Orthogonality and Gateaux derivative of C^* -norm

Sushil Singla

Department of Mathematics School of Natural Sciences Shiv Nadar University

June 18, 2021

States and orthogonality in C^* -algebra 0000000000

Table of Contents

() States and orthogonality in C^* -algebra

Proofs and applications

States and orthogonality in C^* -algebra ••••••••• Proofs and applications

Table of Contents

(1) States and orthogonality in C^* -algebra

Proofs and applications

Let \mathcal{A} be a C^* algebra over field \mathbb{C} or \mathbb{R} . $\mathcal{S}_{\mathcal{A}}$ will stand for the set of all states on \mathcal{A} .

Let \mathcal{A} be a C^* algebra over field \mathbb{C} or \mathbb{R} . $\mathcal{S}_{\mathcal{A}}$ will stand for the set of all states on \mathcal{A} .

Theorem (Gelfand-Naimark-Segal)

Let $a \in A$. Then there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$.

Let \mathcal{A} be a C^* algebra over field \mathbb{C} or \mathbb{R} . $\mathcal{S}_{\mathcal{A}}$ will stand for the set of all states on \mathcal{A} .

Theorem (Gelfand-Naimark-Segal)

Let $a \in A$. Then there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$. This can be rephrased as : dist $(a, \{0\})^2 = \max\{\phi(a^*a) : \phi \in S_A\}$.

Let \mathcal{A} be a C^* algebra over field \mathbb{C} or \mathbb{R} . $\mathcal{S}_{\mathcal{A}}$ will stand for the set of all states on \mathcal{A} .

Theorem (Gelfand-Naimark-Segal)

Let $a \in A$. Then there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$. This can be rephrased as : dist $(a, \{0\})^2 = \max\{\phi(a^*a) : \phi \in S_A\}$.

A positive functional ϕ gives a semi inner product on \mathcal{A} defined as $\langle a|b\rangle_{\phi} = \phi(a^*b).$

Let \mathcal{A} be a C^* algebra over field \mathbb{C} or \mathbb{R} . $\mathcal{S}_{\mathcal{A}}$ will stand for the set of all states on \mathcal{A} .

Theorem (Gelfand-Naimark-Segal)

Let $a \in A$. Then there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$. This can be rephrased as : dist $(a, \{0\})^2 = \max\{\phi(a^*a) : \phi \in S_A\}$.

A positive functional ϕ gives a semi inner product on A defined as $\langle a|b\rangle_{\phi} = \phi(a^*b)$. The above theorem can be rephrased as -

Let \mathcal{A} be a C^* algebra over field \mathbb{C} or \mathbb{R} . $\mathcal{S}_{\mathcal{A}}$ will stand for the set of all states on \mathcal{A} .

Theorem (Gelfand-Naimark-Segal)

Let $a \in A$. Then there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$. This can be rephrased as : dist $(a, \{0\})^2 = \max\{\phi(a^*a) : \phi \in S_A\}$.

A positive functional ϕ gives a semi inner product on A defined as $\langle a|b\rangle_{\phi} = \phi(a^*b)$. The above theorem can be rephrased as -

There exists $\phi \in \mathcal{S}(\mathcal{A})$ such that $\langle a | a \rangle_{\phi} = \operatorname{dist}(a, \{0\})^2$.

Let \mathcal{A} be a C^* algebra over field \mathbb{C} or \mathbb{R} . $\mathcal{S}_{\mathcal{A}}$ will stand for the set of all states on \mathcal{A} .

Theorem (Gelfand-Naimark-Segal)

Let $a \in A$. Then there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$. This can be rephrased as : dist $(a, \{0\})^2 = \max\{\phi(a^*a) : \phi \in S_A\}$.

A positive functional ϕ gives a semi inner product on A defined as $\langle a|b\rangle_{\phi} = \phi(a^*b)$. The above theorem can be rephrased as -

There exists $\phi \in S(\mathcal{A})$ such that $\langle a|a \rangle_{\phi} = \operatorname{dist}(a, \{0\})^2$. We generalize this for any subspace \mathcal{B} , when a best approximation to a in \mathcal{B} exists.

4 / 24

SHIV NADAR UNIVERSITY

-

イロト 不得 トイヨト イヨト

Let \mathcal{A} be a C^* algebra over field \mathbb{C} or \mathbb{R} . $\mathcal{S}_{\mathcal{A}}$ will stand for the set of all states on \mathcal{A} .

Theorem (Gelfand-Naimark-Segal)

Let $a \in A$. Then there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$. This can be rephrased as : dist $(a, \{0\})^2 = \max\{\phi(a^*a) : \phi \in S_A\}$.

A positive functional ϕ gives a semi inner product on A defined as $\langle a|b\rangle_{\phi} = \phi(a^*b)$. The above theorem can be rephrased as -

There exists $\phi \in S(\mathcal{A})$ such that $\langle a|a \rangle_{\phi} = \operatorname{dist}(a, \{0\})^2$. We generalize this for any subspace \mathcal{B} , when a best approximation to a in \mathcal{B} exists.

4 / 24

SHIV NADAR UNIVERSITY

-

イロト 不得 トイヨト イヨト

Let W be a subspace of a normed space V.

Let W be a subspace of a normed space V.

Definition

An element $w_0 \in W$ is said to be a best approximation to v in W if and only if $dist(v, W) = ||v - w_0||$.

Let W be a subspace of a normed space V.

Definition

An element $w_0 \in W$ is said to be a best approximation to v in W if and only if $dist(v, W) = ||v - w_0||$. In case $w_0 = 0$, we say v is Birkhoff-James orthogonal to W.

Let W be a subspace of a normed space V.

Definition

An element $w_0 \in W$ is said to be a best approximation to v in W if and only if $dist(v, W) = ||v - w_0||$. In case $w_0 = 0$, we say v is Birkhoff-James orthogonal to W.

Note that w_0 is a best approximation to v in W if and only if $v - w_0$ is Birkhoff-James orthogonal to W.

Let W be a subspace of a normed space V.

Definition

An element $w_0 \in W$ is said to be a best approximation to v in W if and only if $dist(v, W) = ||v - w_0||$. In case $w_0 = 0$, we say v is Birkhoff-James orthogonal to W.

Note that w_0 is a best approximation to v in W if and only if $v - w_0$ is Birkhoff-James orthogonal to W. Also we note that in case V is a Hilbert space, this notion of orthogonality matches with usual notion of orthogonality in a Hilbert space.

This viewpoint of best approximation as orthogonality enable us to guess results from geometric intuition and then try to prove it algebrically.

イロト 不得 トイヨト イヨト

Let W be a subspace of a normed space V.

Definition

An element $w_0 \in W$ is said to be a best approximation to v in W if and only if $dist(v, W) = ||v - w_0||$. In case $w_0 = 0$, we say v is Birkhoff-James orthogonal to W.

Note that w_0 is a best approximation to v in W if and only if $v - w_0$ is Birkhoff-James orthogonal to W. Also we note that in case V is a Hilbert space, this notion of orthogonality matches with usual notion of orthogonality in a Hilbert space.

This viewpoint of best approximation as orthogonality enable us to guess results from geometric intuition and then try to prove it algebrically.

イロト 不得 トイヨト イヨト

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let \mathcal{B} be a subspace of A. Then a is Birkhoff-James orthogonal to \mathcal{B} if and only if there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$ and $\phi(a^*b) = 0$ for all $b \in \mathcal{B}$.

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let \mathcal{B} be a subspace of A. Then a is Birkhoff-James orthogonal to \mathcal{B} if and only if there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$ and $\phi(a^*b) = 0$ for all $b \in \mathcal{B}$.

The above theorem says that b_0 is a best approximation to a in \mathcal{B}

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let \mathcal{B} be a subspace of A. Then a is Birkhoff-James orthogonal to \mathcal{B} if and only if there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$ and $\phi(a^*b) = 0$ for all $b \in \mathcal{B}$.

The above theorem says that b_0 is a best approximation to a in \mathcal{B} if and only if there exists $\phi \in S_{\mathcal{A}}$ such that

$$\|a - b_0\|_{\phi} = \|a - b_0\|$$
 and $\langle a - b_0|b \rangle_{\phi} = 0$ for all $b \in \mathcal{B}$.

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let \mathcal{B} be a subspace of A. Then a is Birkhoff-James orthogonal to \mathcal{B} if and only if there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$ and $\phi(a^*b) = 0$ for all $b \in \mathcal{B}$.

The above theorem says that b_0 is a best approximation to a in \mathcal{B} if and only if there exists $\phi \in S_{\mathcal{A}}$ such that

$$\|a - b_0\|_{\phi} = \|a - b_0\|$$
 and $\langle a - b_0|b \rangle_{\phi} = 0$ for all $b \in \mathcal{B}$.

The above characterization of orthogonality has following geometric interpretation.

