The Connes Embedding Problem: from operator algebras to groups and quantum information theory

Magdalena Musat University of Copenhagen

Summer School in Operator Algebras Hosted by the Fields Institute and the University of Ottawa June 14, 2021

The theory of von Neumann algebras, introduced by J. von Neumann in 1929-1930 as *rings of operators*, was developed with F. Murray in a series of papers 1936-1943 as mathematical framework for quantum mechanics, where Heisenberg's uncertainty relation is expressed as noncommutativity of certain operators.

Definition: A von Neumann algebra M is subalgebra of $\mathcal{B}(H)$, the set of all bounded linear operators on a Hilbert space H, containing the unit, closed under taking adjoints: $T \in M \implies T^* \in M$, and closed in the strong operator topology (SOT): $T_n \to T$ iff $T_n \psi \to T\psi$, $\psi \in H$.

von Neumann's bicommutant theorem: $M \subseteq \mathcal{B}(H)$ is a vN alg iff $M = M^*$ and M'' = M, where $M' = \{S \in \mathcal{B}(H) : TS = ST$ for all $T \in M\}$.

von Neumann algebras \sim non-commutative measure spaces

Definition: A sep vN alg *M* is finite if it has a faithful *tracial state*: pos lin functional $\tau: M \to \mathbb{C}$ so that $\tau(ST) = \tau(TS)$, $S, T \in M, \tau(I) = 1$.

 \blacktriangleright *M* is type II₁ if it is finite and has no finite dimens representations.

▶ *M* is a factor if it has trivial center.

Examples: Let Γ countable infinite group. Consider its left-regular representation $\lambda \colon \Gamma \to \mathcal{U}(\ell^2(\Gamma)), \lambda(g)\delta_x = \delta_{gx}, g, x \in \Gamma$, where $\{\delta_g\}_{g \in \Gamma}$ ONB in $\ell^2(\Gamma)$. Set

$$\mathcal{L}(\Gamma) = \operatorname{span}(\lambda(\Gamma))^{SOT} \subseteq \mathcal{B}(\ell^2(\Gamma)).$$

▶ $\mathcal{L}(\Gamma)$ finite vN alg with faithf. tracial state $\tau(T) = \langle T\delta_e, \delta_e \rangle$, $T \in \mathcal{L}(\Gamma)$. It is a II₁-factor iff Γ is icc (infinite conjugacy classes).

Definition: A vN alg *M* is hyperfinite if $\exists F_1 \subseteq F_2 \subseteq F_3 \subseteq \cdots \subseteq M$ s.t. each F_j is finite dimensional and $\bigcup_{i=1}^{\infty} F_j$ is SOT- dense in *M*.

▶ (Murray-von Neumann '40): There is **unique** hyperfinite type II₁ factor, denoted \mathcal{R} . (Can realize \mathcal{R} as $\mathcal{L}(S_{\infty})$, S_{∞} = finitely supported perm on \mathbb{N} .)

Constructing finite von Neumann algebras from tracial C*-algebras:

Let A be a unital C*-alg with a tracial state τ , and let $\pi_{\tau} \colon A \to B(H)$ be the GNS repres s.t. $\tau(a) = \langle \pi_{\tau}(a)\xi, \xi \rangle$, for some cyclic unit vector $\xi \in H$.

Then τ extends to a *normal* faithful tracial state on $\pi_{\tau}(A)'' \subseteq B(H)$, given by $\overline{\tau}(x) = \langle x\xi, \xi \rangle$, $x \in \pi_{\tau}(A)''$, so $\pi_{\tau}(A)''$ is a finite von Neumann alg.

• $\pi_{\tau}(A)''$ is a factor iff τ is an extreme point in T(A) (e.g., if τ is the unique trace on A); it's a II₁-factor if, moreover, $\pi_{\tau}(A)''$ inf. dim.

• $\pi_{\tau}(A)''$ is the hyperfinite II₁-factor \mathcal{R} if A is (any) UHF-algebra with $\tau =$ the unique trace on A. E.g., $A = \lim_{t \to \infty} (M_2(\mathbb{C}) \to M_4(\mathbb{C}) \to M_8(\mathbb{C}) \to \cdots)$

Proof: $A = \bigcup_{n=1}^{\infty} A_n$ (norm-closure) with $A_1 \subseteq A_2 \subseteq \cdots \subseteq A$ finite dim subalgebras, so $\pi_{\tau}(A)'' = \overline{\bigcup_{n=1}^{\infty} \pi(A_n)}$ (SOT-closure).

