SIMPLE AMENABLE OPERATOR ALGEBRAS

Stuart White

University of Oxford

MEA CUPLA

WRONG DEFINITION OF STRONG SELF-ABSORPTION

I CLAIMED UNITAL $\mathcal{D} \neq \mathbb{C}$ IS STRONGLY SELF-ABSORBING IF:

- ullet $\mathcal{D}\cong\mathcal{D}\otimes\mathcal{D}$
- \bullet The flip map is approximately inner on $\mathcal{D}\otimes\mathcal{D}.$

BUT IN FACT

Unital $\mathcal{D} \neq \mathbb{C}$ is strongly self-absorbing if:

- The flip map is approximately inner on $\mathcal{D}\otimes\mathcal{D}$.
- and either $\mathcal{D}\cong\mathcal{D}^{\otimes\infty}$ or a whan only region unlikan Mealos

The point is that this gives an isomorphism $\theta:\mathcal{D}\stackrel{\cong}{\to}\mathcal{D}\otimes\mathcal{D}$ which is approx unitarily equivalent to $x\mapsto x\otimes 1_{\mathcal{D}}$

However: Just assuming ${\mathcal D}$ has approximate inner flip

Proof that $\mathcal{D} \hookrightarrow A_{\omega} \cap A' \Rightarrow A \cong A \otimes \mathcal{D}$ still true

Converse holds when \mathcal{D} is strongly self-absorbing.

JIANG'S THEOREM: UNITAL \mathcal{Z} -STABLE C^* -ALGEBRAS ARE K1 INJECTIVE [v] =0 vell(A) = val in lack)

For A unital and $M_{\bullet \infty}$ -stable

• $K_0(A)$ generated by $\{[p]_0 : p \in \mathcal{P}(A)\}.$

RECALL
$$Z$$
 IS AN INDUCTIVE LIMIT OF $Z_{2\infty,3\infty}$ 'S

• It suffices to show $A \otimes Z_{2\infty,3\infty}$ is K_1 -injective

• Fix unitary $u \in A \otimes \mathcal{Z}_{2^{\infty},3^{\infty}}$ with $[u]_1 = 0$.

$$0 o A \otimes SM_{6^{\infty}} o A \otimes \mathcal{Z}_{2^{\infty},3^{\infty}} \overset{q}{ o} A \otimes (M_{2^{\infty}} \oplus M_{3^{\infty}}) o 0,$$
 $0 o A \otimes M_{6^{\infty}} o A \otimes \mathcal{Z}_{2^{\infty},3^{\infty}} \overset{q}{ o} A \otimes (M_{2^{\infty}} \oplus M_{3^{\infty}}) o 0,$

[q(v)]=0: ... q(v)~1 in A & (Mzv & Mzv)

q(v) h v & A @ Z zw, zw replace v by v'v

JIANG'S THEOREM

- Fix unitary $u \in A \otimes \mathcal{Z}_{2^{\infty},3^{\infty}}$ with $[u]_1 = 0$.

 $K_0(A \otimes (M_{2^{\infty}} \oplus M_{3^{\infty}})) \longleftarrow K_0(A \otimes \mathcal{Z}_{2^{\infty},3^{\infty}}) \longleftarrow K_0(A \otimes SM_{6^{\infty}})$

CLAIM

Can replace u so that $[u]_1 = 0$ in $K_1(A \otimes SM_{6^{\infty}})$.

JIANG'S THEOREM

• Fix unitary $u \in A \otimes \mathcal{Z}_{2^{\infty},3^{\infty}}$ with $[u]_1 = 0$.

$$0 \to A \otimes \textit{SM}_{6^{\infty}} \to A \otimes \mathcal{Z}_{2^{\infty},3^{\infty}} \xrightarrow{q} A \otimes (\textit{M}_{2^{\infty}} \oplus \textit{M}_{3^{\infty}}) \to 0,$$

- wlog q(u) = 1, so $u \in (A \otimes SM_{6^{\infty}})$
- and wlog $[u]_1 = 0$ in $K_1(A \otimes SM_{6^{\infty}})$

