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Definition (Anantharaman-Delaroche ‘05): A unital quantum channel
T : Mn(C)→ Mn(C) is called factorizable if ∃ vN alg (N, ψ) with n.f.
tracial state and unital ∗-homs α, β : Mn(C)→ Mn(C)⊗N : T = β∗ ◦α.

Mn(C)
T //

α
$$

Mn(C)
β

zz
Mn(C)⊗ N

β∗=β−1◦Eβ(Mn(C))

@@

Theorem (Haagerup-M ’11): T : Mn(C)→ Mn(C) is a factorizable
quantum channel iff ∃ (N, τN) finite vN algebra (called ancilla) and a
unitary u ∈ Mn(C)⊗ N: Tx = (idMn(C) ⊗ τN)(u∗(x ⊗ 1N)u), x ∈ Mn(C).

I (R. Werner): Factorizable channels are obtained by coupling the input
system to a maximally mixed ancillary one, executing a unitary rotation on
the combined system, and tracing out the ancilla.
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(Rørdam-M ’20): A new view-point on factorizable channels, leading to
further connections (and interesting open problems in C∗-algebras):

I FM(n) is parametrized by simplex of tracial states T (Mn(C) ∗Mn(C)).

More precisely, if τ ∈ T (Mn(C) ∗Mn(C)), let

Cτ (i , j ; k , `) = nτ
(
ι2(ek`)

∗ ι1(eij)
)
, 1 ≤ i , j , k, ` ≤ n,

where ι1, ι2 : Mn(C)→ Mn(C) ∗Mn(C) are the canonical inclusions. Then
Cτ ∈ Mn2(C) is positive, hence it is the Choi matrix of some c.p. lin map
Tτ : Mn(C)→ Mn(C), which turns out to be a factoriz quantum channel!

In fact, the map Φ: T (Mn(C) ∗Mn(C))→ FM(n), τ 7→ Φ(τ) := Tτ is an
affine continuous surjection, satisfying, moreover,

Φ(Tfin(Mn(C) ∗Mn(C))) = FMfin(n),

where Tfin = tracial states that factor through fin. dim. C ∗-alg.
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The affine cont surj Φ: T (Mn(C) ∗Mn(C))→ FM(n), τ 7→ Tτ , satisfies

• Φ(Tfin(Mn(C) ∗Mn(C))) = FMfin(n),

• Φ(Tfin(Mn(C) ∗Mn(C))) = FMfin(n),

where Tfin = tracial states that factor through fin. dim. C ∗-alg.

Recall: CEP positive answer ⇐⇒ FM(n) = FMfin(n), ∀n ≥ 3.

Question: What can we say about Tfin(Mn(C) ∗Mn(C))?

• (Exel–Loring ’92): Mn(C) ∗Mn(C) residually finite dim. (RFD)

• (Blackadar ’85): Mn(C) ∗Mn(C) semi-projective.
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In general, given A = unital C ∗-algebra, we have inclusions:

Tfin(A) ⊆ Tfin(A) ⊆ Tqd(A) ⊆ Tam(A) ⊆ Thyp(A) ⊆ T (A),

where Tqd(A) = quasi-diagonal traces, Tam(A) = amenable (=liftable)
traces, Thyp(A) = hyperlinear traces (i.e., traces τ st πτ (A)′′ ↪→ Rω).

I If A is separable, then Tfin(A), Tqd(A), Tam(A), resp., Thyp(A) contains
a faithful trace iff A is RFD, quasi-diagonal, embeds into Rω with ucp lift
to `∞(R), resp., embeds into Rω.

• CEP pos answer iff Thyp(A) = T (A), for all C ∗-alg A.

• It is open whether Tqd(A) = Tam(A). There are strong positive results!

• (N. Brown ’06): ∃ exact RFD C ∗-alg A s.t. Tam(A) 6= Thyp(A).

• A (weakly) semi-projective =⇒ Tfin(A) = Tqd(A)

• (Hadwin–Shulman ’17): ∃ RFD C ∗-alg A s.t. Tfin(A) 6= Tqd(A).

Thm (Rørdam-M ’20): Tfin(Mn(C) ∗Mn(C)) = Thyp(Mn(C) ∗Mn(C)).
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Thm (Rørdam-M): Tfin(Mn(C) ∗Mn(C)) = Thyp(Mn(C) ∗Mn(C)).

Cor: CEP pos iff Thyp(Mn(C) ∗Mn(C)) = T (Mn(C) ∗Mn(C)), ∀ n ≥ 3.

Further results: Let A be a unital C ∗-algebra.

