The Connes Embedding Problem: from operator algebras to groups and quantum information theory

Magdalena Musat University of Copenhagen

Summer School in Operator Algebras Hosted by the Fields Institute and the University of Ottawa June 17, 2021

• Let $\Gamma = \mathbb{Z}_k * \mathbb{Z}_k * \cdots * \mathbb{Z}_k$ (*n* free factors), $n, k \ge 2$.

Theorem (Fritz/Junge et. al. '09):
•
$$C_{qa}(n,k) = \left\{ \left[\varphi(e_a^x \otimes e_b^y) \right] : \varphi \text{ state on } C^*(\Gamma) \otimes_{\min} C^*(\Gamma) \right\}.$$

• $C_{qc}(n,k) = \left\{ \left[\varphi(e_a^x \otimes e_b^y) \right] : \varphi \text{ state on } C^*(\Gamma) \otimes_{\max} C^*(\Gamma) \right\}.$

•
$$C^*(\Gamma) \otimes_{\min} C^*(\Gamma)$$
 is RFD $[\Rightarrow C_{qs}^{fin}(n,k) \stackrel{\text{dense}}{\subseteq} C_{qs}(n,k)].$

The Thm above proves "(i) \Rightarrow (iv)" below.

Theorem (Kirchberg '93, Fritz/Junge et. al. '09, Ozawa '12): TFAE: (i) $C^*(\Gamma) \otimes_{\max} C^*(\Gamma) = C^*(\Gamma) \otimes_{\min} C^*(\Gamma)$ for all $n, k \ge 2$, (ii) $C^*(\mathbb{F}_{\infty}) \otimes_{\max} C^*(\mathbb{F}_{\infty}) = C^*(\mathbb{F}_{\infty}) \otimes_{\min} C^*(\mathbb{F}_{\infty})$, (iii) Connes embedding problem has positive answer,

(iv) Tsirelson's conjecture is true.

A tale of two C^* -algebras: $C^*(\mathbb{F}_{\infty})$ and $\mathcal{B}(H)$

Theorem (Kirchberg '93): The Connes Embedding Problem has positive answer iff $C^*(\mathbb{F}_{\infty}) \otimes_{\min} C^*(\mathbb{F}_{\infty}) = C^*(\mathbb{F}_{\infty}) \otimes_{\max} C^*(\mathbb{F}_{\infty})$.

Furthermore, Kirchberg proved that

 $C^*(\mathbb{F}_\infty)\otimes_{\min}\mathcal{B}(\mathcal{H})=C^*(\mathbb{F}_\infty)\otimes_{\max}\mathcal{B}(\mathcal{H})$

and asked whether

 $\mathcal{B}(H) \otimes_{\min} \mathcal{B}(H) = \mathcal{B}(H) \otimes_{\max} \mathcal{B}(H).$

▶ The latter was later answered in the negative by Junge-Pisier '95, using a non-commutative version of Grothendieck's inequality. Pisier-Ozawa '14 showed that there are at least 2_0^{\aleph} non-equivalent norms on $\mathcal{B}(H) \otimes \mathcal{B}(H)$.

A tale of two properties: WEP and L(LP)

Definition (Lance): A C^* -alg A has the *weak expectation property* (WEP) if \exists repn $\pi: A \to B(H)$ and c.c.p. map $\Phi: B(H) \to A^{**}$ s.t. $(\Phi \circ \pi)(a) = a$, for $a \in A$. (Here $A^{**} = (A^*)^*$ is the double dual of A, with A viewed as a Banach space. Note that A^{**} is a vN alg.)

> Defin is indep of the faithful repn. If A unital, may choose π , Φ unital.

Example: B(H) has (WEP). In fact, any injective vN alg M has (WEP). Recall: $M \subseteq B(H)$ is injective if \exists conditional expectation $E: B(H) \rightarrow M$. By Connes '76, M injective **iff** M hyperfinite.

Theorem: A C^* -alg A is nuclear **iff** A^{**} is an injective vN alg. **Corollary:** All nuclear C^* -algebras have (WEP).

Theorem: Let Γ be a countable inf group. Then $C^*_{red}(\Gamma)$ has (WEP) iff $C^*_{red}(\Gamma)$ nuclear iff Γ amenable iff $C^*(\Gamma) = C^*_{red}(\Gamma)$.

Corollary: $C^*_{\text{red}}(\mathbb{F}_n)$ not (WEP), $2 \le n \le \infty$.

Proposition: Having (WEP) does not pass to sub- C^* -algebras.

Proof: By Kirchberg's Thm, every separable exact C^* -algebra embeds into the Cuntz algebra \mathcal{O}_2 , which is nuclear, hence (WEP). But $C^*_{red}(\mathbb{F}_n)$ not WEP, $n \geq 2$.

