The Connes Embedding Problem: from operator algebras to groups and quantum information theory

Magdalena Musat University of Copenhagen

Summer School in Operator Algebras Hosted by the Fields Institute and the University of Ottawa June 15, 2021

The Connes Embedding Problem (CEP)(Annals of Math.'76): Does every separable finite von Neumann alg *M* admit an embedding into

 $\mathcal{R}^{\omega} = \ell^{\infty}(\mathcal{R})/\{(T_n): \lim_{\omega} \|T_n\|_2 = 0\},\$

 $\omega =$ free ultrafilter on \mathbb{N} , $||T||_2 = \tau_{\mathcal{R}} (T^*T)^{1/2}$, $\tau_{\mathcal{R}} =$ trace on \mathcal{R} , the hyperfinite II₁-factor.

Theorem (Kirchberg '93): Let (M, τ) be a separable finite vN alg with faithful normal tracial state τ . Then M admits a τ -preserving embedding into \mathcal{R}^{ω} iff $\forall \varepsilon > 0$ and every set u_1, \ldots, u_n of unitaries in $M, \exists k \ge 1$ and unitaries v_1, \ldots, v_n in $M_k(\mathbb{C})$:

$$\left| \tau(u_j^* u_i) - \operatorname{tr}_k(v_j^* v_i) \right| < \varepsilon, \qquad 1 \leq i,j \leq n.$$

Consider the following sets of $n \times n$ matrices of correlations, $n \ge 2$:

$$\begin{aligned} \mathcal{G}_{\mathrm{matr}}(n) &= \bigcup_{k \ge 1} \left\{ \begin{bmatrix} \mathrm{tr}_{k}(u_{j}^{*}u_{i}) \end{bmatrix} : u_{1}, \ldots, u_{n} \text{ unitaries in } M_{k}(\mathbb{C}) \right\}, \\ \cap \\ \mathcal{G}_{\mathrm{fin}}(n) &= \left\{ \begin{bmatrix} \tau(u_{j}^{*}u_{i}) \end{bmatrix} : u_{1}, \ldots, u_{n} \text{ unitaries in arbitrary} \\ & \text{ finite dim } \mathbb{C}^{*}\text{-alg } (\mathcal{A}, \tau) \right\}, \\ \mathcal{G}(n) &= \left\{ \begin{bmatrix} \tau(u_{j}^{*}u_{i}) \end{bmatrix} : u_{1}, \ldots, u_{n} \text{ unitaries in arbitrary finite} \\ & \text{ vN alg } (M, \tau) \right\}. \end{aligned}$$

All sets equal if n = 2.

Related: $D_{\text{matr}}(n) \subseteq D_{\text{fin}}(n) \subseteq D(n)$ where unitaries are replaced by proj.

Theorem (Kirchberg '93): CEP pos **iff** $\mathcal{G}(n) = \mathsf{cl}(\mathcal{G}_{\mathrm{matr}}(n)), \forall n \geq 3.$

Theorem (Rørdam-M '19):

- 1) $\mathcal{G}_{matr}(n)$ is neither convex, nor closed when $n \geq 3$.
- 2) $\mathcal{G}_{fin}(n)$ is convex for all $n \ge 2$, but not closed when $n \ge 11$.
- 3) $D_{\text{fin}}(n)$ is convex for all $n \ge 2$, but not closed when $n \ge 5$.

A trick (originating in ideas of Regev-Slofstra-Vidick):

Let p_1, \ldots, p_n be projections in a vN alg (M, τ_M) with n.f. tracial state. Define unitaries $u_0, u_1, \ldots, u_{2n} \in M$ by $u_0 = 1$ and

$$u_j = 2p_j - 1, \ 1 \le j \le n, \quad u_j = \frac{1}{\sqrt{2}}(u_{j-n} + i \cdot 1), \ n+1 \le j \le 2n.$$

Let (N, τ_N) be some other vN alg with n.f. tracial state. Then \exists unitaries $v_0, v_1, \ldots, v_{2n} \in N$ s.t. $\tau_N(v_j^* v_i) = \tau_M(u_j^* u_i), \forall 0 \le i, j \le 2n$, iff \exists projections $q_1, \ldots, q_n \in N$ satisfying

$$\tau_N(q_jq_i) = \tau_M(p_jp_i), \qquad 1 \le i,j \le n.$$

▶ Recall: If $u \in A$ (unital C*-alg) unitary, then $\frac{1}{\sqrt{2}}(u+i\cdot 1)$ is a unitary **iff** u is a symmetry, i.e., $\frac{1}{2}(u+1)$ is a proj.