• If Mn(A) is a quotient of Mn(C) ∗Mn(C), then A is gen by n2 elem.

• If A is gen by n − 1 elem, then Mn(A) is a quotient of Mn(C) ∗Mn(C).

Theorem: Each metrizable Choquet simplex is affinely homeo to a face
of T (Mn(C) ∗Mn(C)).

Question: Is T (Mn(C) ∗Mn(C)) the Poulsen simplex?
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Groups, C ∗-tensor norms, Tsirelson’s conjecture and CEP

• Let Γ = Zk ∗ Zk ∗ · · · ∗ Zk (n free factors), n, k ≥ 2.

Theorem (Fritz/Junge et. al. ’09):

Cqa(n, k) =
{[
ϕ(exa ⊗ eyb )

]
: ϕ state on C ∗(Γ)⊗min C ∗(Γ)

}
.

Cqc(n, k) =
{[
ϕ(exa ⊗ eyb )

]
: ϕ state on C ∗(Γ)⊗max C

∗(Γ)
}

.

• C ∗(Γ)⊗min C ∗(Γ) is RFD [⇒ Cfin
qs (n, k)

dense
⊆ Cqs(n, k)].

The Thm above proves “(i) ⇒ (iv)” below:

Theorem (Kirchberg ‘93, Fritz/Junge et. al. ‘09, Ozawa ‘12): TFAE:

(i) C ∗(Γ)⊗max C
∗(Γ) = C ∗(Γ)⊗min C ∗(Γ), ∀n, k ≥ 2,

(ii) C ∗(F∞)⊗max C
∗(F∞) = C ∗(F∞)⊗min C ∗(F∞),

(iii) Connes embedding problem has positive answer,

(iv) Tsirelson’s conjecture is true, i.e., Cqa(n, k) = Cqc(n, k), ∀n, k ≥ 2.

Ozawa proved (iv) =⇒ (i).
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A new approach, via analysis of synchronous corellations

Revisited notation: Γ = F(n, k) = Zk ∗ Zk ∗ · · · ∗ Zk , n copies, n, k ≥ 2.

• C ∗(Zk) = C ∗(u | uu∗ = u∗u = 1, uk = 1)

= C ∗(q1, . . . , qk | qj = q∗j = q2j ,
k∑

j=1

qj = 1).

• C ∗(F(n, k)) = C ∗(qj ,x | qj ,x = q∗j ,x = q2j ,x ,
∑k

j=1 qj ,x = 1).

Definition: A ”correlation” [(p(i , j | x , y)] is synchronous if whenever
i 6= j , p(i , j | x , x) = 0, ∀ 1 ≤ x ≤ n.

Theorem (PSSTW ’16): We have the following identities of synchronous
correlation matrices:

C s
qc(n, k) =

{[
τ(qj ,xqi ,y )

]
(i ,x ;j ,y)

| τ ∈ T (C ∗(F(n, k)))
}

C s
q (n, k) =

{[
τ(qj ,xqi ,y )

]
(i ,x ;j ,y)

| τ ∈ Tfin(C ∗(F(n, k)))
}
.

I Consequently, we deduce:

C s
qa(n, k) =

{[
τ(qj ,xqi ,y )

]
(i ,x ;j ,y)

| τ ∈ Tfin(C ∗(F(n, k)))
}
.
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Theorem (Kim-Paulsen-Schafhauser ’17, Ozawa ’12): TFAE

(1) Connes embedding problem has positive answer.

(2) C s
qa(n, k) = C s

qc(n, k), ∀n, k ≥ 2.

(3) Tsirelson’s conjecture is true, i.e., Cqa(n, k) = Cqc(n, k), ∀n, k ≥ 2.

Note: • (3) =⇒ (1) was shown by Ozawa, using Kirchberg’s Thm that
”CEP pos. answer iff C ∗(F∞)⊗max C

∗(F∞) = C ∗(F∞)⊗min C ∗(F∞).”

• (3) =⇒ (2) is trivial.

• [KPS] proved (1) ⇐⇒ (2) using different reformulations of CEP.

Next, I’d like to discuss a proof (with M. Rørdam)of (1) =⇒ (2), based
on arguments of C. Schafhauser in a recent talk (AIM, May 2021).
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Proposition (based on Schafhauser): If CEP has a positive answer, then

Tfin(C ∗(F(n, k))) = T (C ∗(F(n, k))).

We’ll need a few intermediate results, namely:

Lemma (Folklore): Let I CM, where M = unital C ∗-alg of real rank zero
(e.g., M a vN algebra), and let π : M → M/I be the quotient mapping.