▶ More generally (and much deeper!): $\pi_{\tau}(A)''$ is hyperfinite whenever A is nuclear, hence $\pi_{\tau}(A)'' = \mathcal{R}$ if also $\tau \in \partial_e T(A)$ and $\pi_{\tau}(A)''$ inf. dim.

Ultrapowers of finite von Neumann algebras

Let (M, τ) a vN alg with n.f.t.s. τ , and let ω = free ultrafilter on \mathbb{N} . Set $I^{\omega} = \{\{x_n\}_{n\geq 1} \in \ell^{\infty}(M) : \lim_{\omega} ||x_n||_{2,\tau} = 0\} \triangleleft \ell^{\infty}(M).$ Set $M^{\omega} = \ell^{\infty}(M)/I^{\omega}$, and let τ_{ω} be the tracial state on M^{ω} given by $\tau_{\omega}(\pi_{\omega}(\{x_n\}_{n\geq 1})) = \lim_{\omega} \tau(x_n), \quad \{x_n\}_{n\geq 1} \in \ell^{\infty}(M),$

where $\pi_{\omega} \colon \ell^{\infty}(M) \to M^{\omega}$ is the quotient mapping.

Proposition: M^{ω} is a von Neumann algebra, and τ_{ω} is a n.f.t.s. on M^{ω} . If M is a II₁-factor, then so is M^{ω} .

This non-trivial fact follows from the two results below:

Theorem: Let (M, τ) be a vN alg with n.f.t.s. τ . Then the unit ball of M and $\mathcal{U}(M)$ are both complete wrt $\|\cdot\|_{2,\tau}$, where $\|x\|_{2,\tau} = \tau (x^*x)^{1/2}$. Conversely, if A is a unital C^* -alg with faithful tracial state τ s.t. the unit ball in A is complete wrt $\|\cdot\|_{2,\tau}$, then A is a vN alg and τ is normal.

Lemma: The unit ball of M^{ω} is complete wrt $\| \cdot \|_{2,\tau_{\omega}}$.

▶ One can in a similar way, for any sequence $\{k_n\}_{n\geq 1}$ of pos. integers, define the ultraproduct $\prod^{\omega} M_{k_n}(\mathbb{C})$ of the seq $(M_{k_n}(\mathbb{C}), \operatorname{tr}_{k_n})$ by

$$\prod_{n=1}^{\omega} M_{k_n}(\mathbb{C}) := \prod_{n=1}^{\infty} M_{k_n}/I^{\omega}, \quad I^{\omega} = \Big\{ \{a_n\}_{n\geq 1} \in \prod_{n=1}^{\infty} M_{k_n} : \lim_{\omega} \|a_n\|_2 = 0 \Big\},$$

which again is a II₁-factor (if $k_n \to \infty$).

▶ The theorem on the previous slide also implies the following useful fact: **Bonus proposition:** Let (M, τ_M) and (N, τ_N) be two vN algs with n.f.t.s. τ_M and τ_N , resp. Then any unital trace-preserving *-hom $\varphi: M \to N$ is automatically normal and $\varphi(M)$ is a von Neumann algebra.

The Connes Embedding Problem (CEP)(Annals of Math, 1976): Does every separable finite vN alg M admit an embedding into

 $\mathcal{R}^{\omega} = \ell^{\infty}(\mathcal{R})/\{(T_n) : \lim ||T_n||_2 = 0\},\$

 $\omega =$ free ultrafilter on \mathbb{N} , $||T||_2 = \tau_{\mathcal{R}} (T^*T)^{1/2}$, $\tau_{\mathcal{R}} =$ trace on \mathcal{R} .

