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The Connes Embedding Problem (CEP)(Annals of Math.’76): Does
every separable finite von Neumann alg M admit an embedding into

Rω = `∞(R)/{(Tn) : lim
ω
‖Tn‖2 = 0},

ω = free ultrafilter on N, ‖T‖2 = τR(T ∗T )1/2, τR = trace on R, the
hyperfinite II1-factor.

Theorem (Kirchberg ’93): Let (M, τ) be a separable finite vN alg with
faithful normal tracial state τ . Then M admits a τ -preserving embedding
into Rω iff ∀ ε > 0 and every set u1, . . . , un of unitaries in M, ∃ k ≥ 1
and unitaries v1, . . . , vn in Mk(C) :∣∣τ(u∗j ui )− trk(v∗j vi )

∣∣ < ε, 1 ≤ i , j ≤ n.
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Consider the following sets of n × n matrices of correlations, n ≥ 2:

Gmatr(n) =
⋃
k≥1

{[
trk(u∗j ui )

]
: u1, . . . , un unitaries in Mk(C)

}
,

⊇
Gfin(n) =

{[
τ(u∗j ui )

]
: u1, . . . , un unitaries in arbitrary

finite dim C∗-alg (A, τ)
}
,⊇

G(n) =
{[
τ(u∗j ui )

]
: u1, . . . , un unitaries in arbitrary finite

vN alg (M, τ)
}
.

All sets equal if n = 2.

Related: Dmatr(n) ⊆ Dfin(n) ⊆ D(n) where unitaries are replaced by proj.

Theorem (Kirchberg ‘93): CEP pos iff G(n) = cl(Gmatr(n)), ∀n ≥ 3.

Theorem (Rørdam-M ‘19):

1) Gmatr(n) is neither convex, nor closed when n ≥ 3.

2) Gfin(n) is convex for all n ≥ 2, but not closed when n ≥ 11.

3) Dfin(n) is convex for all n ≥ 2, but not closed when n ≥ 5.
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A trick (originating in ideas of Regev-Slofstra-Vidick):

Let p1, . . . , pn be projections in a vN alg (M, τM) with n.f. tracial state.
Define unitaries u0, u1, . . . u2n ∈ M by u0 = 1 and

uj = 2pj − 1, 1 ≤ j ≤ n, uj =
1√
2

(uj−n + i · 1), n + 1 ≤ j ≤ 2n.

Let (N, τN) be some other vN alg with n.f. tracial state. Then ∃
unitaries v0, v1, . . . , v2n ∈ N s.t. τN(v∗j vi ) = τM(u∗j ui ),∀ 0 ≤ i , j ≤ 2n, iff
∃ projections q1, . . . , qn ∈ N satisfying

τN(qjqi ) = τM(pjpi ), 1 ≤ i , j ≤ n.

I Recall: If u ∈ A (unital C∗-alg) unitary, then 1√
2

(u + i · 1) is a unitary

iff u is a symmetry, i.e., 1
2 (u + 1) is a proj.

I Idea behind the trick: the map uj 7→ vj , extended linearly between Eucl
spaces (Span{u0, . . . u2n}, 〈·, ·〉τM ), (Span{v0, . . . v2n}, 〈·, ·〉τN ) is an
isometry.
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Let p1, . . . , pn be projections in a vN alg (M, τM) with n.f. tracial state.
Define unitaries u0, u1, . . . u2n ∈ M by u0 = 1 and

uj = 2pj − 1, 1 ≤ j ≤ n, uj =
1√
2

(uj−n + i · 1), n + 1 ≤ j ≤ 2n.

Let (N, τN) be some other vN alg with n.f. tracial state. Then ∃
unitaries v0, v1, . . . , v2n ∈ N s.t. τN(v∗j vi ) = τM(u∗j ui ),∀ 0 ≤ i , j ≤ 2n, iff
∃ projections q1, . . . , qn ∈ N satisfying

τN(qjqi ) = τM(pjpi ), 1 ≤ i , j ≤ n.