If q1, . . . , qk ∈ M/I are projections s.t.
∑k

j=1 qj = 1, then

∃ p1, . . . , pk ∈ M projections with
∑k

j=1 pj = 1 and π(pj) = qj .

Corollary: Let I CM, π : M → M/I as above. Then each unital ∗-hom
ϕ : C ∗(F(n, k))→ M/I lifts to a unital ∗-hom ψ : C ∗(F(n, k))→ M s.t.

M

π

��
C ∗(F(n, k))

ψ
88

ϕ
// M/I
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Reformulation of CEP: For all sep. unital tracial C ∗-algs (A, τ), there is
a unital trace- preserving ∗-hom ϕ : A→

∏∞
n=1Mkn/I

ω, for some kn ≥ 1.

• By GNS we have unital trace preserving ∗-hom (A, τ)→ (πτ (A)′′, τ),
and (πτ (A)′′, τ) is a finite von Neumann algebra with n.f.t.s. τ .

• Connes’ “matricial microstate” (re)formulation of CEP implies that
each sep. finite von Neumann algebra (M, τ) with n.f.t.s. τ admits a trace
preserving unital embedding M →

∏∞
n=1Mkn/I

ω.

Proof of Prop: Assume CEP holds. Let τ ∈ T (C ∗(F(n, k))). Then ∃:∏∞
n=1Mkn

π

��
C ∗(F(n, k))

ψ
77

ϕ
//
∏∞

n=1Mkn/I
ω

s.t. τ = τω ◦ ϕ. The lift ψ exists by the previous corollary.
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Assume CEP has pos. answer. Let τ ∈ T (C ∗(F(n, k))). Then ∃:∏∞
n=1Mkn

π

��
C ∗(F(n, k))

ψ
77

ϕ
//
∏∞

n=1Mkn/I
ω

s.t. τ = τω ◦ ϕ. The lift ψ exists by the previous corollary.

Write ψ = (ψn)n≥1 with ψn : C ∗(F(n, k))→ Mkn unital ∗-homs.

By definition of τω, for all a ∈ C ∗(F(n, k)) we have

τ(a) = (τω ◦ ϕ)(a) = lim
n→ω

(trkn ◦ ψn)(a)

and trkn ◦ ψn ∈ Tfin(C ∗(F(n, k))), which proves τ ∈ Tfin(C ∗(F(n, k))).

• Further, use the Paulsen-Severini-Stahlke-Todorov-Winter ’16 theorem,
to conclude that (1) =⇒ (2) in the Kim-Paulsen-Schafhauser theorem.
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Groups, C∗-algebras, Tsirelson’s Conjecture, Complexity and CEP

Theorem (Kirchberg ‘93, Fritz/Junge et al ‘09, Ozawa ‘12): TFAE:

(i) C ∗(Fn,k)⊗max C
∗(Fn,k) = C ∗(Fn,k)⊗min C ∗(Fn,k), ∀n, k ≥ 2.

(ii) C ∗(F∞)⊗max C
∗(F∞) = C ∗(F∞)⊗min C ∗(F∞).

(iii) The Connes Embedding Problem has a positive answer.

(iv) Tsirelson’s Conjecture is true: cl(Cqs(n, k)) = Cqc(n, k), ∀n, k ≥ 2.

Posted on arXiv, Jan. 13, 2020: MIP∗ = RE, Ji, Natarajan, Vidick,
Wright, Yuen, 165 pp.

Proving that the complexity class MIP∗ (quantum version of complexity
class MIP=languages with a Multiprover Interactive Proof) contains an
undecidable language, they conclude that Tsirelson’s Conjecture is false!

I New version (with corrections) 206 pp., posted on arXiv, Sept. 29, 2020.

The last two slides are from Henry Yuen’s online lecture at Univ. Texas,
Austin (March ’20).
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MIP* = RE

Main result There exists an computable map ! ↦ #$ from Turing 
machines to nonlocal games such that 

#$
! halts

!
! does not halt

%&(#$) = 1

%&(#$) ≤
1
2

Turing machine

½ can be replaced 
by any constant 
less than 1.
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Implications

• Turing 1936: No algorithm can solve the Halting Problem.

• Thus there is no algorithm to approximate !" ± $ for any $, and in 
particular the Search Above/Search Below algorithm cannot converge for 
all %

• Thus there exists a game % such that !" % ≠ !"'(%).

• This implies negative answer to Tsirelson’s problem: *"+ ≠ *"'

• Therefore Connes’ embedding conjecture is false.
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