CEP (Reformulation): Does every separable finite vN alg (M, τ) admit an "approximate embedding" into a matrix algebra: $\forall N, k \ge 1 \forall \varepsilon > 0$, \forall unitaries $u_1, \ldots, u_k \in M, \exists n \ge 1 \exists$ unitaries $v_1, \ldots, v_k \in M_n(\mathbb{C})$ s.t.

$$\left|\tau\left(u_{i_{1}}^{\nu_{1}}u_{i_{2}}^{\nu_{2}}\cdots u_{i_{r}}^{\nu_{r}}\right)-\mathrm{tr}_{\mathrm{n}}\left(v_{i_{1}}^{\nu_{1}}v_{i_{2}}^{\nu_{2}}\cdots v_{i_{r}}^{\nu_{r}}\right)\right|<\varepsilon$$

 $\forall r \geq 1 \; \forall i_1, \ldots, i_r \in \{1, \ldots, k\} \; \forall \nu_1, \ldots, \nu_r \in \mathbb{Z} \; \text{with} \; \sum |\nu_j| \leq N.$

Theorem: Let (M, τ) be a separable finite vN alg with n.f.t.s. τ , and let ω be a free ultrafilter on \mathbb{N} . Then \exists a trace-preserving *-hom $M \to \mathcal{R}^{\omega}$ (necessarily normal) iff $\exists k_n \geq 1$, \exists maps $\varphi_n \colon M \to M_{k_n}(\mathbb{C}), n \geq 1$, s.t.

(i)
$$\varphi_n(1_M) = 1_{k_n}$$
,
(ii) $\lim_{n \to \omega} \|\varphi_n(\alpha x + y) - \alpha \varphi_n(x) - \varphi_n(y)\|_2 = 0$, for $x, y \in M$, $\alpha \in \mathbb{C}$,
(iii) $\lim_{n \to \omega} \|\varphi_n(xy) - \varphi_n(x)\varphi_n(y)\|_2 = 0$, for $x, y \in M$,
(iv) $\lim_{n \to \omega} \|\varphi_n(x^*) - \varphi_n(x)^*\|_2 = 0$, for $x \in M$,
(v) $\lim_{n \to \omega} \operatorname{tr}_{k_n}(\varphi_n(x)) = \tau(x)$, for $x \in M$,
(vi) $\sup_n \|\varphi_n(x)\| < \infty$, for $x \in M$,
where $\|a\|_2 = \operatorname{tr}_{k_n}(a^*a)^{1/2}$, for $a \in M_{k_n}(\mathbb{C})$.

The Connes Embedding Problem:

\mathcal{R} We Living in the Matrix?

Roy Araiza and Rolando de Santiago

Notices AMS, Volume 66, No. 8, 2016.

Two approximation properties for countable discrete groups Γ :

 Γ is sofic (after Gromov) if it "admits an approximate embedding into the symmetric groups S_n ", i.e., if $\forall F \Subset \Gamma \ \forall \varepsilon > 0 \ \exists n \ge 1 \ \exists \varphi \colon \Gamma \to S_n$ s.t.

- $d_F(\varphi(gh), \varphi(g)\varphi(h)) \leq \varepsilon$, for all $g, h \in F$,
- $d_F(\varphi(g),\varphi(h)) \ge 1 \varepsilon$, for all $g \ne h \in F$.

 d_F is the Hamming metric:

 $d_{\mathcal{F}}(\alpha,\beta) = |\{j \in \mathcal{F} : \alpha(j) \neq \beta(j)\}| / |\mathcal{F}|, \quad \alpha,\beta \in \mathsf{Sym}(\mathcal{F}).$

 Γ is Connes-embeddable if it "admits an approximate embedding into the unitary groups U(n) of $M_n(\mathbb{C})$ ", i.e., if $\forall F \Subset \Gamma \ \forall \varepsilon > 0 \ \exists n \ge 1$ $\exists \varphi \colon \Gamma \to U(n) \text{ s.t.}$

- $\|\varphi(gh) \varphi(g)\varphi(h)\|_2 \le \varepsilon$, for all $g, h \in F$,
- $\|\varphi(g) \varphi(h)\|_2 \ge \sqrt{2} \varepsilon$, for all $g \ne h \in F$.

▶ Not known if all groups are Connes-embeddable (or sofic).

RF= Residually finite (= separating family of homs. into finite groups) LEF = Locally Embeddable into Finite groups.