Definition: A C^* -alg which is a *quotient of a* C^* -alg with (WEP) is said to have (QWEP).

▶ All C^* -algs with (WEP) are (QWEP). In particular, nuclear C^* -algs are (QWEP). Also, any quotient of a C^* -alg with (QWEP) is again (QWEP).

Conjecture (Kirchberg '93): All C*-algebras are (QWEP).

• Kirchberg's (QWEP) conj. holds $\Leftrightarrow C^*(\mathbb{F}_{\infty})$ is (QWEP).

Proposition: $C^*(\mathbb{F}_{\infty})$ is (QWEP) $\iff C^*(\mathbb{F}_{\infty})$ is (WEP).

Proposition: \mathcal{R}^{ω} is (QWEP), and so are all finite vN algs that embed into \mathcal{R}^{ω} .

Definition: Let $\mathcal{I} \lhd B$ and A be C^* -algs. A c.c.p. map $\varphi \colon A \to B/\mathcal{I}$ is *ccp-liftable* if \exists ccp map $\psi \colon A \to B$ st $\varphi = \pi \circ \psi$:

$$\begin{array}{c} B \\ \psi & \pi \\ \ddots & \pi \\ \ddots & \varphi \\ A & \varphi \\ \varphi \\ & B/\mathcal{I} \end{array}$$

If \forall finite dim. op. system $E \subseteq A$ there exists ccp map $\psi \colon E \to B$ st $\varphi|_E = \pi \circ \psi$, then φ is *locally ccp-liftable*.

A has (LLP) if all ccp maps $\varphi \colon A \to B/\mathcal{I}$ are locally ccp-liftable. Respectively, *A* has (LP) if all ccp maps $\varphi \colon A \to B/\mathcal{I}$ are ccp-liftable.

Note: (*LP*) implies (*LLP*). Converse is open.

▶ By (Choi-Effros '76): All separable nuclear C^* -algebras have (LP), since all ccp maps from or into a nuclear C^* -alg are nuclear. In particular, $C^*(\Gamma)$ has (LP), when Γ ctble amenable.

Theorem (Kirchberg '93): $C^*(\mathbb{F}_n)$ has (LP), for $2 \le n \le \infty$.

▶ (loana-Spaas-Wiersma '21): Let $\Gamma = SL_n(\mathbb{Z})$, $n \ge 3$. Then $C^*(\Gamma)$ fails (LLP), hence it fails (LP).

Theorem (Kirchberg): $C^*(\mathbb{F}_{\infty}) \otimes_{\max} B(H) = C^*(\mathbb{F}_{\infty}) \otimes_{\min} B(H)$.

Theorem (Kirchberg): Let A, B be C^* -algs. Then: (i) A has (LLP) $\iff A \otimes_{\max} B(H) = A \otimes_{\min} B(H)$. (ii) B has (WEP) $\iff C^*(\mathbb{F}_{\infty}) \otimes_{\max} B = C^*(\mathbb{F}_{\infty}) \otimes_{\min} B$. (iii) If A has (LLP) and B has (WEP), then $A \otimes_{\max} B = A \otimes_{\min} B$. Theorem (Kirchberg '93): TFAE:

- (i) All (separable) C*-algs are (QWEP),
- (ii) $C^*(\mathbb{F}_\infty)$ is (QWEP),
- (iii) (LLP) \implies (WEP) for all C*-algs,
- (iv) $C^*(\mathbb{F}_\infty)$ is (WEP),
- $(\mathsf{v}) \quad C^*(\mathbb{F}_\infty) \otimes_{\max} C^*(\mathbb{F}_\infty) = C^*(\mathbb{F}_\infty) \otimes_{\min} C^*(\mathbb{F}_\infty),$
- (vi) CEP has a positive answer,
- (vii) $C^*(\mathbb{F}_\infty imes\mathbb{F}_\infty)$ has a faithful trace,
- (viii) $C^*(\mathbb{F}_{\infty} \times \mathbb{F}_{\infty})$ is RFD (residually finite dimensional).

Note: $C^*(\mathbb{F}_{\infty} \times \mathbb{F}_{\infty}) \cong C^*(\mathbb{F}_{\infty}) \otimes_{\max} C^*(\mathbb{F}_{\infty})$. (Choi '80): $C^*(\mathbb{F}_{\infty})$ is RFD, hence has a faithful trace. Furthermore, being RFD is preserved by \otimes_{\min} . (Brown-Ozawa): $C^*(\mathbb{F}_{\infty} \times \mathbb{F}_{\infty})$ is QD.

