses on A including that it is unital.

The following preliminary is in order (again, slight weakenings of this can
already be found in the literature).

Lemma 6.1. Let A be a simple C∗-algebra. Then Cu(A) is almost unper-
forated if and only if, for [a], [b] ∈ Cu(A), if f([a]) < f([b]) for every lower
semicontinuous dimension function f for which f([b]) <∞ then [a] ≤ [b].

Proof. By [16, Proposition 3.2], ⇐ is automatic. Let us assume that Cu(A)
is almost unperforated. If [c], [d] ∈ Cu(A) are such that f([c]) < f([d]) holds
for every lower semicontinuous dimension function, then we must show that
[c] ≤ [d]. If we knew that f([c]) < f([d]) for the non-lower semicontinuous
dimension functions, then [16, Proposition 3.2] would show that [c] ≤ [d];
the rest of the proof overcomes this obstacle.

Given any dimension function f : Cu(A) → [0,∞], we may define f̄ :
Cu(A)→ [0,∞] by

f̄([x]) = sup
[x′]�[x]

f([x′]).
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Then by [7, Lemma 4.7], f̄ is a lower semicontinuous dimension function on
Cu(A).

For [a]� [c], we have

f([a]) ≤ f̄([c]) < f̄([d]) ≤ f([d]).

(The first and last inequalities are evident from the definition of f̄ while the
middle one is by hypothesis.) Therefore, by [16, Proposition 3.2], [a] ≤ [d].
But since [c] is the supremum of [a] satisfying [a] � [c], we must have
[c] ≤ [d], as required. �

In the following, we view V (A)qLsc(T (A), (0,∞]) as an ordered abelian
semigroup as follows. V (A) and Lsc(T (A), (0,∞]) are already ordered semi-
groups (with pointwise ≤ giving the ordering on the latter), and we insist
that their embeddings maintain the order and semigroup structures. For
[p] ∈ V (A) and f ∈ Lsc(T (A), (0,∞]), we set [p]+f := g ∈ Lsc(T (A), (0,∞])
given by g(τ) = τ(p) + f(τ); [p] ≤ f if and only if τ(p) < f(τ) for all
τ ∈ T (A), while f ≤ [p] if and only if f(τ) ≤ τ(p) for all τ ∈ T (A).

Theorem 6.2. Let A be a simple, exact C∗-algebra such that Cu(A) is
almost unperforated and the range of ι is uniformly dense. Then Cu(A)
is isomorphic, as an ordered semigroup, to V (A) q Lsc(T (A), (0,∞]). The
isomorphism sends [a] ∈ Cu(A) to [p] ∈ V (A) if [a] = [p] for some projection
p ∈ (A⊗K)+, and to the function ι(a) otherwise.

Proof. The statement of the proposition implicitly defines a map

Φ : Cu(A)→ V (A)q Lsc(T (A), (0,∞]).

Let us first verify that Φ is an order embedding, i.e. that [a] ≤ [b] if and only
if Φ([a]) ≤ Φ([b]). This will require only that Cu(A) is almost unperforated.
Four different cases need to be checked, depending on whether or not each
of [a], [b] is in V (A).

It is trivial if both are in V (A). By using Proposition 6.1, we obtain the
“if” direction when [a] ∈ V (A). However, if [a] ∈ V (A) and [a] < [b] then
by [14, Proposition 2.2], there exists a nonzero [x] such that [a] + [x] ≤ [b].

Since A is simple, dτ (x) > 0 and so [̂a](τ) < [̂b](τ) for all τ .
The “only if” direction is automatic if [a] 6∈ V (A). On the other hand,

if [a] 6∈ V (A) and [̂a] ≤ [̂b] pointwise then, again using [14, Proposition 2.2]
and simplicity of A, we have

[̂a′](τ) < [̂a](τ) ≤ [̂b](τ)

for all τ , and therefore by Proposition 6.1, [a′] ≤ [b]. Since [a] is the supre-
mum of [a′]� [a], we have [a] ≤ [b]. This concludes the verification that Φ
is an order embedding.

