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The theory of von Neumann algebras, introduced by J. von Neumann in
1929-1930 as rings of operators, was developed with F. Murray in a series
of papers 1936-1943 as mathematical framework for quantum mechanics,
where Heisenberg's uncertainty relation is expressed as noncommutativity
of certain operators.

Definition: A von Neumann algebra M is subalgebra of B(H), the set of
all bounded linear operators on a Hilbert space H, containing the unit,
closed under taking adjoints: T € M = T* € M, and closed in the
strong operator topology (SOT): T, — T iff Tptp — T, ¢ € H.

von Neumann's bicommutant theorem: M C B(H) is a vN alg iff M = M*
and M" = M, where M' = {S € B(H) : TS = ST for all T € M}.

von Neumann algebras ~ non-commutative measure spaces

Magdalena Musat The Connes Embedding Problem: from opera - /17



Definition: A sep vN alg M is finite if it has a faithful tracial state: pos
lin functional 7: M — C so that 7(ST) =7(TS), S, T e M, (/) = 1.

» M is type Il if it is finite and has no finite dimens representations.
» M is a factor if it has trivial center.

Examples: Let [ countable infinite group. Consider its left-regular
representation A\: [ — U(£2(T")), M(g)0x = Jgx, &, x € T, where {0g}ger
ONB in £2(I). Set

SO

L(r) = span(A(N) " < B(A(TN)).

» L(I) finite vN alg with faithf. tracial state 7(T) = (T de,de), T € L(I).
It is a ll;-factor iff T is icc (infinite conjugacy classes).

Definition: A vN alg M is hyperfinite if 3F C F, C R C--- C M s.t.
each F; is finite dimensional and Uj'il Fj is SOT- dense in M.

» (Murray-von Neumann '40): There is unique hyperfinite type Iy factor,
denoted R. (Can realize R as £(Sx), Soo= finitely supported perm on N.)
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Constructing finite von Neumann algebras from tracial C*-algebras:

Let A be a unital C*-alg with a tracial state 7, and let w,: A — B(H) be
the GNS repres s.t. 7(a) = (n-(a)¢, &), for some cyclic unit vector £ € H.

Then 7 extends to a normal faithful tracial state on 7.(A)” C B(H), given
by 7(x) = (x&£, &), x € m-(A)", so w(A)" is a finite von Neumann alg.

e ,(A)" is a factor iff 7 is an extreme point in T(A) (e.g., if 7 is the
unique trace on A); it's a Il;-factor if, moreover, 7-(A)” inf. dim.

e 7-(A)" is the hyperfinite Il;-factor R if A is (any) UHF-algebra with 7 =
the unique trace on A. E.g.,, A= Ii_m)(Mg((C) — Ms(C) — Mg(C) — --+)

Proof: A =J;Z; A, (norm-closure) with A; C Ay C --- C A finite dim
subalgebras, so 7. (A)” = J;—; m(An) (SOT- cIosure)

» More generally (and much deeper!): m-(A)” is hyperfinite whenever A is
nuclear, hence 7-(A)” = R if also 7 € 0. T(A) and 7-(A)" inf. dim.
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Ultrapowers of finite von Neumann algebras

Let (M, 7) a vN alg with n.f.t.s. 7, and let w = free ultrafilter on N. Set
19 = {{xn}n>1 € L2°(M) : lim || xp|]2,r = 0} <0 £°(M).

Set M“ = (>°(M)/I*, and let 7, be t0;1e tracial state on M“ given by
Tw(mu({Xn}n>1)) = |iur}n 7(xn), {xn}n>1 € (M),

where 7, : £*°(M) — M is the quotient mapping.

Proposition: M“ is a von Neumann algebra, and 7, is a n.f.t.s. on M¥.
If M is a ll;-factor, then so is M“.