Theorem (Radulescu): Γ is Connes-embeddable **iff** $\mathcal{L}(\Gamma)$ embeds into \mathcal{R}^{ω} .

► Affirmative answer to CEP implies that all groups are Connes-embedd (but not necessarily sofic), while a **negative** answer does **not** imply the existence of a non-Connes-embeddable group, nor of a non-sofic one.

Theorem (Kirchberg '93): Let (M, τ) separable finite von Neumann alg with normal faithful tracial state τ . Then M admits a trace-preserving embedding into \mathcal{R}^{ω} iff $\forall \varepsilon > 0$ and every set u_1, \ldots, u_n of unitaries in M, $\exists k \ge 1$ and unitaries v_1, \ldots, v_n in $M_k(\mathbb{C})$:

$$\left| \tau(u_j^* u_i) - \operatorname{tr}_k(v_j^* v_i) \right| < \varepsilon, \qquad 1 \le i, j \le n.$$

(Dykema-Juschenko): Cons. sets of $n \times n$ matrices of correlations, $n \ge 2$:

$$\mathcal{G}_{\mathrm{matr}}(n) = \bigcup_{k \ge 1} \left\{ \left[\mathrm{tr}_{k}(u_{j}^{*}u_{i}) \right] : u_{1}, \ldots, u_{n} \text{ unitaries in } M_{k}(\mathbb{C}) \right\},$$

$$\bigcap_{\substack{n \ge 1 \\ n \ge 1}} \mathcal{G}(n) = \left\{ \left[\tau(u_{j}^{*}u_{i}) \right] : u_{1}, \ldots, u_{n} \text{ unitaries in arbitrary finite}_{vN \text{ alg } (M, \tau)} \right\}.$$

Theorem (Kirchberg '93): CEP pos iff $\mathcal{G}(n) = cl(\mathcal{G}_{matr}(n)), \forall n \geq 3$.

▶ It's non-trivial that $\mathcal{G}_{matr}(n)$ is not closed, when $n \ge 3$ (Rørdam-M '19).

Proof of \leftarrow in Kirchberg's thm: uses Jordan homs between C^* -algebras.

Definition: Let A, B be C*-algs. A linear map $\varphi \colon A \to B$ is a Jordan *-homomorphism if it is self-adjoint and $\varphi(a \circ b) = \varphi(a) \circ \varphi(b)$, $a, b \in A$, where $a \circ b := \frac{1}{2}(ab + ba)$.

Remarks/Definitions: If $a, b \in A$ are self-adj, then so is $a \circ b$. Restricting a Jordan *-hom $\varphi: A \to B$ to A_{sa} gives an \mathbb{R} -linear map $\varphi': A_{sa} \to B_{sa}$, which preserves the Jordan product. We call such map a Jordan hom.

Conversely, any Jordan hom $\varphi' \colon A_{sa} \to B_{sa}$ can uniquely be extended to a \mathbb{C} -linear map $\varphi \colon A \to B$, and (can check) φ is a Jordan *-hom.

An anti-*-homomorphism $\varphi : A \to B$ is a linear self-adj map satisfying $\varphi(ab) = \varphi(b)\varphi(a)$, for all $a, b \in A$ (i.e., an *anti-*-hom* $A \to B$ is a *-hom $A \to B^{\text{op}}$).

Any *-hom and any anti-*-hom is a Jordan *-hom. Størmer proved that any Jordan *-hom between unital C^* -algs is a sum of a *-hom and an anti-*-hom.

Theorem (Størmer): Let A, B be unital C*-algs with $B \subseteq \mathcal{B}(H)$, and $\varphi: A \to B$ a unital Jordan *-hom. Then $\exists p \in B'' \cap \varphi(A)'$ projection s.t. $a \in A \mapsto \varphi(a)p \in \mathcal{B}(H)$ is a *-hom and $a \in A \mapsto \varphi(a)(I_H - p) \in \mathcal{B}(H)$ is an anti-*-hom.

Definition: Let A, B unital C*-algs, $\varphi : A \to B$ unital pos contraction. Set $J-Mult(\varphi) = \{a \in A_{sa} : \varphi(a^2) = \varphi(a)^2\}.$

Proposition: Let A, B unital C*-algs, $\varphi : A \to B$ unital pos contraction. If $a \in J$ -Mult(φ), then $\varphi(a \circ b) = \varphi(a) \circ \varphi(b)$, for all $b \in A_{sa}$. Furthermore, J-Mult(φ) is a Jordan subalgebra of A_{sa} (= closed \mathbb{R} -linear subset of A_{sa} , closed under the Jordan product \circ).