6 / 24

SHIV NADAR UNIVERSITY

イロト 不得 トイヨト イヨト

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let \mathcal{B} be a subspace of A. Then a is Birkhoff-James orthogonal to \mathcal{B} if and only if there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$ and $\phi(a^*b) = 0$ for all $b \in \mathcal{B}$.

The above theorem says that b_0 is a best approximation to a in \mathcal{B} if and only if there exists $\phi \in S_{\mathcal{A}}$ such that

$$\|a - b_0\|_{\phi} = \|a - b_0\|$$
 and $\langle a - b_0|b \rangle_{\phi} = 0$ for all $b \in \mathcal{B}$.

The above characterization of orthogonality has following geometric interpretation.

6 / 24

SHIV NADAR UNIVERSITY

イロト 不得 トイヨト イヨト

States and orthogonality in C^* -algebra 000000000

Proofs and applications

Geometric interpretation

The above theorem is a generalization of very well known results, which follow as a corollary of the above result.

7 / 24

イロト イヨト イヨト

States and orthogonality in C^* -algebra 000000000

Proofs and applications

Geometric interpretation

The above theorem is a generalization of very well known results, which follow as a corollary of the above result.

7 / 24

イロト イヨト イヨト

Notation: \mathbb{F} will stand for \mathbb{C} or \mathbb{R} . Let $(\mathcal{C}(X), \|\cdot\|_{\infty})$ be the space of \mathbb{F} -valued continuous functions on a compact Hausdorff space X.

Notation: \mathbb{F} will stand for \mathbb{C} or \mathbb{R} . Let $(\mathcal{C}(X), \|\cdot\|_{\infty})$ be the space of \mathbb{F} -valued continuous functions on a compact Hausdorff space X.

Theorem (Singer I., 1970)

Let $f \in C(X)$ and W is a subspace of C(X). Let $g \in W$, then the following are equivalent:

イロト イボト イヨト イヨト

Notation: \mathbb{F} will stand for \mathbb{C} or \mathbb{R} . Let $(\mathcal{C}(X), \|\cdot\|_{\infty})$ be the space of \mathbb{F} -valued continuous functions on a compact Hausdorff space X.

Theorem (Singer I., 1970)

Let $f \in C(X)$ and W is a subspace of C(X). Let $g \in W$, then the following are equivalent:

- **1** g is a best approximation to f in W.
- **2** There exists a regular Borel probability measure μ on X such that

a) the support of
$$\mu$$
 is contained in the set
 $\{x \in X : |(f - g)(x)| = ||f - g||_{\infty}\}$ and
b) $\int_{X} \overline{(f - g)}h \, d\mu = 0$ for all $h \in W$.

8 / 24

SHIV NADAR UNIVERSITY

イロト イボト イヨト イヨト

Notation: \mathbb{F} will stand for \mathbb{C} or \mathbb{R} . Let $(\mathcal{C}(X), \|\cdot\|_{\infty})$ be the space of \mathbb{F} -valued continuous functions on a compact Hausdorff space X.

Theorem (Singer I., 1970)

Let $f \in C(X)$ and W is a subspace of C(X). Let $g \in W$, then the following are equivalent:

- **1** g is a best approximation to f in W.
- **2** There exists a regular Borel probability measure μ on X such that

a) the support of
$$\mu$$
 is contained in the set
 $\{x \in X : |(f - g)(x)| = ||f - g||_{\infty}\}$ and
b) $\int_{X} \overline{(f - g)}h \, d\mu = 0$ for all $h \in W$.

(1) is equivalent to $\int_X \overline{(f-g)}(f-g) d\mu = \|f-g\|_{\infty}^2$. Shiv NADAR UNIVERSITY

Notation: \mathbb{F} will stand for \mathbb{C} or \mathbb{R} . Let $(\mathcal{C}(X), \|\cdot\|_{\infty})$ be the space of \mathbb{F} -valued continuous functions on a compact Hausdorff space X.

Theorem (Singer I., 1970)

Let $f \in C(X)$ and W is a subspace of C(X). Let $g \in W$, then the following are equivalent:

- **1** g is a best approximation to f in W.
- **2** There exists a regular Borel probability measure μ on X such that

a) the support of
$$\mu$$
 is contained in the set
 $\{x \in X : |(f - g)(x)| = ||f - g||_{\infty}\}$ and
b) $\int_{X} \overline{(f - g)}h \, d\mu = 0$ for all $h \in W$.

(1) is equivalent to $\int_X \overline{(f-g)}(f-g) d\mu = \|f-g\|_{\infty}^2$. Shiv NADAR UNIVERSITY

Let $\mathbb{M}_n(\mathbb{F})$ be the space of $n \times n$ matrices with entries in \mathbb{F} . A *density matrix* $A \in \mathbb{M}_n(\mathbb{F})$ is a non-negative matrix with trace (A) = 1.

Let $\mathbb{M}_n(\mathbb{F})$ be the space of $n \times n$ matrices with entries in \mathbb{F} . A *density matrix* $A \in \mathbb{M}_n(\mathbb{F})$ is a non-negative matrix with trace (A) = 1.

Theorem (Grover P., 2014)

Let $A \in \mathbb{M}_n(\mathbb{F})$ and \mathcal{W} be a subspace of $\mathbb{M}_n(\mathbb{F})$.

Let $\mathbb{M}_n(\mathbb{F})$ be the space of $n \times n$ matrices with entries in \mathbb{F} . A *density matrix* $A \in \mathbb{M}_n(\mathbb{F})$ is a non-negative matrix with trace (A) = 1.

Theorem (Grover P., 2014)

Let $A \in \mathbb{M}_n(\mathbb{F})$ and \mathcal{W} be a subspace of $\mathbb{M}_n(\mathbb{F})$. Then A is Birkhoff-James orthogonal to \mathcal{W}

Let $\mathbb{M}_n(\mathbb{F})$ be the space of $n \times n$ matrices with entries in \mathbb{F} . A *density matrix* $A \in \mathbb{M}_n(\mathbb{F})$ is a non-negative matrix with trace (A) = 1.

Theorem (Grover P., 2014)

Let $A \in \mathbb{M}_n(\mathbb{F})$ and \mathcal{W} be a subspace of $\mathbb{M}_n(\mathbb{F})$. Then A is Birkhoff-James orthogonal to \mathcal{W} if and only if there exists a density matrix $T \in \mathbb{M}_n(\mathbb{F})$ such that $A^*AT = ||A||^2 T$ and trace $(B^*AT) = 0$ for all $B \in \mathcal{W}$.

Let $\mathbb{M}_n(\mathbb{F})$ be the space of $n \times n$ matrices with entries in \mathbb{F} . A *density matrix* $A \in \mathbb{M}_n(\mathbb{F})$ is a non-negative matrix with trace (A) = 1.

Theorem (Grover P., 2014)

Let $A \in \mathbb{M}_n(\mathbb{F})$ and \mathcal{W} be a subspace of $\mathbb{M}_n(\mathbb{F})$. Then A is Birkhoff-James orthogonal to \mathcal{W} if and only if there exists a density matrix $T \in \mathbb{M}_n(\mathbb{F})$ such that $A^*AT = ||A||^2 T$ and trace $(B^*AT) = 0$ for all $B \in \mathcal{W}$.

Density matrices correspond to states on $\mathbb{M}_n(\mathbb{F})$ and trace $(A^*AT) = ||A^2||$ is equivalent to $A^*AT = ||A||^2 T$. Surv NADAR UNIVERSITY

Let $\mathbb{M}_n(\mathbb{F})$ be the space of $n \times n$ matrices with entries in \mathbb{F} . A *density matrix* $A \in \mathbb{M}_n(\mathbb{F})$ is a non-negative matrix with trace (A) = 1.

Theorem (Grover P., 2014)

Let $A \in \mathbb{M}_n(\mathbb{F})$ and \mathcal{W} be a subspace of $\mathbb{M}_n(\mathbb{F})$. Then A is Birkhoff-James orthogonal to \mathcal{W} if and only if there exists a density matrix $T \in \mathbb{M}_n(\mathbb{F})$ such that $A^*AT = ||A||^2 T$ and trace $(B^*AT) = 0$ for all $B \in \mathcal{W}$.

Density matrices correspond to states on $\mathbb{M}_n(\mathbb{F})$ and trace $(A^*AT) = ||A^2||$ is equivalent to $A^*AT = ||A||^2 T$. Surv NADAR UNIVERSITY

Corollaries

Theorem (Bhatia R.; Šemrl P., 1999)

A matrix A is orthogonal to B if and only if there exist unit vector x such that ||Ax|| = ||A|| and $\langle Ax|Bx \rangle = 0$.

Theorem (Bhatia R.; Šemrl P., 1999)

A matrix A is orthogonal to B if and only if there exist unit vector x such that ||Ax|| = ||A|| and $\langle Ax|Bx \rangle = 0$.

