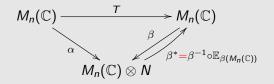
The Connes Embedding Problem: from operator algebras to groups and quantum information theory

Magdalena Musat University of Copenhagen

Summer School in Operator Algebras Hosted by the Fields Institute and the University of Ottawa June 18, 2021

Definition (Anantharaman-Delaroche '05): A unital quantum channel $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is called *factorizable* if $\exists vN \text{ alg } (N, \psi)$ with n.f. tracial state and unital *-homs $\alpha, \beta: M_n(\mathbb{C}) \to M_n(\mathbb{C}) \otimes N : T = \beta^* \circ \alpha$.



Theorem (Haagerup-M '11): $T : M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is a factorizable quantum channel iff $\exists (N, \tau_N)$ finite vN algebra (called ancilla) and a unitary $u \in M_n(\mathbb{C}) \otimes N$: $T_X = (\operatorname{id}_{M_n(\mathbb{C})} \otimes \tau_N)(u^*(x \otimes 1_N)u), x \in M_n(\mathbb{C})$.

► (R. Werner): Factorizable channels are obtained by coupling the input system to a maximally mixed ancillary one, executing a unitary rotation on the combined system, and tracing out the ancilla.

(Rørdam-M '20): A new view-point on factorizable channels, leading to further connections (and interesting open problems in C^* -algebras):

▶ $\mathcal{FM}(n)$ is *parametrized by* simplex of tracial states $T(M_n(\mathbb{C}) * M_n(\mathbb{C}))$.

More precisely, if $\tau \in T(M_n(\mathbb{C}) * M_n(\mathbb{C}))$, let

 $C_{\tau}(i,j;k,\ell) = n\tau \big(\iota_2(e_{k\ell})^* \iota_1(e_{ij})\big), \qquad 1 \leq i,j,k,\ell \leq n,$

where $\iota_1, \iota_2: M_n(\mathbb{C}) \to M_n(\mathbb{C}) * M_n(\mathbb{C})$ are the *canonical inclusions*. Then $C_{\tau} \in M_{n^2}(\mathbb{C})$ is positive, hence it is the Choi matrix of some c.p. lin map $T_{\tau}: M_n(\mathbb{C}) \to M_n(\mathbb{C})$, which turns out to be a factoriz quantum channel!

In fact, the map $\Phi: T(M_n(\mathbb{C}) * M_n(\mathbb{C})) \to \mathcal{FM}(n), \tau \mapsto \Phi(\tau) := T_{\tau}$ is an affine continuous surjection, satisfying, moreover,

$$\Phi(T_{\mathrm{fin}}(M_n(\mathbb{C}) * M_n(\mathbb{C}))) = \mathcal{FM}_{\mathrm{fin}}(n),$$

where $T_{\rm fin}$ = tracial states that factor through fin. dim. C*-alg.

The affine cont surj Φ : $T(M_n(\mathbb{C}) * M_n(\mathbb{C})) \to \mathcal{FM}(n), \tau \mapsto T_{\tau}$, satisfies

•
$$\Phi(T_{\operatorname{fin}}(M_n(\mathbb{C}) * M_n(\mathbb{C}))) = \mathcal{FM}_{\operatorname{fin}}(n),$$

•
$$\Phi(\overline{T_{\operatorname{fin}}(M_n(\mathbb{C}) * M_n(\mathbb{C}))}) = \overline{\mathcal{FM}_{\operatorname{fin}}(n)},$$

where $T_{\rm fin}$ = tracial states that factor through fin. dim. C*-alg.

Recall: CEP positive answer $\iff \mathcal{FM}(n) = \overline{\mathcal{FM}_{fin}(n)}, \forall n \ge 3.$

Question: What can we say about $\overline{T_{fin}(M_n(\mathbb{C}) * M_n(\mathbb{C}))}$?

- (Exel-Loring '92): $M_n(\mathbb{C}) * M_n(\mathbb{C})$ residually finite dim. (RFD)
- (Blackadar '85): $M_n(\mathbb{C}) * M_n(\mathbb{C})$ semi-projective.

In general, given A = unital C^* -algebra, we have inclusions:

$\mathcal{T}_{\mathrm{fin}}(\mathcal{A})\subseteq\overline{\mathcal{T}_{\mathrm{fin}}(\mathcal{A})}\subseteq\mathcal{T}_{\mathrm{qd}}(\mathcal{A})\subseteq\mathcal{T}_{\mathrm{am}}(\mathcal{A})\subseteq\mathcal{T}_{\mathrm{hyp}}(\mathcal{A})\subseteq\mathcal{T}(\mathcal{A}),$

where $T_{\rm qd}(A)$ = quasi-diagonal traces, $T_{\rm am}(A)$ = amenable (=liftable) traces, $T_{\rm hyp}(A)$ = hyperlinear traces (i.e., traces τ st $\pi_{\tau}(A)'' \hookrightarrow \mathcal{R}^{\omega}$).