This non-trivial fact follows from the two results below:

Theorem: Let (M, 7) be a vN alg with n.f.t.s. 7. Then the unit ball of M
and U(M) are both complete wrt || - ||2.-, where ||x]|2» = 7(x*x)'/2.

Conversely, if A is a unital C*-alg with faithful tracial state 7 s.t. the unit
ball in A is complete wrt || - ||2,, then Ais a vN alg and 7 is normal.

Lemma: The unit ball of M“ is complete wrt || - ||2.7,.
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» One can in a similar way, for any sequence {k,},>1 of pos. integers,
define the ultraproduct [[* My, (C) of the seq (M, (C),trk,) by

[T M (©) = T Me /1%, 12 = {{an}nz1 € [ M, : lim |lanfl2 = O],
n=1

n=1

which again is a ll;-factor (if k, — 00).

» The theorem on the previous slide also implies the following useful fact:

Bonus proposition: Let (M, 7)) and (N, 7y) be two vN algs with n.f.t.s.
Tm and Ty, resp. Then any unital trace-preserving *~-hom ¢: M — N is
automatically normal and ¢(M) is a von Neumann algebra.
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The Connes Embedding Problem (CEP)(Annals of Math, 1976):
Does every separable finite vN alg M admit an embedding into

R = 2(R)/{(Tr) : lim || To|2 = 0},
w = free ultrafilter on N, || T||2 = 7=(T*T)'/?, 7% = trace on R.
CEP (Reformulation): Does every separable finite vN alg (M, 7) admit

an “approximate embedding” into a matrix algebra: VN, k > 1Ve > 0,
V unitaries uy,...,ux € M, 3n > 1 3 unitaries vq, ..., vx € M,(C) s.t.

vy, 2 vr\ vy V2 o Ur
‘7’(ui1 u u; ) t1rn(v,-1 v v )

<e€

Vr>1Vi, ..., i €{1,...,k} Yu,...,v, € Z with )~ || < N.
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Theorem: Let (M, 1) be a separable finite vN alg with n.f.t.s. 7, and let
w be a free ultrafilter on N. Then 3 a trace-preserving *~hom M — R¥
(necessarily normal) iff 3k, > 1, 3 maps ¢, M — M, (C), n > 1, s.t.

(i) en(lm) =1k,
) limpsw [[@n(ax + y) — apn(x) — on(y)|l2 =0, for x,y € M, a € C,
) limnse [[on(xy) = en(x)en(y)ll2 = 0, for x,y € M,

(iv) limpsw [[@n(x*) — @n(x)*||2 = 0, for x € M,
) limpo tri, (on(x)) = 7(x), for x € M,

(vi) sup, llen(x)|| < oo, for x € M,

where ||a||2 = trkn(a*a)l/Q, for a € My, (C).
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The Connes Embedding Problem:

R We Living in the Matrix?

Roy Araiza and Rolando de Santiago

Notices AMS, Volume 66, No. 8, 2016.

Magdalena Musat
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Two approximation properties for countable discrete groups I

[ is sofic (after Gromov) if it “admits an approximate embedding into the
symmetric groups S,,", i.e., if VF €l Ve >0dn>14dp: [ — S, s.t.

o dr(p(gh),p(g)p(h)) <e forall g, heF,
o dr(v(g),o(h)>1—¢,forallg#heF.
dr is the Hamming metric:

dr(e, B) = [{j € F : a(y) # BU)H/IFl, o, B € Sym(F).

I" is Connes-embeddable if it “admits an approximate embedding into the
unitary groups U(n) of M,(C)", i.e., if VFElYe >03dn>1
Jp: T — U(n) s.t.

o |lo(gh) — p(g)p(h)ll2 <e, forall g,heF,
o [lo(g) —(h)ll2>v2—c forallg#heF.

» Not known if all groups are Connes-embeddable (or sofic).
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Linear & fin gen RF LEF

ﬂ

Amenable =——=> Sofic == Connes-embeddable

RF= Residually finite (= separating family of homs. into finite groups)
LEF = Locally Embeddable into Finite groups.