Theorem (Bhatia R.; Šemrl P., 1999)

A matrix A is orthogonal to B if and only if there exist unit vector x such that ||Ax|| = ||A|| and $\langle Ax|Bx \rangle = 0$.

A related to question will be given $a, b \in A$, if a orthogonal to b, can we find a pur state ϕ such that $\phi(a^*a) = ||a||^2$ and $\phi(a^*b) = 0$?

Theorem (Bhatia R.; Šemrl P., 1999)

A matrix A is orthogonal to B if and only if there exist unit vector x such that ||Ax|| = ||A|| and $\langle Ax|Bx \rangle = 0$.

A related to question will be given $a, b \in A$, if a orthogonal to b, can we find a pur state ϕ such that $\phi(a^*a) = ||a||^2$ and $\phi(a^*b) = 0$? (answer is still unknown)

Theorem (Bhatia R.; Šemrl P., 1999)

A matrix A is orthogonal to B if and only if there exist unit vector x such that ||Ax|| = ||A|| and $\langle Ax|Bx \rangle = 0$.

A related to question will be given $a, b \in A$, if a orthogonal to b, can we find a pur state ϕ such that $\phi(a^*a) = ||a||^2$ and $\phi(a^*b) = 0$? (answer is still unknown)

Theorem (Rieffel M. A., 2011)

Let $a \in A$ be a Hermitian element and \mathcal{B} be a C^* -subalgebra of a \mathcal{A} . If a is Birkhoff-James orthogonal to \mathcal{B} , then there exists $\phi \in S_{\mathcal{A}}$ such that $\phi(a^2) = ||a||^2$ and $\phi(ab + b^*a) = 0$ for all $b \in \mathcal{B}$.

A D > A D > A D > A D >

RSITY

Theorem (Bhatia R.; Šemrl P., 1999)

A matrix A is orthogonal to B if and only if there exist unit vector x such that ||Ax|| = ||A|| and $\langle Ax|Bx \rangle = 0$.

A related to question will be given $a, b \in A$, if a orthogonal to b, can we find a pur state ϕ such that $\phi(a^*a) = ||a||^2$ and $\phi(a^*b) = 0$? (answer is still unknown)

Theorem (Rieffel M. A., 2011)

Let $a \in A$ be a Hermitian element and \mathcal{B} be a C^* -subalgebra of a \mathcal{A} . If a is Birkhoff-James orthogonal to \mathcal{B} , then there exists $\phi \in S_{\mathcal{A}}$ such that $\phi(a^2) = ||a||^2$ and $\phi(ab + b^*a) = 0$ for all $b \in \mathcal{B}$.

A D > A D > A D > A D >

RSITY

Theorem (Bhatia R.; Šemrl P., 1999)

A matrix A is orthogonal to B if and only if there exist unit vector x such that ||Ax|| = ||A|| and $\langle Ax|Bx \rangle = 0$.

A related to question will be given $a, b \in A$, if a orthogonal to b, can we find a pur state ϕ such that $\phi(a^*a) = ||a||^2$ and $\phi(a^*b) = 0$? (answer is still unknown)

Theorem (Rieffel M. A., 2011)

Let $a \in A$ be a Hermitian element and \mathcal{B} be a C^* -subalgebra of a \mathcal{A} . If a is Birkhoff-James orthogonal to \mathcal{B} , then there exists $\phi \in S_{\mathcal{A}}$ such that $\phi(a^2) = ||a||^2$ and $\phi(ab + b^*a) = 0$ for all $b \in \mathcal{B}$.

A D > A D > A D > A D >

RSITY

Theorem (Williams J. P., 1970)

For $a \in A$, we have

$$\operatorname{dist}(\boldsymbol{a},\mathbb{C}\boldsymbol{1}_{\mathcal{A}})^2 = \max\{\phi(\boldsymbol{a}^*\boldsymbol{a}) - |\phi(\boldsymbol{a})|^2 : \phi \in \mathcal{S}_{\mathcal{A}}\}.$$

Proof. There exists $\lambda_0 \in \mathbb{C}$ such that $\operatorname{dist}(a, \mathbb{C}1_{\mathcal{A}}) = \|a - \lambda_0 1_{\mathcal{A}}\|$.

Theorem (Williams J. P., 1970)

For $a \in A$, we have

$$\operatorname{dist}(a,\mathbb{C}1_{\mathcal{A}})^2=\max\{\phi(a^*a)-|\phi(a)|^2:\phi\in\mathcal{S}_{\mathcal{A}}\}.$$

Proof. There exists $\lambda_0 \in \mathbb{C}$ such that $\operatorname{dist}(a, \mathbb{C}1_{\mathcal{A}}) = ||a - \lambda_0 1_{\mathcal{A}}||$. Then there exists $\phi \in S_{\mathcal{A}}$ such that $\phi((a - \lambda_0 1_{\mathcal{A}})^*(a - \lambda_0 1_{\mathcal{A}})) = \operatorname{dist}(a, \mathbb{C}1_{\mathcal{A}})^2$ and $\phi(a - \lambda_0 1_{\mathcal{A}}) = 0$.

Theorem (Williams J. P., 1970)

For $a \in A$, we have

$$\operatorname{dist}(a,\mathbb{C}1_{\mathcal{A}})^2=\max\{\phi(a^*a)-|\phi(a)|^2:\phi\in\mathcal{S}_{\mathcal{A}}\}.$$

Proof. There exists $\lambda_0 \in \mathbb{C}$ such that $\operatorname{dist}(a, \mathbb{C}1_{\mathcal{A}}) = ||a - \lambda_0 1_{\mathcal{A}}||$. Then there exists $\phi \in S_{\mathcal{A}}$ such that $\phi((a - \lambda_0 1_{\mathcal{A}})^*(a - \lambda_0 1_{\mathcal{A}})) = \operatorname{dist}(a, \mathbb{C}1_{\mathcal{A}})^2$ and $\phi(a - \lambda_0 1_{\mathcal{A}}) = 0$.

Theorem (Williams J. P., 1970)

For $a \in A$, we have

$$\operatorname{dist}(a,\mathbb{C}1_{\mathcal{A}})^2 = \max\{\phi(a^*a) - |\phi(a)|^2 : \phi \in \mathcal{S}_{\mathcal{A}}\}.$$

Proof. There exists $\lambda_0 \in \mathbb{C}$ such that $\operatorname{dist}(a, \mathbb{C}1_{\mathcal{A}}) = ||a - \lambda_0 1_{\mathcal{A}}||$. Then there exists $\phi \in S_{\mathcal{A}}$ such that $\phi((a - \lambda_0 1_{\mathcal{A}})^*(a - \lambda_0 1_{\mathcal{A}})) = \operatorname{dist}(a, \mathbb{C}1_{\mathcal{A}})^2$ and $\phi(a - \lambda_0 1_{\mathcal{A}}) = 0$.

A generalization of this will be :

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let \mathcal{B} be a subspace of A. Let b_0 be a best approximation to a in \mathcal{B} . Then

$$\operatorname{dist}(a,\mathcal{B})^{2} = \max\{\phi(a^{*}a) - \phi(b_{0}^{*}b_{0}) : \phi \in S_{\mathcal{A}} \text{ and } \phi(a^{*}b) = \phi(b_{0}^{*}b)$$
for all $b \in \mathcal{B}\}$
for all $b \in \mathcal{B}$

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let B be a subspace of A. Suppose there is a best approximation to a in B. Then

 $dist(a, \mathcal{B}) = \max \{ |\langle \pi(a)\xi | \eta \rangle | : (\mathcal{H}, \pi, \xi) \text{ is cyclic representation of } \mathcal{A}, \\ \eta \in \mathcal{H}, \|\eta\| = 1 \text{ and } \langle \pi(b)\xi | \eta \rangle = 0 \text{ for all } b \in \mathcal{B} \}.$

Proof. Clearly $RHS \leq LHS$.

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let B be a subspace of A. Suppose there is a best approximation to a in B. Then

 $dist(a, \mathcal{B}) = \max \{ |\langle \pi(a)\xi | \eta \rangle | : (\mathcal{H}, \pi, \xi) \text{ is cyclic representation of } \mathcal{A}, \\ \eta \in \mathcal{H}, \|\eta\| = 1 \text{ and } \langle \pi(b)\xi | \eta \rangle = 0 \text{ for all } b \in \mathcal{B} \}.$

Proof. Clearly $RHS \leq LHS$. Let b_0 be a best approximation to a in \mathcal{B} .

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let B be a subspace of A. Suppose there is a best approximation to a in B. Then

$$dist(a, \mathcal{B}) = \max \{ |\langle \pi(a)\xi | \eta \rangle | : (\mathcal{H}, \pi, \xi) \text{ is cyclic representation of } \mathcal{A}, \\ \eta \in \mathcal{H}, \|\eta\| = 1 \text{ and } \langle \pi(b)\xi | \eta \rangle = 0 \text{ for all } b \in \mathcal{B} \}.$$

Proof. Clearly $RHS \leq LHS$. Let b_0 be a best approximation to a in \mathcal{B} . Then there exists $\phi \in S_{\mathcal{A}}$ such that $||a - b_0||_{\phi} = ||a - b_0||$ and $\langle a - b_0 | b \rangle_{\phi} = 0$ for all $b \in \mathcal{B}$.