Now we will show that Φ is surjective. Obviously, V (A) is in the range of
Φ. We shall therefore show that Lsc(T (A), (0,∞]) is contained in the range
of Φ. By Proposition 4.1, it suffices to show that the range of ι contains
Aff(Te 7→1(A), (0,∞)), as we shall now do.

Namely, given f ∈ Aff(Te7→1(A), (0,∞)), let ε1 > ε2 > · · · , converging to
0, such that f(τ) > ε1 for all n. Since the range of ι is dense, we may find
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[bn] ∈ Cu(A) such that

ι(bn)(τ) ∈ (f(τ)− εn, f(τ)− εn+1)

for all τ ∈ Te 7→1(A). By Proposition 6.1, ([bn]) is an increasing sequence,
and its supremum [b] clearly satisfies ι(b) = f , as required. �

7. Simple approximately subhomogeneous algebras with slow
dimension growth

The following result is in all likelihood true without the assumption of a
compact primitive ideal space, but we do not require this generality for the
applications we have in mind.

Proposition 7.1. Let A be subhomogeneous with Prim(A) compact, and let
e be a full, positive element in the Pedersen ideal of A. It follows that

(7.1) rod(A, e) ≤ 16R(d+4):r(e) := 16 sup
π irred. rep.

dtop(π) + 4

Rankπ(e)

Proof. This proof is contained in the proof of [19, Theorem 3.4]. We shall
explain exactly how, since the statement of [19, Theorem 3.4] neither makes
reference to the radius of divisibility, nor handles the nonunital case. Set
r to be the right-hand side of (7.1) for convenience, and let a continuous
linear function f : T (A)→ (0,∞) be given. By Proposition 3.4 we have that
Te 7→1(A) is a compact base for the space of densely defined lower semicon-
tinuous traces. We therefore need only prove that there exists a ∈ (A⊗K)+
such that

|dτ (a)− f(τ)| ≤ r, ∀τ ∈ Te 7→1(A),

and, of course, it in fact suffices to show this only for extreme points of
Te 7→1(A).

As long as r is finite, it follows from [18, Corollary 3.3] that A is a re-
cursive subhomogeneous algebra, so let us consider it to be equipped with
a recursive subhomogeneous decomposition. For 1 ≤ i ≤ n, let Mni(Xi) be

the ith matrix block of A, X
(0)
i the ith clutching space, Ai the ith stage al-

gebra, and φi : Ai → Mni the ith clutching homomorphism. The irreducible
representations of A correspond to evaluating an element of A at a point

x ∈ X(1) :=
l⋃

i=1

Xi\X(0)
i .

Let’s denote such a representation by πx, and let Tr denote the canonical
normalized trace on Mn (for any n). The extreme points of Te 7→1(A) are all
multiples of τx := Tr ◦ πx; therefore, we must verify that

|dτx(a)− f(τ)| ≤ rdτx(e), ∀x ∈ X(1).

We note here that dτx(b) = rank(πx(b))/ni = rank(b(x))/ni for any b ∈ A+

and x ∈ Xi. We can therefore finally characterize our requirement in terms
of ranks of positive operators:∣∣∣∣rank(a(x))

ni
− f(τx)

∣∣∣∣ ≤ r rank(e(x))

ni
= 16

dim(Xi) + 4

ni
.
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The existence of such an a now follows verbatim from the proof of Theorem
3.4 of [19], beginning at the bottom of page 239. �

Corollary 7.2. If A is a simple, nonelementary, approximately subhomo-
geneous algebra with slow dimension growth then ι is surjective, and Cu(A)
is as described in Theorem 6.2

Proof. The range of ι is dense by Propositions 5.3 and 7.1, together with not-
ing that simplicity and nonelementarity implies that min Rankπ(φ∞1 (a))→
∞ for every nonzero π. We have almost unperforation by [18, Corollary 5.9].
The conclusion follows from Theorem 6.2. �
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