Theorem (Radulescu): T is Connes-embeddable iff £(I') embeds into R¥
» Affirmative answer to CEP implies that all groups are Connes-embedd

(but not necessarily sofic), while a negative answer does not imply the
existence of a non-Connes-embeddable group, nor of a non-sofic one.
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Theorem (Kirchberg '93): Let (M, 7) separable finite von Neumann alg
with normal faithful tracial state 7. Then M admits a trace-preserving

embedding into R iff V & > 0 and every set uy, ..., u, of unitaries in M,
3 k > 1 and unitaries vy, ..., v, in M(C) :
’T(uj’-‘u;) —trk(vj*v,-)| <eg, 1<i,j<n.

(Dykema-Juschenko): Cons. sets of n X n matrices of correlations, n > 2:

Omatr(n) = U {[trk(ufu,-)] :uq,..., U, unitaries in Mk((C)},

k>1

G(n) = {[T(ufu;)] :u1,..., U, unitaries in arbitrary finit
vN alg (M,T)?.

Theorem (Kirchberg ‘93): CEP pos iff G(n) = cl(Gmatr(n)), Vn > 3.

» It's non-trivial that Gmatr(n) is not closed, when n > 3 (Rgrdam-M '19).
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Proof of <= in Kirchberg's thm: uses Jordan homs between C*-algebras.

Definition: Let A, B be C*-algs. A linear map ¢: A — B is a Jordan
*-homomorphism if it is self-adjoint and ¢(ao b) = ¢(a) o p(b), a,b € A,
where ao b:= 1 (ab + ba).

Remarks/Definitions: If a, b € A are self-adj, then so is ao b. Restricting
a Jordan *-hom ¢: A — B to As, gives an R-linear map ¢’: Asa — Bsa,
which preserves the Jordan product. We call such map a Jordan hom.

Conversely, any Jordan hom ¢': A, — B, can uniquely be extended to a
C-linear map ¢: A — B, and (can check) ¢ is a Jordan *-hom.

An anti-*-homomorphism ¢: A — B is a linear self-adj map satisfying
w(ab) = p(b)p(a), for all a,b € A (i.e., an anti-*-hom A — B is a *-hom
A — B°P).

Any *-hom and any anti-*-hom is a Jordan *-hom. Stgrmer proved that
any Jordan *-hom between unital C*-algs is a sum of a *~hom and an
anti-*-hom.
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Theorem (Stgrmer): Let A, B be unital C*-algs with B C B(H), and

¢: A — B a unital Jordan *-hom. Then 3p € B” N ¢(A)’ projection s.t.
ac A ¢(a)p € B(H) is a*-hom and a€ A ¢(a)(ly — p) € B(H) is
an anti-*-hom.

Definition: Let A, B unital C*-algs, ¢: A — B unital pos contraction. Set
J-Mult(p) = {a € As : p(a%) = p(a)?}.

Proposition: Let A, B unital C*-algs, ¢: A — B unital pos contraction. If
a € J-Mult(yp), then ¢p(ao b) = ¢(a) o p(b), for all b € Asa. Furthermore,

J-Mult(¢) is a Jordan subalgebra of A, (= closed R-linear subset of As,,

closed under the Jordan product o).

Cor: A self-adj lin ¢: A — B is Jordan *-hom iff p(a?) = p(a)?,Va € Asa.

Lemma: Let A, B unital C*-algs, ¢: A — B unital pos contr. Assume that
the linear span of projections is dense in A (e.g., if Ais a vN alg). TFAE:
(1) ¢ is a Jordan *-hom.

(2) ¢ maps unitaries in A to unitaries in B.

(3) ¢ maps projections in A to projections in B.
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Proof of Kirchberg's theorem:

<: May assume that the unitaries vy, ..., v, belong to R (as there exist
unital trace-preserv embeddings M, (C) — R, k > 1).