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let B be a subspace of A. Suppose there is a best approximation to a in B. Then

 $dist(a, \mathcal{B}) = \max \{ \left| \langle \pi(a)\xi | \eta \rangle \right| : (\mathcal{H}, \pi, \xi) \text{ is cyclic representation of } \mathcal{A}, \\ \eta \in \mathcal{H}, \|\eta\| = 1 \text{ and } \langle \pi(b)\xi | \eta \rangle = 0 \text{ for all } b \in \mathcal{B} \}.$

Proof. Clearly *RHS* \leq *LHS*. Let b_0 be a best approximation to a in \mathcal{B} . Then there exists $\phi \in S_{\mathcal{A}}$ such that $||a - b_0||_{\phi} = ||a - b_0||$ and $\langle a - b_0 | b \rangle_{\phi} = 0$ for all $b \in \mathcal{B}$. Now there exists a cyclic representation (\mathcal{H}, π, ξ) such that $\phi(c) = \langle \pi(c)\xi|\xi \rangle$ for all $c \in \mathcal{A}$.

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let B be a subspace of A. Suppose there is a best approximation to a in B. Then

$$dist(a, \mathcal{B}) = \max \{ |\langle \pi(a)\xi | \eta \rangle | : (\mathcal{H}, \pi, \xi) \text{ is cyclic representation of } \mathcal{A}, \\ \eta \in \mathcal{H}, \|\eta\| = 1 \text{ and } \langle \pi(b)\xi | \eta \rangle = 0 \text{ for all } b \in \mathcal{B} \}.$$

Proof. Clearly *RHS* \leq *LHS*. Let b_0 be a best approximation to a in \mathcal{B} . Then there exists $\phi \in S_{\mathcal{A}}$ such that $||a - b_0||_{\phi} = ||a - b_0||$ and $\langle a - b_0 | b \rangle_{\phi} = 0$ for all $b \in \mathcal{B}$. Now there exists a cyclic representation (\mathcal{H}, π, ξ) such that $\phi(c) = \langle \pi(c)\xi|\xi \rangle$ for all $c \in \mathcal{A}$. So $||\pi(a - b_0)\xi|| = ||a - b_0||$ and $\langle \pi(a - b_0)\xi|\pi(b)\xi \rangle = 0$ for all $b \in \mathcal{B}$.

12 / 24

-

ヘロト 人間 とくほ とくほ とう

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let B be a subspace of A. Suppose there is a best approximation to a in B. Then

 $dist(a, \mathcal{B}) = \max \{ \left| \langle \pi(a)\xi | \eta \rangle \right| : (\mathcal{H}, \pi, \xi) \text{ is cyclic representation of } \mathcal{A}, \\ \eta \in \mathcal{H}, \|\eta\| = 1 \text{ and } \langle \pi(b)\xi | \eta \rangle = 0 \text{ for all } b \in \mathcal{B} \}.$

Proof. Clearly *RHS* \leq *LHS*. Let b_0 be a best approximation to a in \mathcal{B} . Then there exists $\phi \in S_{\mathcal{A}}$ such that $||a - b_0||_{\phi} = ||a - b_0||$ and $\langle a - b_0 | b \rangle_{\phi} = 0$ for all $b \in \mathcal{B}$. Now there exists a cyclic representation (\mathcal{H}, π, ξ) such that $\phi(c) = \langle \pi(c)\xi|\xi \rangle$ for all $c \in \mathcal{A}$. So $||\pi(a - b_0)\xi|| = ||a - b_0||$ and $\langle \pi(a - b_0)\xi|\pi(b)\xi \rangle = 0$ for all $b \in \mathcal{B}$. Taking $\eta = \frac{1}{||a - b_0||} \pi(a - b_0)\xi$, we get the required result.

-

イロト 不得 トイヨト イヨト

Theorem (P. Grover, 2014)

Let \mathcal{B} be C^* -subalgebra of (\mathbb{C}) containing idenity matrix. Let $\mathcal{C}_{\mathcal{B}}$ be orthogonal projection of $\mathbb{M}_n(\mathbb{C})$ onto \mathcal{B} .

Theorem (P. Grover, 2014)

Let \mathcal{B} be C^* -subalgebra of (\mathbb{C}) containing idenity matrix. Let $\mathcal{C}_{\mathcal{B}}$ be orthogonal projection of $\mathbb{M}_n(\mathbb{C})$ onto \mathcal{B} . Then

$$\begin{split} \operatorname{dist}(a,\mathcal{B})^2 &= \max\{\operatorname{trace}\left(A^*AP - \mathcal{C}_{\mathcal{B}}(AP)^*\mathcal{C}_{\mathcal{B}}(AP)\mathcal{C}_{\mathcal{B}}(P)^{-1}: \\ P \geq 0, \operatorname{trace}\left(P\right) = 1\}. \end{split}$$

Theorem (P. Grover, 2014)

Let \mathcal{B} be C^* -subalgebra of (\mathbb{C}) containing idenity matrix. Let $\mathcal{C}_{\mathcal{B}}$ be orthogonal projection of $\mathbb{M}_n(\mathbb{C})$ onto \mathcal{B} . Then

$$\begin{split} \operatorname{dist}(a,\mathcal{B})^2 &= \max\{\operatorname{trace}\left(A^*AP - \mathcal{C}_{\mathcal{B}}(AP)^*\mathcal{C}_{\mathcal{B}}(AP)\mathcal{C}_{\mathcal{B}}(P)^{-1} : \\ P \geq 0, \operatorname{trace}\left(P\right) = 1\} \end{split}$$

Theorem

Let $a \in A$. Let \mathcal{B} be C^{*}-subalgebra of A containing $1_{\mathcal{A}}$.

Theorem (P. Grover, 2014)

Let \mathcal{B} be C^* -subalgebra of (\mathbb{C}) containing idenity matrix. Let $\mathcal{C}_{\mathcal{B}}$ be orthogonal projection of $\mathbb{M}_n(\mathbb{C})$ onto \mathcal{B} . Then

$$\begin{split} \operatorname{dist}(a,\mathcal{B})^2 &= \max\{\operatorname{trace}\left(A^*AP - \mathcal{C}_{\mathcal{B}}(AP)^*\mathcal{C}_{\mathcal{B}}(AP)\mathcal{C}_{\mathcal{B}}(P)^{-1} : \\ P \geq 0, \operatorname{trace}\left(P\right) = 1\}. \end{split}$$

Theorem

Let $a \in A$. Let \mathcal{B} be C*-subalgebra of A containing $1_{\mathcal{A}}$. Then

$$dist(a, \mathcal{B})^{2} \ge \sup\{\phi(E(a^{*}a) - E(a)^{*}E(a)) : \phi \in \mathcal{S}_{\mathcal{A}}, \\ E \text{ is a conditional expectation from } \mathcal{A} \text{ to } \mathcal{B}\}.$$

SHIV NADAR UNIVERSITY

13/24

イロト イヨト イヨト

A distance formulas in terms of conditional expectation

Theorem (P. Grover, 2014)

Let \mathcal{B} be C^* -subalgebra of (\mathbb{C}) containing idenity matrix. Let $\mathcal{C}_{\mathcal{B}}$ be orthogonal projection of $\mathbb{M}_n(\mathbb{C})$ onto \mathcal{B} . Then

$$\begin{split} \operatorname{dist}(a,\mathcal{B})^2 &= \max\{\operatorname{trace}\left(A^*AP - \mathcal{C}_{\mathcal{B}}(AP)^*\mathcal{C}_{\mathcal{B}}(AP)\mathcal{C}_{\mathcal{B}}(P)^{-1} : \\ P \geq 0, \operatorname{trace}\left(P\right) = 1\}. \end{split}$$

Theorem

Let $a \in A$. Let \mathcal{B} be C*-subalgebra of A containing $1_{\mathcal{A}}$. Then

$$dist(a, \mathcal{B})^2 \ge \sup\{\phi(E(a^*a) - E(a)^*E(a)) : \phi \in \mathcal{S}_{\mathcal{A}}, \\ E \text{ is a conditional expectation from } \mathcal{A} \text{ to } \mathcal{B}\}.$$

We know equality occurs when $\mathcal{B}=\mathbb{C}\mathbf{1}_\mathcal{A}$

Theorem (P. Grover, 2014)

Let \mathcal{B} be C^* -subalgebra of (\mathbb{C}) containing idenity matrix. Let $\mathcal{C}_{\mathcal{B}}$ be orthogonal projection of $\mathbb{M}_n(\mathbb{C})$ onto \mathcal{B} . Then

$$\begin{split} \operatorname{dist}(a,\mathcal{B})^2 &= \max\{\operatorname{trace}\left(A^*AP - \mathcal{C}_{\mathcal{B}}(AP)^*\mathcal{C}_{\mathcal{B}}(AP)\mathcal{C}_{\mathcal{B}}(P)^{-1} : \\ P \geq 0, \operatorname{trace}\left(P\right) = 1\} \end{split}$$

Theorem

Let $a \in A$. Let \mathcal{B} be C*-subalgebra of A containing $1_{\mathcal{A}}$. Then

$$\operatorname{dist}(\boldsymbol{a},\mathcal{B})^2 \geq \sup\{\phi(\boldsymbol{E}(\boldsymbol{a}^*\boldsymbol{a}) - \boldsymbol{E}(\boldsymbol{a})^*\boldsymbol{E}(\boldsymbol{a})): \phi \in \mathcal{S}_{\mathcal{A}},$$

E is a conditional expectation from \mathcal{A} to \mathcal{B} }.

