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Proof. There exists Ag € C such that dist(a,C14) = ||a — Aol.4]|.
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A generalization of this will be :

Theorem (Grover P.; Singla S., 2021)

Let a € A. Let B be a subspace of A. Let by be a best
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Theorem (Grover P.; Singla S., 2021)

Let a € A. Let B be a subspace of A. Suppose there is a best
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Proof using tools of convex analysis

Lemma (Singla S., 2021)
Let a,b e A. Then

. flat+ebf[—lal 1 . Jla*a+ ta"b| — ||a*a]
im —mM8M8M ——— lim .
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Expression for Gateuax derivative

For a normed space V and v,u € V, we have

ol e = v

t—0+ t

= max{Re f(u) : f € V* f(v) = [lv], | f]| = 1}.
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Let a,b € A. Then we have

o lat el —fal _ 1
t—0+ t llall

max{Rep(a*b) : ¢ € Sa, ¢(a"a) = ||a||T}-
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Smooth points

We say that a vector v of norm one is a smooth point of the unit
ball of V if there exists a unique functional F,, called the support
functional, such that ||F,|| =1 and F,(v) = 1.
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orthogonal to B if and only if there exists ¢ € S4 such that
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Proof.
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orthogonal to B if and only if there exists ¢ € S4 such that
#(a*a) = ||a||?> and ¢(a*b) = 0 for all b € B.

Proof.
© Reverse direction is easy. For all b € B,

lal|* = ¢(a*a) < ¢(a"a)+¢(b"b) = ¢((a—b)*(a—b)) < [|a—b|*.
@ Let a be Birkhoff-James orthogonal to B i.e. dist(a, B) = ||a||.
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Proof Continued

Theorem (Grover P.; Singla S., 2021)

Let a€ A. Let B be a subspace of A. Then a is Birkhoff-James
orthogonal to B if and only if there exists ¢ € S4 such that
#(a*a) = ||a||?> and #(a*b) = 0 for all b € B.
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Let a€ A. Let B be a subspace of A. Then a is Birkhoff-James
orthogonal to B if and only if there exists ¢ € S4 such that
#(a*a) = ||a||?> and ¢(a*b) = 0 for all b € B.

@ Now (a) = (n|m(a)§) = ||a||. So by using the condition for
equality in Cauchy-Schwarz inequality, we obtain

lalln = m(a)¢.
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equality in Cauchy-Schwarz inequality, we obtain

|alln = m(a)¢.
@ This gives ¢(c) = 1

[la]

(r(a)é|m(c)€) for all c € A.

@ Therefore, (m(a)é|m(a)¢) = ||a||? and (7(a)¢|m(b)E) = 0 for
all b e B.
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