Cor: A self-adj lin $\varphi \colon A \to B$ is Jordan *-hom **iff** $\varphi(a^2) = \varphi(a)^2, \forall a \in A_{sa}$.

Lemma: Let A, B unital C*-algs, $\varphi : A \to B$ unital pos contr. Assume that the linear span of projections is dense in A (e.g., if A is a vN alg). TFAE: (1) φ is a Jordan *-hom.

- (2) φ maps unitaries in A to unitaries in B.
- (3) φ maps projections in A to projections in B.

Proof of Kirchberg's theorem:

 \Leftarrow : May assume that the unitaries v_1, \ldots, v_n belong to \mathcal{R} (as there exist unital trace-preserv embeddings $M_k(\mathbb{C}) \to \mathcal{R}$, $k \ge 1$).

Let $u_1 := 1, u_2, u_3, \dots \| \cdot \|_2$ -dense sequence of unitaries in M (by sep). By hypothesis, $\forall n \ge 1$, \exists unitaries $v_1^{(n)}, \dots, v_n^{(n)} \in \mathcal{R}$ with $v_1^{(n)} = 1$ and

$$\left| au(u_{j}^{*}u_{i}) - au_{\mathcal{R}}((v_{j}^{(n)})^{*}v_{i}^{(n)})\right| < 1/n, \qquad 1 \leq i,j \leq n.$$

Set $v_j^{(n)} = 1$, when j > n, and $v_j = \pi_{\omega}(\{v_j^{(n)}\}_{n \ge 1}) \in \mathcal{R}^{\omega}$, else. Then $v_1 = 1, v_2, v_3, \ldots$ are unitaries in \mathcal{R}^{ω} satisfying

$$\tau_{\mathcal{R}^{\omega}}(\mathbf{v}_{j}^{*}\mathbf{v}_{i}) = \lim_{\omega} \tau_{\mathcal{R}}\big((\mathbf{v}_{j}^{(n)})^{*}\mathbf{v}_{i}^{(n)}\big) = \tau(u_{j}^{*}u_{i}), \qquad i, j \ge 1.$$
(*)

Since $u_1 = 1 = v_1$, deduce $\tau(u_i) = \tau_{\mathcal{R}^{\omega}}(v_i)$, $i \ge 1$, by taking j = 1 in (*).

View M, \mathcal{R}^{ω} as Euclidean spaces wrt inner product given by τ , resp, $\tau_{\mathcal{R}^{\omega}}$. Then (*) becomes $\langle v_i, v_j \rangle_{\mathcal{R}^{\omega}} = \langle u_i, u_j \rangle_{\tau_{\mathcal{R}}}$, $i, j \ge 1$. For each fin supported seq $(\alpha_j)_{j\ge 1}$ in \mathbb{C} , we get $\|\sum_{j=1}^{\infty} \alpha_j u_j\|_2 = \|\sum_{j=1}^{\infty} \alpha_j v_j\|_2$. Thus \exists unique $\|\cdot\|_2$ -isometric map φ_0 : span $\{u_1, u_2, \ldots\} \to \operatorname{span}\{v_1, v_2, \ldots\}$, satisfying

$$\varphi_0(u_j) = v_j, \quad j \geq 1.$$

Since $\forall r > 0$, the closed balls $(M)_r$, $(\mathcal{R}^{\omega})_r$ of M, \mathcal{R}^{ω} are $\| \cdot \|_2$ -complete, φ_0 extends to an $\| \cdot \|_2$ -isometric linear map $\varphi \colon M \to \mathcal{R}^{\omega}$.