▶ Idea behind the **trick**: the map $u_j \mapsto v_j$, extended linearly between Eucl spaces (Span{ $u_0, \ldots u_{2n}$ }, $\langle \cdot, \cdot \rangle_{\tau_M}$), (Span{ $v_0, \ldots v_{2n}$ }, $\langle \cdot, \cdot \rangle_{\tau_N}$) is an isometry.

Let p_1, \ldots, p_n be projections in a vN alg (M, τ_M) with n.f. tracial state. Define unitaries $u_0, u_1, \ldots, u_{2n} \in M$ by $u_0 = 1$ and

$$u_j = 2p_j - 1, \ 1 \le j \le n, \quad u_j = \frac{1}{\sqrt{2}}(u_{j-n} + i \cdot 1), \ n+1 \le j \le 2n.$$

Let (N, τ_N) be some other vN alg with n.f. tracial state. Then \exists unitaries $v_0, v_1, \ldots, v_{2n} \in N$ s.t. $\tau_N(v_j^* v_i) = \tau_M(u_j^* u_i), \forall 0 \le i, j \le 2n$, iff \exists projections $q_1, \ldots, q_n \in N$ satisfying

$$\tau_N(q_jq_i) = \tau_M(p_jp_i), \qquad 1 \le i,j \le n.$$

Corollary: If $[\tau_M(p_j p_i)] \in \overline{\mathcal{D}_{fin}(n)} \setminus \mathcal{D}_{fin}(n)$, then the corresponding 2n + 1 unitaries satisfy $[\tau_M(u_i^*u_i)] \in \overline{\mathcal{G}_{fin}(2n+1)} \setminus \mathcal{G}_{fin}(2n+1)$.

▶ This proves " $D_{\text{fin}}(n)$ not closed $\Rightarrow \mathcal{G}_{\text{fin}}(2n+1)$ not closed".

▶ To prove $\mathcal{G}_{matr}(n)$ not closed, $n \ge 3$, note that $D_{matr}(n)$ not closed for $n \ge 1$, and use the **trick**.

To prove $D_{fin}(n)$ not closed, $n \ge 5$, we followed Dykema-Paulsen-Prakash '17, and employed a theorem of Kruglyak-Rabanovich-Samoilenko '02, concerning existence of projections on a Hilbert space adding up to a scalar multiple of the identity, to show:

Theorem: Let $n \ge 5$ and $t \in [\frac{1}{2}(1 - \sqrt{1 - 4/n}), \frac{1}{2}(1 + \sqrt{1 - 4/n})].$ Define $A_t^{(n)} = [A_t^{(n)}(i,j)]_{1 \le i,j \le n} \in M_n(\mathbb{R})$ by $A_t^{(n)}(i,i) = t, \quad A_t^{(n)}(i,j) = \frac{t(nt-1)}{n-1}, i \ne j.$ If $t \notin \mathbb{Q}$, then $A_t^{(n)} \in \overline{D_{\text{fin}}(n)} \setminus D_{\text{fin}}(n).$

▶ (PSSTW '16): $\mathcal{D}(n)$, $\mathcal{D}_{fin}(n)$ affinely homeo to the sets of synchronous quantum correlations $C_{qc}^{s}(n,2)$, $C_{q}^{s}(n,2)$. $(C_{q}^{s}(n)$ is rel. closed in $C_{q.}$)

Projections adding up to a scalar multiple of the identity operator:

Let \sum_n be the set of $\alpha \ge 0$ for which \exists projections p_1, \ldots, p_n on a Hilbert space H such that $\sum_{j=1}^n p_j = \alpha \cdot I_H$.

▶ It is known that $\Sigma_n \subset \mathbb{Q}$, when $n \leq 4$.