Corollary: If [τM(pjpi )] ∈ Dfin(n) \ Dfin(n), then the corresponding 2n + 1

unitaries satisfy [τM(u∗j ui )] ∈ Gfin(2n + 1) \ Gfin(2n + 1).

I This proves ”Dfin(n) not closed ⇒ Gfin(2n + 1) not closed”.

I To prove Gmatr(n) not closed, n ≥ 3, note that Dmatr(n) not closed for
n ≥ 1, and use the trick.
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To prove Dfin(n) not closed, n ≥ 5, we followed Dykema-Paulsen-Prakash
’17, and employed a theorem of Kruglyak-Rabanovich-Samoilenko ’02,
concerning existence of projections on a Hilbert space adding up to a
scalar multiple of the identity, to show:

Theorem: Let n ≥ 5 and t ∈ [ 1
2 (1−

√
1− 4/n), 1

2 (1 +
√

1− 4/n)].

Define A
(n)
t = [A

(n)
t (i , j)]1≤i ,j≤n ∈ Mn(R) by

A
(n)
t (i , i) = t, A

(n)
t (i , j) =

t(nt − 1)

n − 1
, i 6= j .

If t /∈ Q, then A
(n)
t ∈ Dfin(n) \ Dfin(n).

I (PSSTW ’16): D(n), Dfin(n) affinely homeo to the sets of synchronous
quantum correlations C s

qc(n, 2), C s
q (n, 2). (C s

q (n) is rel. closed in Cq.)
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Projections adding up to a scalar multiple of the identity operator:

Let Σn be the set of α ≥ 0 for which ∃ projections p1, . . . , pn on a Hilbert
space H such that

∑n
j=1 pj = α · IH .

I It is known that Σn ⊂ Q, when n ≤ 4.

Theorem (Kruglyak-Rabanovich-Samoilenko ‘02): Let n ≥ 5. There
exist projections p1, . . . , pn on a finite dimensional Hilbert space H so
that

∑n
j=1 pj = α · IH if and only if α ∈ Σn ∩Q. Furthermore,[

1

2
(n −

√
n2 − 4n),

1

2
(n +

√
n2 − 4n)

]
⊆ Σn.

Note: The “only if” part is easy (with Tr standard trace on B(H)):
n∑

j=1

pj = α · IH =⇒ α · dim(H) =
n∑

j=1

Tr(pj).
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For n ≥ 2 and 1/n ≤ t ≤ 1, consider the following n × n matrix:

A
(n)
t (i , j) =

 t, i = j ,
t(nt − 1)

n − 1
, i 6= j .

Proposition: Let (A, τ) be a unital C ∗-alg with faithful tracial state τ ,
and p1, . . . , pn ∈ A be projections. Set α = nt.
I If

τ(pjpi ) = A
(n)
t (i , j), 1 ≤ i , j ≤ n,

then
∑n

j=1 pj = α · 1A. Moreover, if t /∈ Q, then dim(A) =∞. (Even
stronger, A has no finite dimens repres.)

I Respectively, if
∑n

j=1 pj = α · 1A, then ∃m ≥ 1 and projections
p̃1, . . . , p̃n ∈ Mm(A) such that

(τ ⊗ trm)(p̃j p̃i ) = A
(n)
t (i , j), 1 ≤ i , j ≤ n.
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Recall

A
(n)
t (i , j) =

 t, i = j ,
t(nt − 1)

n − 1
, i 6= j .

Combining previous proposition with the K-R-S theorem, we get

Theorem: Let n ≥ 5, t ∈ [ 1
2 (1−

√
1− 4/n), 1

2 (1 +
√

1− 4/n)].

I If t ∈ Q, then A
(n)
t ∈ Dfin(n).

I If t /∈ Q, then A
(n)
t ∈ cl(Dfin(n)) \ Dfin(n).

In particular, Dfin(n) is non-closed, when n ≥ 5.