We know equality occurs when $\mathcal{B} = \mathbb{C}1_{\mathcal{A}}$ and when \mathcal{B} is central finite dimensional subspace but for general C^* -subalgebra; we still we sti

Theorem (P. Grover, 2014)

Let \mathcal{B} be C^* -subalgebra of (\mathbb{C}) containing idenity matrix. Let $\mathcal{C}_{\mathcal{B}}$ be orthogonal projection of $\mathbb{M}_n(\mathbb{C})$ onto \mathcal{B} . Then

$$\begin{split} \operatorname{dist}(a,\mathcal{B})^2 &= \max\{\operatorname{trace}\left(A^*AP - \mathcal{C}_{\mathcal{B}}(AP)^*\mathcal{C}_{\mathcal{B}}(AP)\mathcal{C}_{\mathcal{B}}(P)^{-1} : \\ P \geq 0, \operatorname{trace}\left(P\right) = 1\} \end{split}$$

Theorem

Let $a \in A$. Let \mathcal{B} be C*-subalgebra of A containing $1_{\mathcal{A}}$. Then

$$\operatorname{dist}(\boldsymbol{a},\mathcal{B})^2 \geq \sup\{\phi(\boldsymbol{E}(\boldsymbol{a}^*\boldsymbol{a}) - \boldsymbol{E}(\boldsymbol{a})^*\boldsymbol{E}(\boldsymbol{a})): \phi \in \mathcal{S}_{\mathcal{A}},$$

E is a conditional expectation from \mathcal{A} to \mathcal{B} }.

We know equality occurs when $\mathcal{B} = \mathbb{C}1_{\mathcal{A}}$ and when \mathcal{B} is central finite dimensional subspace but for general C^* -subalgebra; we still we sti

States and orthogonality in C^* -algebra 0000000000

Table of Contents

States and orthogonality in C*-algebra

Proofs and applications

We consider the function $f(\lambda) = ||a + \lambda b||$ mapping \mathbb{C} into \mathbb{R}_+ .

We consider the function $f(\lambda) = ||a + \lambda b||$ mapping \mathbb{C} into \mathbb{R}_+ . To say that *a* is orthogonal to *b* is to say that *f* attains its minimum at the point 0.

We consider the function $f(\lambda) = ||a + \lambda b||$ mapping \mathbb{C} into \mathbb{R}_+ . To say that *a* is orthogonal to *b* is to say that *f* attains its minimum at the point 0. This is clearly a calculus problem, except that the function $|| \cdot ||$ is not differentiable.

We consider the function $f(\lambda) = ||a + \lambda b||$ mapping \mathbb{C} into \mathbb{R}_+ . To say that *a* is orthogonal to *b* is to say that *f* attains its minimum at the point 0. This is clearly a calculus problem, except that the function $|| \cdot ||$ is not differentiable.

So we can't use first derivative test. But $\|\cdot\|$ is also convex, this gives motivation to define Gateaux derivative

We consider the function $f(\lambda) = ||a + \lambda b||$ mapping \mathbb{C} into \mathbb{R}_+ . To say that *a* is orthogonal to *b* is to say that *f* attains its minimum at the point 0. This is clearly a calculus problem, except that the function $|| \cdot ||$ is not differentiable.

So we can't use first derivative test. But $\|\cdot\|$ is also convex, this gives motivation to define Gateaux derivative and we will see characterization of orthogonality in terms of Gateaux derivative.

We consider the function $f(\lambda) = ||a + \lambda b||$ mapping \mathbb{C} into \mathbb{R}_+ . To say that *a* is orthogonal to *b* is to say that *f* attains its minimum at the point 0. This is clearly a calculus problem, except that the function $|| \cdot ||$ is not differentiable.

So we can't use first derivative test. But $\|\cdot\|$ is also convex, this gives motivation to define Gateaux derivative and we will see characterization of orthogonality in terms of Gateaux derivative.

Theorem

Let X be a Banach space, $x, y \in X$, and $\phi \in [0, 2\pi)$.

• The function $\alpha : \mathbb{R} \to \mathbb{R}, \alpha(t) = ||x + ty||$ is convex.

Theorem

Let X be a Banach space, $x, y \in X$, and $\phi \in [0, 2\pi)$.

• The function $\alpha : \mathbb{R} \to \mathbb{R}, \alpha(t) = ||x + ty||$ is convex. Hence the limit $D_{0,x}(y) = \lim_{t \to 0^+} \frac{||x + ty|| - ||x||}{t}$ always exists.

Theorem

Let X be a Banach space, $x, y \in X$, and $\phi \in [0, 2\pi)$.

- The function $\alpha : \mathbb{R} \to \mathbb{R}, \alpha(t) = ||x + ty||$ is convex. Hence the limit $D_{0,x}(y) = \lim_{t \to 0^+} \frac{||x + ty|| ||x||}{t}$ always exists.
- We have ||x + ty|| ≥ ||x|| for all t ∈ ℝ if and only if the inequality D_{0,x}(y) ≥ 0 holds.

イロト イヨト イヨト

SHIV NADAR UNIVERSITY

16/24

イロト 不得 トイヨト イヨト 二日

Gateaux derivative and orthogonality

Theorem

Let X be a Banach space, $x, y \in X$, and $\phi \in [0, 2\pi)$.

- The function $\alpha : \mathbb{R} \to \mathbb{R}, \alpha(t) = ||x + ty||$ is convex. Hence the limit $D_{0,x}(y) = \lim_{t \to 0^+} \frac{||x + ty|| ||x||}{t}$ always exists.
- We have ||x + ty|| ≥ ||x|| for all t ∈ ℝ if and only if the inequality D_{0,x}(y) ≥ 0 holds.
- And x is orthogonal to y if and only if $\inf_{\phi} D_{\phi,x}(y) \ge 0$ where $D_{\phi,x}(y) = \lim_{t \to 0^+} \frac{\|x + te^{i\phi}y\| - \|x\|}{t}$

Theorem

Let X be a Banach space, $x, y \in X$, and $\phi \in [0, 2\pi)$.

- The function $\alpha : \mathbb{R} \to \mathbb{R}, \alpha(t) = ||x + ty||$ is convex. Hence the limit $D_{0,x}(y) = \lim_{t \to 0^+} \frac{||x + ty|| ||x||}{t}$ always exists.
- We have ||x + ty|| ≥ ||x|| for all t ∈ ℝ if and only if the inequality D_{0,x}(y) ≥ 0 holds.
- And x is orthogonal to y if and only if $\inf_{\phi} D_{\phi,x}(y) \ge 0$ where $D_{\phi,x}(y) = \lim_{t \to 0^+} \frac{\|x + te^{i\phi}y\| - \|x\|}{t}$ is called the ϕ -Gateaux derivative of the norm at the vector x, in the y and ϕ directions.

SHIV NADAR UNIVERSITY

Theorem

Let X be a Banach space, $x, y \in X$, and $\phi \in [0, 2\pi)$.

- The function $\alpha : \mathbb{R} \to \mathbb{R}, \alpha(t) = ||x + ty||$ is convex. Hence the limit $D_{0,x}(y) = \lim_{t \to 0^+} \frac{||x + ty|| ||x||}{t}$ always exists.
- We have ||x + ty|| ≥ ||x|| for all t ∈ ℝ if and only if the inequality D_{0,x}(y) ≥ 0 holds.
- And x is orthogonal to y if and only if $\inf_{\phi} D_{\phi,x}(y) \ge 0$ where $D_{\phi,x}(y) = \lim_{t \to 0^+} \frac{\|x + te^{i\phi}y\| - \|x\|}{t}$ is called the ϕ -Gateaux derivative of the norm at the vector x, in the y and ϕ directions.