Theorem (Kruglyak-Rabanovich-Samoilenko '02): Let $n \ge 5$. There exist projections p_1, \ldots, p_n on a *finite dimensional* Hilbert space H so that $\sum_{i=1}^{n} p_i = \alpha \cdot I_H$ if and only if $\alpha \in \sum_n \cap \mathbb{Q}$. Furthermore,

$$\left[\frac{1}{2}(n-\sqrt{n^2-4n}),\frac{1}{2}(n+\sqrt{n^2-4n})\right]\subseteq \Sigma_n.$$

Note: The "only if" part is easy (with Tr standard trace on B(H)):

$$\sum_{j=1}^{n} p_j = \alpha \cdot I_H \implies \alpha \cdot \dim(H) = \sum_{j=1}^{n} \operatorname{Tr}(p_j).$$

For $n \ge 2$ and $1/n \le t \le 1$, consider the following $n \times n$ matrix:

$$A_t^{(n)}(i,j) = \begin{cases} t, & i = j, \\ \frac{t(nt-1)}{n-1}, & i \neq j. \end{cases}$$

Proposition: Let (\mathcal{A}, τ) be a unital C^* -alg with faithful tracial state τ , and $p_1, \ldots, p_n \in \mathcal{A}$ be projections. Set $\alpha = nt$. If

$$\tau(p_j p_i) = A_t^{(n)}(i,j), \qquad 1 \le i,j \le n,$$

then $\sum_{j=1}^{n} p_j = \alpha \cdot 1_{\mathcal{A}}$. Moreover, if $t \notin \mathbb{Q}$, then $\dim(\mathcal{A}) = \infty$. (Even stronger, \mathcal{A} has no finite dimens repres.)

▶ Respectively, if $\sum_{j=1}^{n} p_j = \alpha \cdot \mathbf{1}_A$, then $\exists m \ge 1$ and projections $\tilde{p}_1, \ldots, \tilde{p}_n \in M_m(\mathcal{A})$ such that

$$(\tau \otimes \operatorname{tr}_{\mathrm{m}})(\widetilde{p}_{j}\widetilde{p}_{i}) = A_{t}^{(n)}(i,j), \qquad 1 \leq i,j \leq n.$$

Recall

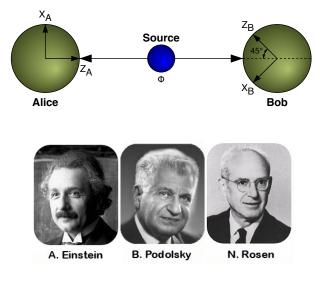
$$A_t^{(n)}(i,j) = \begin{cases} t, & i = j, \\ \frac{t(nt-1)}{n-1}, & i \neq j. \end{cases}$$

Combining previous proposition with the K-R-S theorem, we get

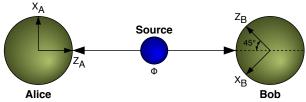
Theorem: Let $n \ge 5$, $t \in [\frac{1}{2}(1 - \sqrt{1 - 4/n}), \frac{1}{2}(1 + \sqrt{1 - 4/n})].$ If $t \in \mathbb{Q}$, then $A_t^{(n)} \in \mathcal{D}_{\text{fin}}(n)$. If $t \notin \mathbb{Q}$, then $A_t^{(n)} \in \text{cl}(\mathcal{D}_{\text{fin}}(n)) \setminus \mathcal{D}_{\text{fin}}(n)$. In particular, $\mathcal{D}_{\text{fin}}(n)$ is non-closed, when $n \ge 5$.

Note: If $t \in ((1 - \sqrt{1 - 4/n})/2, (1 + \sqrt{1 - 4/n})/2) \setminus \mathbb{Q}$, and p_1, \ldots, p_n proj in a finite vN alg (N, τ_N) s.t. $\tau_N(p_j p_i) = A_t^{(n)}(i, j), 1 \le i, j \le n$, then N must be type II₁. **Ozawa**: Can take $N = \mathcal{R}$.

Quantum Correlations and The Einstein–Podolsky–Rosen paradox



Alice and Bob, residing in spatially separated labs, each receives a quantum system on which they can perform measurements.



Let's say that Alice and Bob can measure any one of n possible observables each with k possible outcomes. Let

 $P(a, b \mid x, y)$

be the probability that Alice gets outcome a and Bob outcome b, when Alice measures observable x and Bob measures observable y.

Hidden variables - the classical model: \exists prob. space (Ω, μ) and partitions $\{A_a^x\}_a$ and $\{B_b^y\}_b$ of Ω (one for each x, y) st

 $P(a, b \mid x, y) = \mu(A_a^x \cap B_b^y).$

Hidden variables - the classical model: \exists prob. space (Ω, μ) and partitions $\{A_a^x\}_a$ and $\{B_b^y\}_b$ of Ω (one for each x, y) s.t. $P(a, b \mid x, y) = \mu(A_a^x \cap B_b^y).$

Definition: A PVM (projection valued measure) is a *k*-tuple P_1, \ldots, P_k of projections on a Hilbert space H s.t. $\sum_{i=1}^{k} P_i = I$.