▶ If A is separable, then $\overline{T_{\text{fin}}(A)}$, $T_{\text{qd}}(A)$, $T_{\text{am}}(A)$, resp., $T_{\text{hyp}}(A)$ contains a faithful trace iff A is RFD, quasi-diagonal, embeds into \mathcal{R}^{ω} with ucp lift to $\ell^{\infty}(\mathcal{R})$, resp., embeds into \mathcal{R}^{ω} .

- CEP pos answer iff $T_{hyp}(A) = T(A)$, for all C^* -alg A.
- It is open whether $T_{qd}(A) = T_{am}(A)$. There are strong positive results!
- (N. Brown '06): \exists exact RFD C*-alg A s.t. $T_{am}(A) \neq T_{hyp}(A)$.
- A (weakly) semi-projective $\implies \overline{T_{\text{fin}}(A)} = T_{\text{qd}}(A)$
- (Hadwin–Shulman '17): \exists RFD C^* -alg A s.t. $\overline{T_{\text{fin}}(A)} \neq T_{\text{qd}}(A)$.

Thm (Rørdam-M '20): $\overline{T_{\text{fin}}(M_n(\mathbb{C}) * M_n(\mathbb{C}))} = T_{\text{hyp}}(M_n(\mathbb{C}) * M_n(\mathbb{C})).$

Thm (Rørdam-M): $\overline{T_{\text{fin}}(M_n(\mathbb{C}) * M_n(\mathbb{C}))} = T_{\text{hyp}}(M_n(\mathbb{C}) * M_n(\mathbb{C})).$

Cor: CEP pos iff $T_{hyp}(M_n(\mathbb{C}) * M_n(\mathbb{C})) = T(M_n(\mathbb{C}) * M_n(\mathbb{C})), \forall n \ge 3.$

Further results: Let A be a unital C^* -algebra.

- If $M_n(A)$ is a quotient of $M_n(\mathbb{C}) * M_n(\mathbb{C})$, then A is gen by n^2 elem.
- If A is gen by n-1 elem, then $M_n(A)$ is a quotient of $M_n(\mathbb{C}) * M_n(\mathbb{C})$.

Theorem: Each metrizable Choquet simplex is affinely homeo to a face of $T(M_n(\mathbb{C}) * M_n(\mathbb{C}))$.

Question: Is $T(M_n(\mathbb{C}) * M_n(\mathbb{C}))$ the Poulsen simplex?

Groups, C*-tensor norms, Tsirelson's conjecture and CEP

• Let
$$\Gamma = \mathbb{Z}_k * \mathbb{Z}_k * \cdots * \mathbb{Z}_k$$
 (*n* free factors), $n, k \geq 2$.

Theorem (Fritz/Junge et. al. '09):
•
$$C_{qa}(n,k) = \left\{ \left[\varphi(e_a^x \otimes e_b^y) \right] : \varphi \text{ state on } C^*(\Gamma) \otimes_{\min} C^*(\Gamma) \right\}.$$

• $C_{qc}(n,k) = \left\{ \left[\varphi(e_a^x \otimes e_b^y) \right] : \varphi \text{ state on } C^*(\Gamma) \otimes_{\max} C^*(\Gamma) \right\}.$

•
$$C^*(\Gamma) \otimes_{\min} C^*(\Gamma)$$
 is RFD $[\Rightarrow C_{qs}^{fin}(n,k) \stackrel{\text{dense}}{\subseteq} C_{qs}(n,k)].$

The Thm above proves "(i) \Rightarrow (iv)" below:

Theorem (Kirchberg '93, Fritz/Junge et. al. '09, Ozawa '12): TFAE: (i) $C^*(\Gamma) \otimes_{\max} C^*(\Gamma) = C^*(\Gamma) \otimes_{\min} C^*(\Gamma), \forall n, k \ge 2,$ (ii) $C^*(\mathbb{F}_{\infty}) \otimes_{\max} C^*(\mathbb{F}_{\infty}) = C^*(\mathbb{F}_{\infty}) \otimes_{\min} C^*(\mathbb{F}_{\infty}),$ (iii) Connes embedding problem has positive answer, (iv) Tsirelson's conjecture is true, i.e., $C_{qa}(n,k) = C_{qc}(n,k), \forall n, k \ge 2.$ Ozawa proved (iv) \Longrightarrow (i). A new approach, via analysis of synchronous corellations

Revisited notation: $\Gamma = \mathbb{F}(n, k) = \mathbb{Z}_k * \mathbb{Z}_k * \cdots * \mathbb{Z}_k$, *n* copies, *n*, $k \ge 2$.