SHIV NADAR UNIVERSITY

Lemma (Singla S., 2021)

Let $a, b \in A$. Then $\lim_{t \to 0^+} \frac{\|a + tb\| - \|a\|}{t} = \frac{1}{\|a\|} \lim_{t \to 0^+} \frac{\|a^*a + ta^*b\| - \|a^*a\|}{t}.$ Thus we get $D_{\phi,a}(b) = \frac{1}{\|a\|} D_{\phi,a^*a}(a^*b).$

Lemma (Singla S., 2021)

Let $a, b \in A$. Then

$$\lim_{t \to 0^+} \frac{\|a + tb\| - \|a\|}{t} = \frac{1}{\|a\|} \lim_{t \to 0^+} \frac{\|a^*a + ta^*b\| - \|a^*a\|}{t}.$$

Thus we get
$$D_{\phi,a}(b) = rac{1}{\|a\|} D_{\phi,a^*a}(a^*b).$$

This gives $\inf_{\phi} D_{\phi,a}(b) \geq 0$ if and only if $\inf_{\phi} D_{\phi,a^*a}(a^*b) \geq 0$

Lemma (Singla S., 2021)

Let $a, b \in A$. Then

$$\lim_{t \to 0^+} \frac{\|a + tb\| - \|a\|}{t} = \frac{1}{\|a\|} \lim_{t \to 0^+} \frac{\|a^*a + ta^*b\| - \|a^*a\|}{t}.$$

Thus we get
$$D_{\phi,a}(b) = rac{1}{\|a\|} D_{\phi,a^*a}(a^*b).$$

This gives $\inf_{\phi} D_{\phi,a}(b) \ge 0$ if and only if $\inf_{\phi} D_{\phi,a^*a}(a^*b) \ge 0$ i.e. *a* is orthogonal to *b* if and only if a^*a is orthogonal to a^*b .

Lemma (Singla S., 2021)

Let $a, b \in A$. Then

$$\lim_{t \to 0^+} \frac{\|a + tb\| - \|a\|}{t} = \frac{1}{\|a\|} \lim_{t \to 0^+} \frac{\|a^*a + ta^*b\| - \|a^*a\|}{t}.$$

Thus we get
$$D_{\phi,a}(b) = rac{1}{\|a\|} D_{\phi,a^*a}(a^*b).$$

This gives $\inf_{\phi} D_{\phi,a}(b) \ge 0$ if and only if $\inf_{\phi} D_{\phi,a^*a}(a^*b) \ge 0$ i.e. *a* is orthogonal to *b* if and only if a^*a is orthogonal to a^*b .

Then by the Hahn-Banach Theorem, there exists $\phi \in \mathcal{A}^*$ such that $\|\phi\| = 1$, $\phi(a^*a) = \|a\|^2$ and $\phi(a^*b) = 0$ for all $b \in \mathcal{B}$.

17 / 24

SHIV NADAR UNIVERSITY

-

イロト イボト イヨト イヨト

Lemma (Singla S., 2021)

Let $a, b \in A$. Then

$$\lim_{t \to 0^+} \frac{\|a + tb\| - \|a\|}{t} = \frac{1}{\|a\|} \lim_{t \to 0^+} \frac{\|a^*a + ta^*b\| - \|a^*a\|}{t}.$$

Thus we get
$$D_{\phi,a}(b) = rac{1}{\|a\|} D_{\phi,a^*a}(a^*b).$$

This gives $\inf_{\phi} D_{\phi,a}(b) \ge 0$ if and only if $\inf_{\phi} D_{\phi,a^*a}(a^*b) \ge 0$ i.e. *a* is orthogonal to *b* if and only if a^*a is orthogonal to a^*b .

Then by the Hahn-Banach Theorem, there exists $\phi \in \mathcal{A}^*$ such that $\|\phi\| = 1$, $\phi(a^*a) = \|a\|^2$ and $\phi(a^*b) = 0$ for all $b \in \mathcal{B}$. And ϕ is required state using fact it attains its norm at a non-zero positive element.

Lemma (Singla S., 2021)

Let $a, b \in A$. Then

$$\lim_{t \to 0^+} \frac{\|a + tb\| - \|a\|}{t} = \frac{1}{\|a\|} \lim_{t \to 0^+} \frac{\|a^*a + ta^*b\| - \|a^*a\|}{t}.$$

Thus we get
$$D_{\phi,a}(b) = rac{1}{\|a\|} D_{\phi,a^*a}(a^*b).$$

This gives $\inf_{\phi} D_{\phi,a}(b) \ge 0$ if and only if $\inf_{\phi} D_{\phi,a^*a}(a^*b) \ge 0$ i.e. *a* is orthogonal to *b* if and only if a^*a is orthogonal to a^*b .

Then by the Hahn-Banach Theorem, there exists $\phi \in \mathcal{A}^*$ such that $\|\phi\| = 1$, $\phi(a^*a) = \|a\|^2$ and $\phi(a^*b) = 0$ for all $b \in \mathcal{B}$. And ϕ is required state using fact it attains its norm at a non-zero positive element.

Expression for Gateuax derivative

For a normed space V and $v, u \in V$, we have

$$\lim_{t\to 0^+} \frac{\|v+tu\|-\|v\|}{t} = \max\{\text{Re } f(u): f \in V^*, f(v) = \|v\|, \|f\| = 1\}.$$

Expression for Gateuax derivative

For a normed space V and $v, u \in V$, we have

$$\lim_{t\to 0^+} \frac{\|v+tu\|-\|v\|}{t} = \max\{\text{Re } f(u): f \in V^*, f(v) = \|v\|, \|f\| = 1\}.$$

Theorem (Singla S., 2021) Let $a, b \in \mathcal{A}$. Then we have $\lim_{t \to 0^+} \frac{\|a + tb\| - \|a\|}{t} = \frac{1}{\|a\|} \max\{\operatorname{Re}\phi(a^*b) : \phi \in \mathcal{S}_{\mathcal{A}}, \phi(a^*a) = \|a\|^2\}.$

Expression for Gateuax derivative

For a normed space V and $v, u \in V$, we have

$$\lim_{t\to 0^+} \frac{\|v+tu\|-\|v\|}{t} = \max\{\text{Re } f(u): f \in V^*, f(v) = \|v\|, \|f\| = 1\}.$$

Theorem (Singla S., 2021)

Let
$$a, b \in \mathcal{A}$$
. Then we have
$$\lim_{t \to 0^+} \frac{\|a + tb\| - \|a\|}{t} = \frac{1}{\|a\|} \max\{\operatorname{Re}\phi(a^*b) : \phi \in \mathcal{S}_{\mathcal{A}}, \phi(a^*a) = \|a\|^2\}.$$

Corollary. For $A, B \in \mathscr{K}(\mathcal{H})$, we have

$$\lim_{t \to 0^+} \frac{\|A + tB\| - \|A\|}{t} = \frac{1}{\|A\|} \max_{\|u\|=1, A^*Au = \|A\|^2 u} \operatorname{Re} \langle Au|Bu \rangle.$$
Shiv NADAR UNIVERSITY
$$IB / 24$$

We say that a vector v of norm one is a smooth point of the unit ball of V if there exists a unique functional F_v , called the support functional, such that $||F_v|| = 1$ and $F_v(v) = 1$.

We say that a vector v of norm one is a smooth point of the unit ball of V if there exists a unique functional F_v , called the support functional, such that $||F_v|| = 1$ and $F_v(v) = 1$.

It is a general fact that v is a smooth point of the unit ball of v if and only if $\lim_{t\to 0} \frac{\|v + tu\| - \|v\|}{t}$ exists

We say that a vector v of norm one is a smooth point of the unit ball of V if there exists a unique functional F_v , called the support functional, such that $||F_v|| = 1$ and $F_v(v) = 1$.

It is a general fact that v is a smooth point of the unit ball of v if and only if $\lim_{t\to 0} \frac{||v + tu|| - ||v||}{t}$ exists and in this case, it is equal to Re $F_v(u)$.

We say that a vector v of norm one is a smooth point of the unit ball of V if there exists a unique functional F_v , called the support functional, such that $||F_v|| = 1$ and $F_v(v) = 1$.

It is a general fact that v is a smooth point of the unit ball of v if and only if $\lim_{t\to 0} \frac{\|v + tu\| - \|v\|}{t}$ exists and in this case, it is equal to Re $F_v(u)$.

Now using these facts and expression for Gateaux derivative of norm for $\mathscr{K}(\mathcal{H})$, we get a characterization of smooth points of $\mathscr{K}(\mathcal{H})$.

We say that a vector v of norm one is a smooth point of the unit ball of V if there exists a unique functional F_v , called the support functional, such that $||F_v|| = 1$ and $F_v(v) = 1$.

It is a general fact that v is a smooth point of the unit ball of v if and only if $\lim_{t\to 0} \frac{\|v + tu\| - \|v\|}{t}$ exists and in this case, it is equal to Re $F_v(u)$.