Two quantum models for interpreting the physical separation:

Tensor product: \exists Hilbert spaces H_A , H_B , PVMs $\{P_a^x\}_a$, $\{Q_b^y\}_b$ on H_A , resp., H_B , and unit vector $\psi \in H_A \otimes H_B$ st

$$P(a, b \mid x, y) = \langle (P_a^x \otimes Q_b^y) \psi, \psi \rangle.$$

Commutativity: \exists Hilbert space *H*, commuting PVMs $\{P_a^x\}_a$, $\{Q_b^y\}_b$ on *H*, and unit vector $\psi \in H$ st

$$P(a, b \mid x, y) = \langle P_a^x Q_b^y \psi, \psi \rangle.$$

Associated to these 3 models, we have the following convex sets of $nk \times nk$ matrices, rows are indexed by (a, x) and columns by (b, y): $\mathcal{C}_{c}(n,k) = \left\{ \left[\mu(A_{a}^{\times} \cap B_{b}^{y}) \right] : \{A_{a}^{\times}\}_{a}, \{B_{b}^{y}\}_{b} \text{ partitions of } (\Omega,\mu) \right\},\$ $\mathcal{C}_{qs}(n,k) = \left\{ \left| \left\langle (P_a^{\mathsf{x}} \otimes Q_b^{\mathsf{y}})\psi, \psi \right\rangle \right| : \{P_a^{\mathsf{x}}\}_a, \{Q_b^{\mathsf{y}}\}_b \text{ PVMs}, \psi \in H_A \otimes H_B \right\},\$ $\mathcal{C}_{aa}(n,k) = \operatorname{cl}(\mathcal{C}_{as}(n,k)),$ $\mathcal{C}_{qc}(n,k) = \left\{ \left[\left\langle P_a^{\mathsf{x}} Q_b^{\mathsf{y}} \psi, \psi \right\rangle \right] : \{ P_a^{\mathsf{x}} \}_a, \{ Q_b^{\mathsf{y}} \}_b \text{ PVMs}, [P_a^{\mathsf{x}}, Q_b^{\mathsf{y}}] = 0, \psi \in H \right\}.$ $C_{as}^{fin}(n,k)$ and $C_{ac}^{fin}(n,k)$ denote the correlation sets, where the Hilbert spaces H_A , H_B , resp., H are finite dimensional.

$$\begin{array}{ccc} \mathcal{C}_{qs}^{\mathrm{fin}}(n,k) & \stackrel{!}{=} & \mathcal{C}_{qc}^{\mathrm{fin}}(n,k) \\ & & & \\ & & & \\ & & & \\ \mathcal{C}_{c}(n,k) & \subseteq & \mathcal{C}_{qs}(n,k) & \subseteq & \mathcal{C}_{qa}(n,k) & \subseteq & \mathcal{M}_{nk}([0,1]) \end{array}$$

•
$$\operatorname{cl}(\mathcal{C}_{qs}^{\operatorname{fin}}(n,k)) = \operatorname{cl}(\mathcal{C}_{qs}(n,k)) = \mathcal{C}_{qa}(n,k).$$

$$\begin{array}{ccc} \mathcal{C}_{qs}^{\mathrm{fin}}(n,k) & \stackrel{!}{=} & \mathcal{C}_{qc}^{\mathrm{fin}}(n,k) \\ & & & \\ & & & \\ \mathcal{C}_{c}(n,k) & \subseteq & \mathcal{C}_{qs}(n,k) & \subseteq & \mathcal{C}_{qa}(n,k) & \subseteq & \mathcal{M}_{nk}([0,1]) \end{array}$$

 $\triangleright \operatorname{cl}(\mathcal{C}_{qs}^{\operatorname{fin}}(n,k)) = \operatorname{cl}(\mathcal{C}_{qs}(n,k)) = \mathcal{C}_{qa}(n,k).$

EPR-Bell's inequality-Aspect: $C_c(n, k) \neq C_{qs}(n, k)$. (This also follows from Grothendieck's ineq in Functional Analysis.)