Proposition (Kirchberg): Let A, B unital C^* -algs. If $A \otimes_{\max} B$ has a faithful trace, then $A \otimes_{\max} B = A \otimes_{\min} B$.

Now onto quantum channels:

► (Choi '73): $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ linear is completely positive (cp) iff $Tx = \sum_{i=1}^d a_i^* x a_i, \quad x \in M_n(\mathbb{C}),$

where $a_1,\ldots,a_d\in M_n(\mathbb{C})$ can be chosen linearly independent.

▶ The Choi matrix C_T of a linear map $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is

$$C_T = \sum_{i,j=1}^n e_{ij} \otimes T(e_{ij}) \in M_n(\mathbb{C}) \otimes M_n(\mathbb{C}) = M_{n^2}(\mathbb{C}),$$

where $\{e_{ij}\}_{1 \leq i,j \leq n}$ are matrix units for $M_n(\mathbb{C})$. Then

$$T(e_{ij}) = \sum_{k,\ell=1}^{n} C_T(i,j;k,\ell) e_{k\ell}, \qquad 1 \leq i,j \leq n,$$

where $C_T(i, j; k, \ell) = \langle C_T, e_{ij} \otimes e_{k\ell} \rangle_{\mathrm{Tr}_n \otimes \mathrm{Tr}_n}$ (matrix coefficients). (Choi '75): *T* completely positive **iff** C_T positive matrix. A cp trace-preserving map $T : M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is a quantum channel. **Examples** of (unital) quantum channels:

• Automorphisms of $M_n(\mathbb{C})$: $T \in Aut(M_n(\mathbb{C}))$ iff $\exists u \in U(M_n(\mathbb{C}))$ s.t.

$$T(x) = u^* x u, \quad x \in M_n(\mathbb{C}).$$

(Kümmerer '83): Any unital qubit (n = 2) is a convex combination of automorphisms.

• Completely depolarizing channel S_n , $n \ge 2$

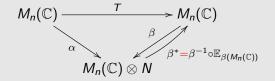
$$S_n(x) = \operatorname{tr}_n(x) \mathbb{1}_n, \quad x \in \mathbb{M}_n(\mathbb{C}).$$

• Schur multipliers associated to (complex) correlation matrices: If $B \in M_n(\mathbb{C})$ is a correlation matrix, then $T_B : M_n(\mathbb{C}) \to M_n(\mathbb{C})$

$$T_B\left([x_{ij}]_{1\leq i,j\leq n}\right)=[x_{ij}b_{ij}]_{1\leq i,j\leq n},\quad [x_{ij}]_{1\leq i,j\leq n}\in M_n(\mathbb{C}).$$

is a unital quantum channel.

Definition (Anantharaman-Delaroche '05): A unital quantum channel $T: M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is called *factorizable* if $\exists vN$ alg (N, ψ) with n.f. tracial state and unital *-homs $\alpha, \beta: M_n(\mathbb{C}) \to M_n(\mathbb{C}) \otimes N : T = \beta^* \circ \alpha$.



▶ α , β are injective (thus embeddings) and trace-preserving. Since unital embeddings of $M_n(\mathbb{C})$ into a vN alg are unitarily equiv, can take

$$eta(x) = x \otimes 1_N, \quad lpha(x) = u^* eta(x) u, \quad x \in M_n(\mathbb{C}),$$

for some $u \in M_n(\mathbb{C}) \otimes N$ unitary. N can be taken II₁-vN alg (even factor).

Theorem (Haagerup-M '11): $T : M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is a factorizable quantum channel iff $\exists (N, \tau_N)$ finite vN algebra (called ancilla) and a unitary $u \in M_n(\mathbb{C}) \otimes N$: $T_X = (\mathrm{id}_{M_n(\mathbb{C})} \otimes \tau_N)(u^*(x \otimes 1_N)u), x \in M_n(\mathbb{C})$.

Def/Thm (Haagerup-M '11): $T : M_n(\mathbb{C}) \to M_n(\mathbb{C})$ is a factorizable quantum channel iff $\exists (N, \tau_N)$ finite vN algebra (called ancilla) and a unitary $u \in M_n(\mathbb{C}) \otimes N$: $T_X = (\mathrm{id}_{M_n(\mathbb{C})} \otimes \tau_N)(u^*(x \otimes 1_N)u), x \in M_n(\mathbb{C})$.

► (R. Werner): Factorizable channels are obtained by coupling the input system to a maximally mixed ancillary one, executing a unitary rotation on the combined system, and tracing out the ancilla.

Automorphisms of $M_n(\mathbb{C})$ (unitarily implem channels) are factorizable.