Now using these facts and expression for Gateaux derivative of norm for $\mathscr{K}(\mathcal{H})$, we get a characterization of smooth points of $\mathscr{K}(\mathcal{H})$.

States and orthogonality in C^* -algebra 0000000000

Proofs and applications

Smooth points in $\mathscr{K}(\mathcal{H})$ and $\mathscr{B}(\mathcal{H})$

Using
$$\lim_{t \to 0^+} \frac{\|A + tB\| - \|A\|}{t} = \frac{1}{\|A\|} \max_{\|u\| = 1, A^*Au = \|A\|^2 u} Re\langle Au|Bu \rangle$$
, we get

States and orthogonality in C^* -algebra 0000000000

Smooth points in $\mathscr{K}(\mathcal{H})$ and $\mathscr{B}(\mathcal{H})$

Using
$$\lim_{t\to 0^+} \frac{\|A+tB\|-\|A\|}{t} = \frac{1}{\|A\|} \max_{\|u\|=1,A^*Au=\|A\|^2u} \operatorname{Re}\langle Au|Bu\rangle,$$
 we get

Theorem (Holub J. R., 1973)

An operator A is a smooth point of the unit ball of $\mathscr{B}(\mathcal{H})$ if and only if A attains its norm at a unit vector h

States and orthogonality in C^* -algebra 0000000000

Smooth points in $\mathscr{K}(\mathcal{H})$ and $\mathscr{B}(\mathcal{H})$

Using
$$\lim_{t\to 0^+} \frac{\|A+tB\|-\|A\|}{t} = \frac{1}{\|A\|} \max_{\|u\|=1,A^*Au=\|A\|^2u} \operatorname{Re}\langle Au|Bu\rangle,$$
 we get

Theorem (Holub J. R., 1973)

An operator A is a smooth point of the unit ball of $\mathscr{B}(\mathcal{H})$ if and only if A attains its norm at a unit vector h such that $\sup_{\substack{x \perp h, \|x\|=1}} \|Ax\| < \|A\|.$

Using
$$\lim_{t\to 0^+} \frac{\|A+tB\|-\|A\|}{t} = \frac{1}{\|A\|} \max_{\|u\|=1,A^*Au=\|A\|^2u} \operatorname{Re}\langle Au|Bu\rangle,$$
 we get

Theorem (Holub J. R., 1973)

An operator A is a smooth point of the unit ball of $\mathscr{B}(\mathcal{H})$ if and only if A attains its norm at a unit vector h such that $\sup_{\substack{x \perp h, \|x\| = 1}} \|Ax\| < \|A\|.$ In that case, $\lim_{t \to 0} \frac{\|A + tB\| - \|A\|}{t} = Re\langle Ah|Bh \rangle.$

Using
$$\lim_{t\to 0^+} \frac{\|A+tB\|-\|A\|}{t} = \frac{1}{\|A\|} \max_{\|u\|=1,A^*Au=\|A\|^2u} \operatorname{Re}\langle Au|Bu\rangle,$$
 we get

Theorem (Holub J. R., 1973)

An operator A is a smooth point of the unit ball of $\mathscr{B}(\mathcal{H})$ if and only if A attains its norm at a unit vector h such that $\sup_{\substack{x \perp h, \|x\| = 1}} \|Ax\| < \|A\|.$ In that case, $\lim_{t \to 0} \frac{\|A + tB\| - \|A\|}{t} = Re\langle Ah|Bh \rangle.$

The same result holds true for smooth points of unit ball of $\mathscr{B}(\mathcal{H})$.

Using
$$\lim_{t\to 0^+} \frac{\|A+tB\|-\|A\|}{t} = \frac{1}{\|A\|} \max_{\|u\|=1,A^*Au=\|A\|^2 u} \operatorname{Re}\langle Au|Bu\rangle,$$
 we get

Theorem (Holub J. R., 1973)

An operator A is a smooth point of the unit ball of $\mathscr{B}(\mathcal{H})$ if and only if A attains its norm at a unit vector h such that $\sup_{\substack{\times \perp h, \|x\|=1}} \|Ax\| < \|A\|.$ In that case, $\lim_{t \to 0} \frac{\|A + tB\| - \|A\|}{t} = Re\langle Ah|Bh \rangle.$

The same result holds true for smooth points of unit ball of $\mathscr{B}(\mathcal{H})$. One of the proof can be done by modifying proofs for finding Gateaux derivative in *C**-algebra when $a \in \mathcal{I}$ for a two sided ideal *I*.

イロト イボト イヨト イヨト

Using
$$\lim_{t\to 0^+} \frac{\|A+tB\|-\|A\|}{t} = \frac{1}{\|A\|} \max_{\|u\|=1,A^*Au=\|A\|^2u} \operatorname{Re}\langle Au|Bu\rangle,$$
 we get

Theorem (Holub J. R., 1973)

An operator A is a smooth point of the unit ball of $\mathscr{B}(\mathcal{H})$ if and only if A attains its norm at a unit vector h such that $\sup_{\substack{x \perp h, \|x\| = 1}} \|Ax\| < \|A\|.$ In that case, $\lim_{t \to 0} \frac{\|A + tB\| - \|A\|}{t} = Re\langle Ah|Bh \rangle.$

The same result holds true for smooth points of unit ball of $\mathscr{B}(\mathcal{H})$. One of the proof can be done by modifying proofs for finding Gateaux derivative in C^* -algebra when $a \in \mathcal{I}$ for a two sided ideal *I*. And we have also been able to find such a formula under the UNVERSITY condition dist $(a, \mathcal{I}) < ||a||$ and using tools of *M*-ideals theory.

Using
$$\lim_{t\to 0^+} \frac{\|A+tB\|-\|A\|}{t} = \frac{1}{\|A\|} \max_{\|u\|=1,A^*Au=\|A\|^2u} \operatorname{Re}\langle Au|Bu\rangle,$$
 we get

Theorem (Holub J. R., 1973)

An operator A is a smooth point of the unit ball of $\mathscr{B}(\mathcal{H})$ if and only if A attains its norm at a unit vector h such that $\sup_{\substack{x \perp h, \|x\| = 1}} \|Ax\| < \|A\|.$ In that case, $\lim_{t \to 0} \frac{\|A + tB\| - \|A\|}{t} = Re\langle Ah|Bh \rangle.$

The same result holds true for smooth points of unit ball of $\mathscr{B}(\mathcal{H})$. One of the proof can be done by modifying proofs for finding Gateaux derivative in C^* -algebra when $a \in \mathcal{I}$ for a two sided ideal *I*. And we have also been able to find such a formula under the UNVERSITY condition dist $(a, \mathcal{I}) < ||a||$ and using tools of *M*-ideals theory.

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let \mathcal{B} be a subspace of A. Then a is Birkhoff-James orthogonal to \mathcal{B} if and only if there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$ and $\phi(a^*b) = 0$ for all $b \in \mathcal{B}$.

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let \mathcal{B} be a subspace of A. Then a is Birkhoff-James orthogonal to \mathcal{B} if and only if there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$ and $\phi(a^*b) = 0$ for all $b \in \mathcal{B}$.

Proof.

1 Reverse direction is easy. For all $b \in \mathcal{B}$,

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let \mathcal{B} be a subspace of A. Then a is Birkhoff-James orthogonal to \mathcal{B} if and only if there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$ and $\phi(a^*b) = 0$ for all $b \in \mathcal{B}$.

Proof.

() Reverse direction is easy. For all $b \in \mathcal{B}$,

$$\|a\|^2=\phi(a^*a)\leq \phi(a^*a)+\phi(b^*b)=\phi((a-b)^*(a-b))\leq \|a-b\|^2.$$

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let \mathcal{B} be a subspace of A. Then a is Birkhoff-James orthogonal to \mathcal{B} if and only if there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$ and $\phi(a^*b) = 0$ for all $b \in \mathcal{B}$.

Proof.

1 Reverse direction is easy. For all $b \in \mathcal{B}$,

 $\|a\|^2 = \phi(a^*a) \le \phi(a^*a) + \phi(b^*b) = \phi((a-b)^*(a-b)) \le \|a-b\|^2.$

2 Let a be Birkhoff-James orthogonal to \mathcal{B} i.e. $dist(a, \mathcal{B}) = ||a||$.

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let \mathcal{B} be a subspace of A. Then a is Birkhoff-James orthogonal to \mathcal{B} if and only if there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$ and $\phi(a^*b) = 0$ for all $b \in \mathcal{B}$.

Proof.

() Reverse direction is easy. For all $b \in \mathcal{B}$,

 $\|a\|^2 = \phi(a^*a) \le \phi(a^*a) + \phi(b^*b) = \phi((a-b)^*(a-b)) \le \|a-b\|^2.$

- 2 Let *a* be Birkhoff-James orthogonal to \mathcal{B} i.e. $dist(a, \mathcal{B}) = ||a||$.
- So By the Hahn-Banach theorem, there exists $\psi \in \mathcal{A}^*$ such that $\|\psi\| = 1$, $\psi(a) = \|a\|$ and $\psi(b) = 0$ for all $b \in \mathcal{B}$.