.. [v], =0 in CCT,
$$A \otimes M_{b} u$$
) which is k_i -inpilite
.. I path (v_k) $V_i = 1$, $V_i = v$ in CCT, $A \otimes M_{b} u$)

 $V_t = V_e(i)^* V_e$ path gam 1 to v_i in $(A \otimes 5M_{b} u)^* V_e$

RECALL: MATUI-SATO. LIFT MCDUFFNESS TO TRACIALLY LARGE ORDER ZERO MAP

 $A \neq M_n$, simple nuclear with unique trace.

$$A_{\omega} \cap A' \longrightarrow \mathcal{R}^{\omega} \cap \mathcal{R}'$$
 $A_{\omega} \cap A' \longrightarrow \mathcal{R}^{\omega} \cap \mathcal{R}'$
 $A_{\omega} \cap A' \longrightarrow \mathcal{R}^{\omega} \cap \mathcal{R}'$

$$A_{\omega} \cap A' \longrightarrow \mathcal{R}^{\omega} \cap \mathcal{R}'$$

Tr.(A)" YR

• What if A has more than one trace?

For each
$$T \in T(A)$$
 $\exists Q_T : M_n \rightarrow A_{\omega} \cdot A' \quad ol2 \quad C_{\omega} \left(Q_T(I)\right) < 1$.
Want 16 thereally large old map $\varphi : M_n \rightarrow A_{\omega} \cdot A' \cdot ol2$. $T \cdot (Q(I)) < 1$. $\forall T \in T_{\omega}(A)$.

Need to look at all traces simulateously, and obtain uniform estimates.

LOOKING AT ALL THE TRACES AT THE SAME TIME

- $\pi_{\tau}(A)''$ doesn't carry uniform information about all traces on A.
- A_{fin}^{**} sees all traces but not uniformly.

RECALL

Let τ be a trace on a C^* -algebra A. Then $\pi_{\tau}(A)$ is a von Neumann algebra iff the unit ball of A is complete in $\|\cdot\|_{2,\tau}$.

DEFINITION A:
$$C(X)$$
 | | $\pi |_{L/T(A)} = \| \pi \|$
Let A be a C*-algebra with $T(A) \neq \emptyset$. $\| x \|_{2,T(A)} = \sup_{\tau \in T(A)} \| x \|_{2,\tau}$

$$\overline{A}^{T(A)} := \frac{\{\text{norm bounded}, \ \|\cdot\|_{2,T(A)}\text{-Cauchy sequences}\}}{\{\text{norm bounded}, \ \|\cdot\|_{2,T(A)}\text{-null sequences}\}} \quad \text{Operators}$$

• Tracial completion of A. $\|\cdot\|_{2,T(A)}$ extends to $\overline{A}^{T(A)}$

$$\overline{A}^{\mathcal{T}(\mathcal{A})} := \frac{\{\text{norm bounded}, \ \|\cdot\|_{2,\mathcal{T}(\mathcal{A})}\text{-Cauchy sequences}\}}{\{\text{norm bounded}, \ \|\cdot\|_{2,\mathcal{T}(\mathcal{A})}\text{-null sequences}\}}$$

• Tracial completion of A. $\|\cdot\|_{2,T(A)}$ extends to $\overline{A}^{T(A)}$.

DEFINITION (CCEGSTW)

M C*-uly,

A tracially complete C^* -algebra is a pair (\mathcal{M}, X) such that $X \subset T(\mathcal{M})$ is a closed convex set such that

- $||x||_{2,X} = \sup_{\tau \in X} \tau(x^*x)^{1/2}$ is a norm on \mathcal{M} .
- The unit ball of \mathcal{M} is complete in $\|\cdot\|_{2,X}$.

ey
$$(\mathcal{M}, \{73\})$$
; $(\mathcal{M}, T(\mathcal{U}))$, $(\bar{A}^{T(A)}, T(A))$.

yielde unas \in limitely captale C^{K} \in C^{I} -aligns.

O: $(\mathcal{M}, X) \longrightarrow (N, Y)$ s.l. yr $t \in \mathcal{I}$, $C \circ O \in X$

McDuffness (again)

Various operations: follow constructions for finite vNa using $\|\cdot\|_{2,X}$ rather than $\|\cdot\|_{2,\tau}$.