Let $\mathcal{FM}(n)$ denote all factorizable quantum channels on $M_n(\mathbb{C})$, $n \ge 2$. Then $\mathcal{FM}(n)$ is convex and closed.

Further examples of factorizable channels:

- Convex comb of automorphisms of $M_n(\mathbb{C})$.
- The completely depolarizing channel S_n , as

$$\int_{\mathcal{U}(n)} u^* x u \, d\mu(u) = \operatorname{tr}_n(x) \mathbf{1}_n = S_n(x), \quad x \in M_n(\mathbb{C})$$

• Schur multipliers associated to real correlation matrices (Ricard '08).

Theorem (Haagerup-M '11): For all $n \ge 3$, there exist non-factorizable quantum channels on $M_n(\mathbb{C})$. Each such channel violates the Asymptotic Quantum Birkhoff Conjecture of Smolin-Verstraete-Winter '05.

▶ Unital quantum channels which are extreme points of CPT or UCP, are non-factorizable. Concrete example: the Holevo-Werner channel W_3^- . With Haagerup and Ruskai, systematic recipe for non-factoriz channels.

► For a factorizable channel, "the" ancilla and its "size" **not** unique. E.g., possible ancillas for S_n are: \mathbb{C}^{n^2} , $M_n(\mathbb{C})$, but also (a corner of) $(M_n(\mathbb{C}), \operatorname{tr}_n) * (M_n(\mathbb{C}), \operatorname{tr}_n)$, the reduced free product von Neumann algebra of two copies of $M_n(\mathbb{C})$.

Question: Do we **need** (inf dim) vN alg to describe factorizable channels? Let $\mathcal{FM}_{fin}(n)$ = factoriz channels on $M_n(\mathbb{C})$ admitting a finite dim ancilla.

Theorem (Rørdam-M '19): $\mathcal{FM}_{fin}(n)$ is not closed, whenever $n \ge 11$. Moreover, for each such n, there exist factorizable quantum channels on $M_n(\mathbb{C})$ which do require infinite dimensional (even type II₁) ancilla. **Theorem** (Rørdam-M '19): $\mathcal{FM}_{fin}(n)$ is not closed, whenever $n \ge 11$. Moreover, for each such n, there exist factorizable quantum channels on $M_n(\mathbb{C})$ which do require infinite dimensional (even type II₁) ancilla.

Proposition (Haagerup-M '11): A Schur multiplier T_B is factorizable iff $B \in \mathcal{G}(n)$ (i.e., $B = [\tau(u_j^*u_i)]$, $u_1, \ldots u_n$ unitaries in a fin vN alg (M, τ)). Furthermore,

$$T_B \in \mathcal{FM}_{\mathrm{fin}}(n) \iff B \in \mathcal{G}_{\mathrm{fin}}(n).$$

As the map $B \mapsto T_B$ is an affine homeo, the theorem above follows from non-closure of $\mathcal{G}_{\text{fin}}(n)$, whenever $n \geq 11$.

Thm (Haagerup-M '15) CEP pos iff $\overline{\mathcal{FM}_{fin}(n)} = \mathcal{FM}(n), \forall n \geq 3$.

(Rørdam-M '20): A new view-point on factorizable channels, leading to further connections (and interesting open problems in C*-algebras):

▶ $\mathcal{FM}(n)$ is *parametrized by* simplex of tracial states $T(M_n(\mathbb{C}) * M_n(\mathbb{C}))$.

More precisely, if $\tau \in T(M_n(\mathbb{C}) * M_n(\mathbb{C}))$, let

 $C_{\tau}(i,j;k,\ell) = n\tau \big(\iota_2(e_{k\ell})^* \iota_1(e_{ij})\big), \qquad 1 \leq i,j,k,\ell \leq n,$

where $\iota_1, \iota_2 \colon M_n(\mathbb{C}) \to M_n(\mathbb{C}) * M_n(\mathbb{C})$ are the *canonical inclusions*. Then $C_{\tau} \in M_{n^2}(\mathbb{C})$ is positive, hence it is the Choi matrix of some quantum channel T_{τ} . Furthermore, turns out that T_{τ} is factorizable!

In fact, the map $\Phi: T(M_n(\mathbb{C}) * M_n(\mathbb{C})) \to \mathcal{FM}(n), \tau \mapsto \Phi(\tau) := T_{\tau}$ is an affine continuous surjection, satisfying, moreover,

$$\Phi(T_{\mathrm{fin}}(M_n(\mathbb{C}) * M_n(\mathbb{C}))) = \mathcal{FM}_{\mathrm{fin}}(n),$$

where $T_{\rm fin}$ = tracial states that factor through fin. dim. C*-alg.