Note $\varphi(\mathbf{1}_M) = \varphi(u_1) = v_1 = \mathbf{1}_{\mathcal{R}^{\omega}}$. As $\mathcal{U}(M)$, $\mathcal{U}(\mathcal{R}^{\omega})$ are closed in $\|\cdot\|_2$, it follows that φ maps unitaries in M to unitaries in \mathcal{R}^{ω} . An application of the Russo-Dye theorem (the closed convex hull of unitaries in any unital C^* -alg is dense in its closed unit ball) gives

 $\|\varphi\| = \sup\{\|\varphi(u)\| : u \in \mathcal{U}(M)\} = 1 = \|\varphi(1_M)\|.$

This shows φ unital positive contraction, hence Jordan *-hom, by Lemma. Moreover, $\tau_{\mathcal{R}^{\omega}}(\varphi(x)) = \tau_M(x)$, whenever $x \in \{u_1, u_2, ...\}$. By continuity of traces, this holds $\forall x \in \mathcal{U}(M)$, hence $\forall x \in M$, so φ is trace-preserving.

By Størmer's theorem, \exists projection $p \in \mathcal{R}^{\omega} \cap \varphi(M)'$ s.t. if $\varphi_1(x) = \varphi(x)p$ and $\varphi_2(x) = \varphi(x)(1-p)$, for $x \in M$, then $\varphi_1 \colon M \to p\mathcal{R}^{\omega}p$ is a unital *-hom, while $\varphi_2 \colon M \to (1-p)\mathcal{R}^{\omega}(1-p)$ is a unital anti-*-hom.

It is (well)-known that \mathcal{R} is isomorphic to its opposite vN alg $\mathcal{R}^{\mathrm{op}}$ (holds for any group vN alg). An isomorphism $\mathcal{R} \to \mathcal{R}^{\mathrm{op}}$ induces naturally an isomorph $\rho: \mathcal{R}^{\omega} \to (\mathcal{R}^{\omega})^{\mathrm{op}}$. Then the map $x \in \mathcal{M} \mapsto \varphi_1(x) + (\rho \circ \varphi_2)(x)$ defines a unital trace-preserving *-hom $\mathcal{M} \to \mathcal{R}^{\omega}$, as desired. To prove the reverse implication \leftarrow , it suffices to show:

$$orall u_1, \dots, u_n \in \mathcal{U}(\mathcal{R}^{\omega}) \ \forall \varepsilon > 0, \ \exists k \ge 1 \ \exists v_1, \dots, v_n \in \mathcal{U}(M_k(\mathbb{C})) \ \text{s.t.}$$

 $|\tau(u_j^*u_i) - \operatorname{tr}_k(v_j^*v_i)| < \varepsilon, \quad \forall 1 \le i, j \le n.$

Step 1: Unitaries lift (to unitaries) from any quotient of a finite vN alg, so $\exists w_1, \ldots, w_n \in \mathcal{U}(\ell^{\infty}(\mathcal{R})): \pi(w_j) = u_j, \pi : \ell^{\infty}(\mathcal{R}) \to \mathcal{R}^{\omega}$ quotient map.

Step 2: Write $w_j = \{w_j(m)\}_{m \ge 1}$ with $w_j(m) \in \mathcal{U}(\mathcal{R})$. Note that

$$\tau(u_j^*u_i) = \lim_{m \to \omega} \tau_{\mathcal{R}}(w_j(m)^*w_i(m)).$$

Hence $\exists m \ge 1 \text{ s.t. } |\tau(u_j^*u_i) - \tau_{\mathcal{R}}(w_j(m)^*w_i(m))| < \varepsilon/2$, for $1 \le i, j \le n$.

Step 3: \mathcal{R} hyperfinite, so $\exists A_1 \subseteq A_2 \subseteq \cdots \subseteq \mathcal{R}$ s.t. $A_r \cong M_{k_r}(\mathbb{C})$ and $\bigcup_{r \geq 1} A_r$ is SOT-dense in \mathcal{R} .

Step 4: By Kaplanski's density thm, $\exists r \geq 1$ and $v_1, \ldots, v_n \in \mathcal{U}(A_r)$ s.t. $\|w_j(m) - v_j\|_2 < \varepsilon/4$, so $|\tau_{\mathcal{R}}(w_j(m)^*w_i(m)) - \tau_{\mathcal{R}}(v_j^*v_i)| \le \varepsilon/2$.

Step 5: Set $k = k_r$ and identify (A_r, τ_R) with $(M_k(\mathbb{C}), \operatorname{tr}_k)$.