Let u3 := 1, up, u3,... || - ||2-dense sequence of unitaries in M (by sep).

By hypothesis, V n > 1, 3 unitaries vl("), v e R with vl(") =1 and

|7 (ufui) — TR((VJ-(H))*VI-("))‘ <1/n, 1<i,j<n.
Set vj(") =1, when j > n, and v; = Ww({vj(”)},,zl) € RY, else. Then
vi = 1,v», v3,... are unitaries in RY satisfying
TR (VI Vi) = lim TR((VJ_(n))*VI_(")) = 7(ufu;), i,j>1. (%)

Since u; = 1 = vy, deduce 7(u;) = Tre(v;), i > 1, by taking j = 1 in (x).

View M, R as Euclidean spaces wrt inner product given by 7, resp, Trw«.

Then (%) becomes (v;, vj)re = (Uj, Uj)r, i,j > 1. For each fin supported

seq (aj)j>1in C, we get || X272, ajujlla = || 35721 ayvjll2. Thus 3 unique

| - ||2-isometric map @o: span{us, uz, ...} — span{vy, vo, ...}, satisfying
wo(uj) = v, Jj=1
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Since Vr > 0, the closed balls (M),, (R“), of M, R“ are || - ||2-complete,
o extends to an || - ||2-isometric linear map ¢: M — R¥.

Note p(1y) = p(u1) = vi = lge. As U(M), U(R¥) are closed in || - |2,
it follows that ¢ maps unitaries in M to unitaries in R¥. An application of
the Russo-Dye theorem (the closed convex hull of unitaries in any unital
C*-alg is dense in its closed unit ball) gives

lell = sup{llp(u)]l - v e UM)} =1 = [lp(Im)]-

This shows ¢ unital positive contraction, hence Jordan *-hom, by Lemma.
Moreover, g (p(x)) = Tm(x), whenever x € {u1, up, ... }. By continuity
of traces, this holds V x € U(M), hence ¥V x € M, so ¢ is trace-preserving.

By Stgrmer’s theorem, 3 projection p € R N (M) s.t. if p1(x) = p(x)p
and ¢a(x) = ¢(x)(1 — p), for x € M, then p1: M — pR¥p is a unital
*-hom, while 2: M — (1 — p)R“(1 — p) is a unital anti-*-hom.

It is (well)-known that R is isomorphic to its opposite vN alg R°P (holds
for any group vN alg). An isomorphism R — R°P induces naturally an
isomorph p: R — (R*). Then the map x € M p1(x) + (p o p2)(x)
defines a unital trace-preserving *~-hom M — R“, as desired. O
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To prove the reverse implication <, it suffices to show:
Vug,...,up €EURY) Ve >0, Tk >13vy,..., vy € U(MK(C)) s.t.

|T(ufui) — tre(vivi)| <e, V1I<i,j<n.

Step 1: Unitaries lift (to unitaries) from any quotient of a finite vN alg, so
dwi, ..., wp, € U(LP(R)): m(w)) = uj, m: £°(R) — R¥ quotient map.
Step 2: Write w; = {wj(m)}m>1 with wj(m) € U(R). Note that

r(uju) = lim 7(w(m) wi(m).
Hence Im > 1 s.t. [7(ufuj) — Tr(wj(m)*wi(m))| < /2, for 1 <i,j <n.

Step 3: R hyperfinite, so JA; C A, C--- C R st. A, = M, (C) and
U,>1 Ar is SOT-dense in R.

Step 4: By Kaplanski's density thm, 3r > 1 and vq,...,v, € U(A,) s.t.
[wj(m) = vjll2 < e/4, so [rr(wj(m)*wi(m)) — Tr(v}vi)| < &/2.

Step 5: Set k = k, and identify (A,, 7r) with (M, (C), try). O

Magdalena Musat The Connes Embedding Problem: from opera - /17