- $\bullet \ (\mathcal{M},X) \, \overline{\otimes} \, (\mathcal{N},Y) = \overline{(\mathcal{M} \otimes \mathcal{N})}^{\overline{co}(X \times Y)}$
- $\bullet \ (\mathcal{M},X)^\omega \text{ has algebra } \mathcal{M}^\omega = \ell^\infty(\mathcal{M})/\{(x_n): \lim_{n\to\omega}\|x_n\|_{2,X} = 0\}.$

THEN

for $\|\cdot\|_{2,X}$ -separable tracially complete C^* -algebras:

$$(\mathcal{M},X)\cong (\mathcal{M},X)\overline{\otimes}(\mathcal{R},\{\tau_{\mathcal{R}}\})\Longleftrightarrow M_n\hookrightarrow (\mathcal{M},X)^\omega\cap \mathcal{M}'.$$

Last those McDuz tracciolly complete Ct. mys.

lifting agreet goes through us well (ATA), T(A)) is Miles

· Is also A single number & has deared in proported Cente semi-grap : ATA) NORMS => A = A & E.

Open: ATCA) is Mily ? In this generally)

$$\frac{e_{q}}{C_{n}} \xrightarrow{A} \frac{1}{2} (C_{1} + C_{2})$$

$$\frac{e_{q}}{C_{n}} \xrightarrow{A} \frac{1}{2} (C_{1} + C_{2})$$

Fa O: M, (R) = R

From Pointwise to Uniform?

10(1))=1

 $\forall \tau \in T_{\omega}(A), \ \exists \phi_{\tau} : M_n \to (A_{\omega} \cap A'), \ \text{such that } \tau(A) \to A'$

 $\exists \phi: M_n \to (A_\omega \cap A'), \text{ such that } \forall \tau \in T_\omega(A), \ \tau(V) \to 0$

Another eg: For a unitary $u \in (\mathcal{M}, X)$

For each Tex, I have segue of 110-eint 112, c < 8. , 11 halles 670

But add in $T_0(u)''$. Qn $\forall \xi > 0$ $\exists h = h^{*} > \ell$, $\exists u = e^{ih} |_{Z,X} < \xi$? (i.e. underes in U^{ω} are equation $\delta \in K_1(U^{\omega}) = 0$).

Pointwise to uniform: McDuffness is universal (at least with a factor condition) $\uparrow(u) = A$

DEFINITION

 (\mathcal{M}, X) is factorial if X is a closed face of $T(\mathcal{M})$.

Automatic (but needs work) for $(\overline{A}^{T(A)}, T(A))$.

T(A) ET(ATA)

EXAMPLE — THEOREM

Let (\mathcal{M}, X) be a McDuff tracially complete C^* -algebra and $u \in \mathcal{M}$ unitary. Then there exists self-adjoint $h \in \mathcal{M}^{\omega}$ with $u = e^{ih}$.

• eg $(A^{T(A)}, T(A))$ with $A \mathcal{Z}$ -stable.

POINTWISE TO UNIFORM: MCDUFFNESS IS UNIVERSAL

A CLASSIFICATION TYPE EXAMPLE

A CONSEQUENCE OF CONNES' THEOREM

Let A be a separable nuclear C^* -algebra and $\mathcal M$ a finite von Neumann algebra. Maps $A \to \mathcal M$ are classified by traces.

UNIFORM TRACE VERSION

Let A be separable nuclear C^* -algebra, and (\mathcal{M}, X) a McDuff factorial tracially complete C^* -algebra. Maps $A \to \mathcal{M}$ are classified by traces.

AMENABILITY FOR TRACIALLY COMPLETE

C*-ALGEBRAS

THEOREM (CCEGSTW)

- Amenable McDuff factorial tracially complete C^* -algebras are approximately finite dimensional.
- They are then classified by the specified set of traces.

A, B
$$Z$$
 white, reduce, $T(A)$, $T(B) \neq \beta$ (ep., unital.)
 $\overline{A}^{T(A)} \cong \overline{B}^{T(B)} \in I$ $T(A) \cong T(B)$.

Months replace —) Mong truitly complete