Note: If t ∈ ((1−
√

1− 4/n)/2, (1 +
√

1− 4/n)/2) \Q, and p1, . . . , pn

proj in a finite vN alg (N, τN) s.t. τN(pjpi ) = A
(n)
t (i , j), 1 ≤ i , j ≤ n, then

N must be type II1. Ozawa: Can take N = R.
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Quantum Correlations and The Einstein–Podolsky–Rosen paradox

ZA

Alice

XA

Bob
XB

ZB

45°
Source

Φ
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Alice and Bob, residing in spatially separated labs, each receives a
quantum system on which they can perform measurements.

ZA

Alice

XA

Bob
XB

ZB

45°
Source

Φ

Let’s say that Alice and Bob can measure any one of n possible
observables each with k possible outcomes. Let

P(a, b | x , y)

be the probability that Alice gets outcome a and Bob outcome b, when
Alice measures observable x and Bob measures observable y .

Hidden variables - the classical model: ∃ prob. space (Ω, µ) and
partitions {Ax

a}a and {By
b }b of Ω (one for each x , y) st

P(a, b | x , y) = µ(Ax
a ∩ By

b ).
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Hidden variables - the classical model: ∃ prob. space (Ω, µ) and
partitions {Ax

a}a and {By
b }b of Ω (one for each x , y) s.t.

P(a, b | x , y) = µ(Ax
a ∩ By

b ).

Definition: A PVM (projection valued measure) is a k-tuple P1, . . . ,Pk

of projections on a Hilbert space H s.t.
∑k

j=1 Pj = I .

Two quantum models for interpreting the physical separation:

Tensor product: ∃ Hilbert spaces HA, HB , PVMs {Px
a }a, {Qy

b }b on HA,
resp., HB , and unit vector ψ ∈ HA ⊗ HB st

P(a, b | x , y) = 〈(Px
a ⊗ Qy

b )ψ,ψ〉.
Commutativity: ∃ Hilbert space H, commuting PVMs {Px

a }a, {Qy
b }b on

H, and unit vector ψ ∈ H st

P(a, b | x , y) = 〈Px
aQ

y
bψ,ψ〉.
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Associated to these 3 models, we have the following convex sets of
nk × nk matrices, rows are indexed by (a, x) and columns by (b, y):

Cc(n, k) =
{[
µ(Ax

a ∩ By
b )
]

: {Ax
a}a, {B

y
b }b partitions of (Ω, µ)

}
,

Cqs(n, k) =
{[〈

(Px
a ⊗ Qy

b )ψ,ψ
〉]

: {Px
a }a, {Q

y
b }b PVMs, ψ ∈ HA ⊗ HB

}
,

Cqa(n, k) = cl(Cqs(n, k)),

Cqc(n, k) =
{[〈

Px
aQ

y
bψ,ψ

〉]
: {Px

a }a, {Q
y
b }b PVMs, [Px

a ,Q
y
b ] = 0, ψ ∈ H

}
.

Cfin
qs (n, k) and Cfin

qc (n, k) denote the correlation sets, where the Hilbert
spaces HA,HB , resp., H are finite dimensional.

Cfin
qs (n, k)

⊆

!
= Cfin

qc (n, k)

⊆

Cc(n, k) ⊆ Cqs(n, k) ⊆ Cqa(n, k) ⊆ Cqc(n, k) ⊆ Mnk([0, 1])

I cl(Cfin
qs (n, k)) = cl(Cqs(n, k)) = Cqa(n, k).
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Cfin
qs (n, k)

⊆

!
= Cfin

qc (n, k)

⊆

Cc(n, k) ⊆ Cqs(n, k) ⊆ Cqa(n, k) ⊆ Cqc(n, k) ⊆ Mnk([0, 1])

I cl(Cfin
qs (n, k)) = cl(Cqs(n, k)) = Cqa(n, k).

EPR–Bell’s inequality–Aspect: Cc(n, k) 6= Cqs(n, k). (This also follows
from Grothendieck’s ineq in Functional Analysis.)