•
$$C^*(\mathbb{Z}_k) = C^*(u \mid uu^* = u^*u = 1, u^k = 1)$$

 $= C^*(q_1, \dots, q_k \mid q_j = q_j^* = q_j^2, \sum_{j=1}^k q_j = 1).$
• $C^*(\mathbb{F}(n,k)) = C^*(q_{j,x} \mid q_{j,x} = q_{j,x}^* = q_{j,x}^2, \sum_{j=1}^k q_{j,x} = 1).$

Definition: A "correlation" [(p(i,j | x, y)] is *synchronous* if whenever $i \neq j$, p(i,j | x, x) = 0, $\forall 1 \le x \le n$.

Theorem (PSSTW '16): We have the following identities of *synchronous* correlation matrices:

$$C_{qc}^{s}(n,k) = \left\{ \left[\tau(q_{j,x}q_{i,y}) \right]_{(i,x;j,y)} \mid \tau \in T(C^{*}(\mathbb{F}(n,k))) \right\}$$

$$C_{q}^{s}(n,k) = \left\{ \left[\tau(q_{j,x}q_{i,y}) \right]_{(i,x;j,y)} \mid \tau \in T_{\mathrm{fin}}(C^{*}(\mathbb{F}(n,k))) \right\}.$$

► Consequently, we deduce:

$$C_{qa}^{s}(n,k) = \Big\{ \big[\tau(q_{j,x}q_{i,y}) \big]_{(i,x;j,y)} \mid \tau \in \overline{T_{\text{fin}}(C^{*}(\mathbb{F}(n,k)))} \Big\}.$$

Theorem (Kim-Paulsen-Schafhauser '17, Ozawa '12): TFAE

(1) Connes embedding problem has positive answer.

(2)
$$C_{qa}^{s}(n,k) = C_{qc}^{s}(n,k), \forall n,k \geq 2.$$

(3) Tsirelson's conjecture is true, i.e., $C_{qa}(n,k) = C_{qc}(n,k)$, $\forall n,k \ge 2$.

Note: • (3) \implies (1) was shown by Ozawa, using Kirchberg's Thm that "CEP pos. answer **iff** $C^*(\mathbb{F}_{\infty}) \otimes_{\max} C^*(\mathbb{F}_{\infty}) = C^*(\mathbb{F}_{\infty}) \otimes_{\min} C^*(\mathbb{F}_{\infty})$."

- (3) \implies (2) is trivial.
- [KPS] proved (1) \iff (2) using different reformulations of CEP.

Next, I'd like to discuss a proof (with M. Rørdam)of (1) \implies (2), based on arguments of C. Schafhauser in a recent talk (AIM, May 2021).

Proposition (based on Schafhauser): If CEP has a positive answer, then

$$\overline{\mathcal{T}_{\mathrm{fin}}(\mathcal{C}^*(\mathbb{F}(n,k)))} = \mathcal{T}(\mathcal{C}^*(\mathbb{F}(n,k))).$$

We'll need a few intermediate results, namely:

Lemma (Folklore): Let $I \triangleleft M$, where M = unital C^* -alg of real rank zero (e.g., M a vN algebra), and let $\pi \colon M \to M/I$ be the quotient mapping. If $q_1, \ldots, q_k \in M/I$ are projections s.t. $\sum_{j=1}^k q_j = 1$, then $\exists p_1, \ldots, p_k \in M$ projections with $\sum_{j=1}^k p_j = 1$ and $\pi(p_j) = q_j$.

Corollary: Let $I \triangleleft M$, $\pi: M \rightarrow M/I$ as above. Then each unital *-hom $\varphi: C^*(\mathbb{F}(n,k)) \rightarrow M/I$ lifts to a unital *-hom $\psi: C^*(\mathbb{F}(n,k)) \rightarrow M$ s.t.

$$C^*(\mathbb{F}(n,k)) \xrightarrow{\psi} M/I$$

Reformulation of CEP: For all sep. unital tracial C^* -algs (A, τ) , there is a unital trace- preserving *-hom $\varphi \colon A \to \prod_{n=1}^{\infty} M_{k_n}/I^{\omega}$, for some $k_n \ge 1$.

• By GNS we have unital trace preserving *-hom $(A, \tau) \rightarrow (\pi_{\tau}(A)'', \overline{\tau})$, and $(\pi_{\tau}(A)'', \overline{\tau})$ is a finite von Neumann algebra with n.f.t.s. $\overline{\tau}$.