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let \mathcal{B} be a subspace of A. Then a is Birkhoff-James orthogonal to \mathcal{B} if and only if there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$ and $\phi(a^*b) = 0$ for all $b \in \mathcal{B}$.

Proof.

() Reverse direction is easy. For all $b \in \mathcal{B}$,

 $\|a\|^2 = \phi(a^*a) \le \phi(a^*a) + \phi(b^*b) = \phi((a-b)^*(a-b)) \le \|a-b\|^2.$

- 2 Let *a* be Birkhoff-James orthogonal to \mathcal{B} i.e. $dist(a, \mathcal{B}) = ||a||$.
- So By the Hahn-Banach theorem, there exists $\psi \in \mathcal{A}^*$ such that $\|\psi\| = 1$, $\psi(a) = \|a\|$ and $\psi(b) = 0$ for all $b \in \mathcal{B}$.
- Hence there exists a cyclic representation (\mathcal{H}, π, ξ) of \mathcal{A} and a unit vector $\eta \in \mathcal{H}$ such that

$$\psi(c) = \langle \eta | \pi(c) \xi \rangle$$
 for all $c \in \mathcal{A}$.

21 / 24

SHIV NADAB UNIVERSITY

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let \mathcal{B} be a subspace of A. Then a is Birkhoff-James orthogonal to \mathcal{B} if and only if there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$ and $\phi(a^*b) = 0$ for all $b \in \mathcal{B}$.

Proof.

() Reverse direction is easy. For all $b \in \mathcal{B}$,

 $\|a\|^2 = \phi(a^*a) \le \phi(a^*a) + \phi(b^*b) = \phi((a-b)^*(a-b)) \le \|a-b\|^2.$

- 2 Let *a* be Birkhoff-James orthogonal to \mathcal{B} i.e. $dist(a, \mathcal{B}) = ||a||$.
- So By the Hahn-Banach theorem, there exists $\psi \in \mathcal{A}^*$ such that $\|\psi\| = 1$, $\psi(a) = \|a\|$ and $\psi(b) = 0$ for all $b \in \mathcal{B}$.
- Hence there exists a cyclic representation (\mathcal{H}, π, ξ) of \mathcal{A} and a unit vector $\eta \in \mathcal{H}$ such that

$$\psi(c) = \langle \eta | \pi(c) \xi \rangle$$
 for all $c \in \mathcal{A}$.

21 / 24

SHIV NADAB UNIVERSITY

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let \mathcal{B} be a subspace of A. Then a is Birkhoff-James orthogonal to \mathcal{B} if and only if there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$ and $\phi(a^*b) = 0$ for all $b \in \mathcal{B}$.

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let \mathcal{B} be a subspace of A. Then a is Birkhoff-James orthogonal to \mathcal{B} if and only if there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$ and $\phi(a^*b) = 0$ for all $b \in \mathcal{B}$.

Now ψ(a) = ⟨η|π(a)ξ⟩ = ||a||. So by using the condition for equality in Cauchy-Schwarz inequality, we obtain ||a||η = π(a)ξ.

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let \mathcal{B} be a subspace of A. Then a is Birkhoff-James orthogonal to \mathcal{B} if and only if there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$ and $\phi(a^*b) = 0$ for all $b \in \mathcal{B}$.

Now ψ(a) = ⟨η|π(a)ξ⟩ = ||a||. So by using the condition for equality in Cauchy-Schwarz inequality, we obtain ||a||η = π(a)ξ.

• This gives
$$\psi(c) = \frac{1}{\|a\|} \langle \pi(a)\xi | \pi(c)\xi \rangle$$
 for all $c \in \mathcal{A}$.

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let \mathcal{B} be a subspace of A. Then a is Birkhoff-James orthogonal to \mathcal{B} if and only if there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$ and $\phi(a^*b) = 0$ for all $b \in \mathcal{B}$.

Now ψ(a) = ⟨η|π(a)ξ⟩ = ||a||. So by using the condition for equality in Cauchy-Schwarz inequality, we obtain ||a||η = π(a)ξ.

• This gives
$$\psi(c) = \frac{1}{\|a\|} \langle \pi(a)\xi | \pi(c)\xi \rangle$$
 for all $c \in \mathcal{A}$.

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let \mathcal{B} be a subspace of A. Then a is Birkhoff-James orthogonal to \mathcal{B} if and only if there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$ and $\phi(a^*b) = 0$ for all $b \in \mathcal{B}$.

Now ψ(a) = ⟨η|π(a)ξ⟩ = ||a||. So by using the condition for equality in Cauchy-Schwarz inequality, we obtain ||a||η = π(a)ξ.

• This gives
$$\psi(c) = \frac{1}{\|a\|} \langle \pi(a)\xi | \pi(c)\xi \rangle$$
 for all $c \in \mathcal{A}$.

• Therefore, $\langle \pi(a)\xi | \pi(a)\xi \rangle = ||a||^2$ and $\langle \pi(a)\xi | \pi(b)\xi \rangle = 0$ for all $b \in \mathcal{B}$.

Shiv Nadar University イロト イクト イミト イミト モーショウ へで 22/24

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let \mathcal{B} be a subspace of A. Then a is Birkhoff-James orthogonal to \mathcal{B} if and only if there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$ and $\phi(a^*b) = 0$ for all $b \in \mathcal{B}$.

Now ψ(a) = ⟨η|π(a)ξ⟩ = ||a||. So by using the condition for equality in Cauchy-Schwarz inequality, we obtain ||a||η = π(a)ξ.

• This gives
$$\psi(c) = \frac{1}{\|a\|} \langle \pi(a)\xi | \pi(c)\xi \rangle$$
 for all $c \in \mathcal{A}$.

• Therefore, $\langle \pi(a)\xi | \pi(a)\xi \rangle = ||a||^2$ and $\langle \pi(a)\xi | \pi(b)\xi \rangle = 0$ for all $b \in \mathcal{B}$.

3 Define
$$\phi \in \mathcal{A}^*$$
 as $\phi(c) = \langle \xi | \pi(c) \xi \rangle$.

Shiv Nadar University
Proof Continued

Theorem (Grover P.; Singla S., 2021)

Let $a \in A$. Let \mathcal{B} be a subspace of A. Then a is Birkhoff-James orthogonal to \mathcal{B} if and only if there exists $\phi \in S_A$ such that $\phi(a^*a) = ||a||^2$ and $\phi(a^*b) = 0$ for all $b \in \mathcal{B}$.

Now ψ(a) = ⟨η|π(a)ξ⟩ = ||a||. So by using the condition for equality in Cauchy-Schwarz inequality, we obtain ||a||η = π(a)ξ.

• This gives
$$\psi(c) = \frac{1}{\|a\|} \langle \pi(a)\xi | \pi(c)\xi \rangle$$
 for all $c \in \mathcal{A}$.

• Therefore, $\langle \pi(a)\xi | \pi(a)\xi \rangle = ||a||^2$ and $\langle \pi(a)\xi | \pi(b)\xi \rangle = 0$ for all $b \in \mathcal{B}$.

3 Define
$$\phi \in \mathcal{A}^*$$
 as $\phi(c) = \langle \xi | \pi(c) \xi \rangle$.

Shiv Nadar University

References

- Bhatia R.; Šemrl P. : Orthogonality of matrices and some distance problems. *Linear Algebra Appl.* 287 (1999), 77–85.
- Holub J. R. : On the metric geometry of ideals of operators on Hilbert space. *Math. Ann.* 201 (1973), 157–163.
- Rieffel M. A. : Leibniz seminorms and best approximation from C*-subalgebras. Sci. China Math. 54 (2011), 2259–2274.
- Singer I. : Best Approximation in Normed Linear Spaces by Elements of Linear Subspaces. Springer-Verlag, Berlin, 1970.
- Williams J. P. : Finite operators. *Proc. Amer. Math. Soc.* 26 (1970), 129-136.

SHIV NADAR UNIVERSITY

References

- James R. C. : Orthogonality and linear functionals in normed linear spaces. *Trans. Amer. Math. Soc.* 61 (1947), 265–292.
- Grover P. : Orthogonality to matrix subspaces, and a distance formula. *Linear Algebra Appl.* 445 (2014), 280–288.
- Grover P. ; Singla S. : Best Approximations, distance formulas and orthogonality in C*-algebras. J. Ramanujan Math. Soc. 36 (2021), 85–91.
- Grover P. ; Singla S. : Birkhoff-James orthogonality and applications : A survey. Operator Theory, Functional Analysis and Applications, Birkhäuser, Springer, vol. 282, 2021.
- Singla S. : Gateaux derivative of C^* norm. *communicated*.

24 / 24

SHIV NADAB UNIVERSITY

イロト 不得 トイヨト イヨト