Conjecture/Problem (Tsirelson): Cqa(n, k)
?
= Cqc(n, k). Equivalently,

cl(Cfin
qc (n, k))

?
= Cqc(n, k).

(Slofstra ’16): Cqs(n, k)6=Cqc(n, k). He further showed (’17) that Cqs(n, k)
is not closed, for n and k large enough, so Cqs(n, k) 6=Cqa(n, k).

(Dykema-Paulsen-Prakash ’17), (Rørdam-M ’19): Cqs(5, 2) not closed.
[Proof by D-P-P uses nonlocal quantum games.]
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Some background on C ∗-tensor products and C ∗(F∞):

F∞ = free group with countably infinitely many generators.

C ∗(F∞) = universal C ∗-alg. generated by a sequence of unitaries.

I Every unital separable C ∗-alg is a quotient of C ∗(F∞).

I For unital C ∗-algebras A ⊆ B(H) and B ⊆ B(K ):

• A⊗min B ⊆ B(H ⊗K ) = the spatial tensor product = the closure of the
algebraic tensor product A� B ⊆ B(H ⊗ K )

• A⊗max B = universal C ∗-algebra generated by commuting copies of A
and B

I In general we have canonical surjection: A⊗max B → A⊗min B.

I A⊗max B = A⊗min B if A or B is nuclear, but not in general.
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• Γ = Zk ∗ Zk ∗ · · · ∗ Zk (n free factors).

Theorem (Fritz, Junge et. al. ’09):

Cqa(n, k) =
{[
ϕ(exa ⊗ eyb )

]
: ϕ state on C ∗(Γ)⊗min C ∗(Γ)

}
.

Cqc(n, k) =
{[
ϕ(exa ⊗ eyb )

]
: ϕ state on C ∗(Γ)⊗max C

∗(Γ)
}

.

I C ∗(Γ) = C ∗(Zk) ∗1 C
∗(Zk) ∗1 · · · ∗1 C

∗(Zk).

I C ∗(Zk) = Ce1 ⊕ · · · ⊕ Cek , where ej are proj’n and
∑

j ej = 1.

• Let exa ∈ C ∗(Γ) be the projection ea in the xth free factor above.

I If {Px
a }a ⊆ B(H) are PVM’s, then ∃ ∗-hom

Φ: C ∗(Γ)→ B(H) st Φ(exa ) = Px
a for all a, x .

I If {Px
a }a, {Q

y
b }b ⊆ B(H) are commuting PVM’s, then ∃ ∗-hom

Ψ: C ∗(Γ)⊗max C
∗(Γ)→ B(H) st Ψ(exa ⊗ eyb ) = Px

aQ
y
b for all a, x , b, y .
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• Let Γ = Zk ∗ Zk ∗ · · · ∗ Zk (n free factors), n, k ≥ 2.

Theorem (Fritz/Junge et. al. ’09):

Cqa(n, k) =
{[
ϕ(exa ⊗ eyb )

]
: ϕ state on C ∗(Γ)⊗min C ∗(Γ)

}
.

Cqc(n, k) =
{[
ϕ(exa ⊗ eyb )

]
: ϕ state on C ∗(Γ)⊗max C

∗(Γ)
}

.

• C ∗(Γ)⊗min C ∗(Γ) is RFD [⇒ Cfin
qs (n, k)

dense
⊆ Cqs(n, k)].

Theorem (Kirchberg ‘93, Fritz/Junge et. al. ‘09, Ozawa ‘12): TFAE:

(i) C ∗(Γ)⊗max C
∗(Γ) = C ∗(Γ)⊗min C ∗(Γ) for all n, k ≥ 2,

(ii) C ∗(F∞)⊗max C
∗(F∞) = C ∗(F∞)⊗min C ∗(F∞),

(iii) Connes embedding problem has positive answer,

(iv) Tsirelson’s conjecture is true.
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