• Connes' "matricial microstate" (re)formulation of CEP implies that each sep. finite von Neumann algebra (M, τ) with n.f.t.s. τ admits a trace preserving unital embedding $M \to \prod_{n=1}^{\infty} M_{k_n}/I^{\omega}$.

Proof of Prop: Assume CEP holds. Let $\tau \in T(C^*(\mathbb{F}(n, k)))$. Then \exists :

$$\begin{array}{c} \prod_{n=1}^{\infty} M_{k_n} \\ \downarrow^{\psi} \\ \downarrow^{\pi} \\ C^*(\mathbb{F}(n,k)) \\ \xrightarrow{\varphi} \\ & \prod_{n=1}^{\infty} M_{k_n}/I^{\omega} \end{array}$$

s.t. $\tau = \tau_{\omega} \circ \varphi$. The lift ψ exists by the previous corollary.

Assume CEP has pos. answer. Let $\tau \in T(C^*(\mathbb{F}(n,k)))$. Then \exists :

$$C^{*}(\mathbb{F}(n,k)) \xrightarrow{\psi}_{\varphi} \prod_{n=1}^{\infty} M_{k_{n}} M_{k_{n}}/I^{\omega}$$

s.t. $\tau = \tau_{\omega} \circ \varphi$. The lift ψ exists by the previous corollary. Write $\psi = (\psi_n)_{n \ge 1}$ with $\psi_n \colon C^*(\mathbb{F}(n,k)) \to M_{k_n}$ unital *-homs.

By definition of au_{ω} , for all $a \in C^*(\mathbb{F}(n,k))$ we have

$$\tau(a) = (\tau_{\omega} \circ \varphi)(a) = \lim_{n \to \omega} (\operatorname{tr}_{k_n} \circ \psi_n)(a)$$

and $\operatorname{tr}_{k_n} \circ \psi_n \in \mathcal{T}_{\operatorname{fin}}(C^*(\mathbb{F}(n,k)))$, which proves $\tau \in \overline{\mathcal{T}_{\operatorname{fin}}(C^*(\mathbb{F}(n,k)))}$.

• Further, use the Paulsen-Severini-Stahlke-Todorov-Winter '16 theorem, to conclude that $(1) \implies (2)$ in the Kim-Paulsen-Schafhauser theorem.

Groups, C*-algebras, Tsirelson's Conjecture, Complexity and CEP

Theorem (Kirchberg '93, Fritz/Junge et al '09, Ozawa '12): TFAE: (i) $C^*(\mathbb{F}_{n,k}) \otimes_{\max} C^*(\mathbb{F}_{n,k}) = C^*(\mathbb{F}_{n,k}) \otimes_{\min} C^*(\mathbb{F}_{n,k}), \forall n, k \ge 2.$ (ii) $C^*(\mathbb{F}_{\infty}) \otimes_{\max} C^*(\mathbb{F}_{\infty}) = C^*(\mathbb{F}_{\infty}) \otimes_{\min} C^*(\mathbb{F}_{\infty}).$ (iii) The Connes Embedding Problem has a positive answer.

(iv) Tsirelson's Conjecture is true: $cl(C_{qs}(n,k)) = C_{qc}(n,k), \forall n, k \ge 2.$

Posted on arXiv, Jan. 13, 2020: *MIP*^{*} = *RE*, Ji, Natarajan, Vidick, Wright, Yuen, 165 pp.

Proving that the complexity class MIP* (quantum version of complexity class MIP=languages with a Multiprover Interactive Proof) contains an undecidable language, they conclude that Tsirelson's Conjecture is **false**!
New version (with corrections) 206 pp., posted on arXiv, Sept. 29, 2020.

The last two slides are from Henry Yuen's online lecture at Univ. Texas, Austin (March '20).

$MIP^* = RE$

 $\begin{array}{c} \underline{\text{Main result}} \text{ There exists an computable map } M \mapsto G_M \text{ from Turing} \\ \text{machines to nonlocal games such that} \\ \\ \hline \\ M \longrightarrow G_M \\ \hline \\ M_{q_{O_{e_s}}} \\ h_{O_{e_s}} \\ \mu_{O_{e_s}} \\ \mu_{$

Implications

- Turing 1936: No algorithm can solve the Halting Problem.
- Thus there is no algorithm to approximate $\omega_q\pm\epsilon$ for any $\epsilon,$ and in particular the Search Above/Search Below algorithm cannot converge for all G
- Thus there exists a game G such that $\omega_q(G) \neq \omega_{qc}(G)$.
- This implies negative answer to Tsirelson's problem: $C_{qa} \neq C_{qc}$
- Therefore Connes' embedding conjecture is false.