Conjecture/Problem (Tsirelson): $C_{qa}(n,k) \stackrel{?}{=} C_{qc}(n,k)$. Equivalently,

$$\operatorname{cl}(\mathcal{C}_{qc}^{\operatorname{fin}}(n,k)) \stackrel{?}{=} \mathcal{C}_{qc}(n,k).$$

(Slofstra '16): $C_{qs}(n,k) \neq C_{qc}(n,k)$. He further showed ('17) that $C_{qs}(n,k)$ is **not** closed, for *n* and *k* large enough, so $C_{qs}(n,k) \neq C_{qa}(n,k)$.

(Dykema-Paulsen-Prakash '17), (Rørdam-M '19): $C_{qs}(5,2)$ not closed. [Proof by D-P-P uses nonlocal quantum games.]

Some background on C^* -tensor products and $C^*(\mathbb{F}_\infty)$:

 \mathbb{F}_{∞} = free group with countably infinitely many generators.

 $C^*(\mathbb{F}_{\infty})$ = universal C^* -alg. generated by a sequence of unitaries.

- Every unital separable C^* -alg is a quotient of $C^*(\mathbb{F}_{\infty})$.
- ▶ For unital C*-algebras $A \subseteq B(H)$ and $B \subseteq B(K)$:
- $A \otimes_{\min} B \subseteq B(H \otimes K)$ = the spatial tensor product = the closure of the algebraic tensor product $A \odot B \subseteq B(H \otimes K)$
- $A \otimes_{\max} B$ = universal C*-algebra generated by *commuting* copies of A and B
- ▶ In general we have canonical surjection: $A \otimes_{\max} B \to A \otimes_{\min} B$.

▶ $A \otimes_{\max} B = A \otimes_{\min} B$ if A or B is *nuclear*, but not in general.

• $\Gamma = \mathbb{Z}_k * \mathbb{Z}_k * \cdots * \mathbb{Z}_k$ (*n* free factors).

Theorem (Fritz, Junge et. al. '09): • $C_{qa}(n,k) = \left\{ \left[\varphi(e_a^x \otimes e_b^y) \right] : \varphi \text{ state on } C^*(\Gamma) \otimes_{\min} C^*(\Gamma) \right\}.$ • $C_{qc}(n,k) = \left\{ \left[\varphi(e_a^x \otimes e_b^y) \right] : \varphi \text{ state on } C^*(\Gamma) \otimes_{\max} C^*(\Gamma) \right\}.$

 $\Phi \colon C^*(\Gamma) \to B(H)$ st $\Phi(e_a^{\chi}) = P_a^{\chi}$ for all a, χ .

▶ If $\{P_a^x\}_a, \{Q_b^y\}_b \subseteq B(H)$ are commuting PVM's, then \exists *-hom

 $\Psi \colon C^*(\Gamma) \otimes_{\max} C^*(\Gamma) \to B(H) \text{ st } \Psi(e^x_a \otimes e^y_b) = P^x_a Q^y_b \text{ for all } a, x, b, y.$

• Let $\Gamma = \mathbb{Z}_k * \mathbb{Z}_k * \cdots * \mathbb{Z}_k$ (*n* free factors), $n, k \geq 2$.

Theorem (Fritz/Junge et. al. '09):
•
$$C_{qa}(n,k) = \left\{ \left[\varphi(e_a^x \otimes e_b^y) \right] : \varphi \text{ state on } C^*(\Gamma) \otimes_{\min} C^*(\Gamma) \right\}.$$

• $C_{qc}(n,k) = \left\{ \left[\varphi(e_a^x \otimes e_b^y) \right] : \varphi \text{ state on } C^*(\Gamma) \otimes_{\max} C^*(\Gamma) \right\}.$

•
$$C^*(\Gamma) \otimes_{\min} C^*(\Gamma)$$
 is RFD $[\Rightarrow C_{qs}^{fin}(n,k) \stackrel{\text{dense}}{\subseteq} C_{qs}(n,k)].$

Theorem (Kirchberg '93, Fritz/Junge et. al. '09, Ozawa '12): TFAE:

(i)
$$C^*(\Gamma) \otimes_{\max} C^*(\Gamma) = C^*(\Gamma) \otimes_{\min} C^*(\Gamma)$$
 for all $n, k \ge 2$,

(ii)
$$C^*(\mathbb{F}_\infty) \otimes_{\max} C^*(\mathbb{F}_\infty) = C^*(\mathbb{F}_\infty) \otimes_{\min} C^*(\mathbb{F}_\infty)$$
,

- (iii) Connes embedding problem has positive answer,
- (iv) Tsirelson's conjecture is true.