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Limit Operator Theory

BAND OPERATORS

Think of Zd as a metric space, with “absolute value” metric:
d((xi), (yi))=∑ |xi −yi|.
Consider operators T ∈B(`2Zd) as matrices T = (Txy)x,y∈Zd .
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Such a T is called a band operator,
if there exists R≥ 0,
such that Txy = 0 whenever d(x,y)>R.
[Also called finite propagation operators.]
Band–dominated
operators = norm–limits of band operators.
Can run this in `2(Zd,E), where E is a Banach
space [then the matrix entries are ops in B(E)];
Also `p(· · · ), p ∈ [1,∞].
Note: These notions make sense over any countable metric space X with
bounded geometry in place of Zd!
[bdd.geom. = number of points in balls of fixed radius is unif. bounded]
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Limit Operator Theory

LIMIT OPERATORS

[RABINOVICH–ROCH–SILBERMANN, ’80S – NOW]
Let Ug ∈B(`2Zd) be the unitary associated to g ∈Zd, the “shift by g”:
defined as Ugξ(h)= ξ(−g+h) for ξ ∈ `2Zd, h ∈Zd; or equivalently
Ugδh = δg+h, for g,h ∈Zd; where {δg | g ∈Zd} is the usual basis of `2Zd

consisting of “point mass” functions.

Fix an operator T ∈B(`2Zd). Given a sequence (gn)⊂Zd converging to
∞, consider the sequence of shifts of T: (Ug−1

n
TUgn)n∈N.

If it has a *-strongly convergent subsequence, we call the limit
T(gn) ∈B(`2Zd) a limit operator of T associated to (gn).
The set of all limit operators of T is called the operator spectrum, σop(T).

The collection AR,N ⊂B(`2Zd) of operators with band-width at most R
and norm at most N is *-strongly compact. Thus any band–dominated
operator has a limit operator associated with any sequence (gn).

Note: This construction works on any countable group Γ in place of Zd.
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Limit Operator Theory

LIMIT OPERATORS: AN EXAMPLE
SLOWLY OSCILLATING COEFFICIENTS

A function f ∈ `∞(Zd) acts on `2(Zd) by multiplication (diagonal
operator). σop(f ) can be very complicated.

An f ∈ `∞(Zd) is slowly oscillating, if for all r,ε> 0 there exists a finite
F ⊂Zd, such that

sup
x∈Zd\F

(
sup

d(x,y)≤r
|f (x)− f (y)|

)
≤ r.

Then all limit operators of f are scalars, and

σop(f )= ⋂
finite F⊂Zd

f (Zd \F)⊆C.

Elaborating, the band operators of the form T =∑
fgUg with slowly

oscillating fg’s have their limit operators in the group ring C[Zd]; the
band–dominated ones in C∗(Zd)∼=C(Td).
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Limit Operator Theory

FREDHOLMNESS CRITERION

THEOREM (RABINOVICH–ROCH–SILBERMANN, ’90S)

A band-dominated operator on `p(Zd) is Fredholm iff all its limit
operators are invertible, with uniform bound on the norm of the inverses.

Remark: Can do also on `p(Zd,E) for a Banach space E, with
appropriately adjusted notion of “Fredholm”.

QUESTION (“CORE ISSUE FOR LIMIT OPERATORS”, ’90S)
Can we drop the “uniform bound on the norm on the inverses”
requirement? I.e., is the operator spectrum of a band–dominated operator
automatically uniformly invertible as soon as it is pointwise invertible?

History: answered positively for various classes of band–dominated
operators: e.g. “`1-type” (Wiener); with slowly oscillating coefficients.

THEOREM (LINDNER–SEIDEL, ’14)

Yes, for any band–dominated operator on `p(Zd,E).
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Limit Operator Theory

MAIN THEOREM

THEOREM (S–WILLETT)
Let X be a countable metric space with bounded geometry, p ∈ (1,∞).
Assume that X has Yu’s property A. Let T be a band-dominated operator
on `p(X). Then the following are equivalent:

• T is Fredholm.
• All limit operators of T are invertible, and the norms of their

inverses are uniformly bounded.
• All limit operators of T are invertible.

• What’s Yu’s property A and why do we need it?
• What are limit operators in the general setting?

Remark: Can do also on `p(X,E) for a Banach space E, with the “usual”
modifications to Fredholmness.
Remark: Fails if X does not have property A.
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Coarse Geometry and Roe C*-algebras

METRIC SPACES AND C*-ALGEBRAS

Let X be a metric space. For the rest of the talk, assume that X is
countable, discrete, and has bounded geometry, i.e. there’s a uniform
bound on the cardinality of balls of fixed radius.

Examples: Vertex sets of graphs (e.g. countable groups);
“discretizations” of (non-compact) Riemannian manifolds.

Example: If Γ is a group generated by a finite set S⊂Γ, then

dS(g,h)=min{n ∈N | g−1h= s±1
1 · · ·s±1

n ,s1, . . . ,sn ∈S}

is a (left-invariant) metric on Γ [usually called a “word metric”].

Example: Zd is generated by S= {(1,0, . . . ,0), . . . , (0, . . . ,0,1)}. Then dS is
the “absolute value” metric we’ve seen before.

Defn: The C*-algebra A of band-dominated operators on `2(X) is called
the uniform Roe algebra of X.

Defn: A fn f : X →Y is a coarse equivalence, if ∃ρ−,ρ+ :R+ →R+, ρ− ↗∞,
such that ∀x,y ∈X: ρ−(dX (x,y))≤ dY (f (x), f (y))≤ ρ+(dX (x,y)).
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Coarse Geometry and Roe C*-algebras

LIMIT OPS FOR GROUPS REVISITED (BY J. ROE ’04) I.
Work on a countable group Γ (a metric space). Denote by Ug ∈B(`2Γ) the
unitary given on the basis {δg | g ∈Γ}⊂ `2Γ as Ugδh = δgh.
Sequences (gn)⊂Γ tending to ∞ ! points in ∂Γ=βΓ\Γ, the Stone-Čech
boundary of Γ.
Use ∂Γ for indexing limit ops; construct them all at once:
Construction: Fix T ∈A . Consider the map Γ→A

g 7→Ug−1TUg

(A with *-strong topology). Extend to a *-str continuous map (“symbol”)

σop(T) : ∂Γ→βΓ→A .

Denote Cs(∂Γ;A ) the C*-algebra of *-str ctns maps; σop(T) ∈Cs(∂Γ;A ).
Point: σop : A →Cs(∂Γ;A ) is a *-homomorphism.
The kernel of σop consists of ghost operators.
Defn (G. Yu): T ∈A is a ghost, if its matrix entries tend to 0 at infinity.
NB: Compact operators are always ghosts.
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Coarse Geometry and Roe C*-algebras

LIMIT OPS FOR GROUPS REVISITED (BY J. ROE ’04) II.
Recall: {ghosts}= ker(σop)⊂A

σop−−→Cs(∂Γ;A )

DEFINITION

A group Γ is has Yu’s property A [⇐⇒ is exact], if taking minimal
crossed product of terms of any short exact sequence of Γ-C*-algebras by
Γ preserves its exactness [⇐⇒ C∗

redΓ is an exact C*-algebra].

THEOREM (⇐ YU ’00, ⇒ ROE–WILLETT ’13)
All ghosts in A are compact iff Γ has property A.

THEOREM (ROE ’04)
Let Γ have property A, T ∈A ⊂B(`2Γ). TFAE

(i) T is Fredholm,
(ii) σop(T) is invertible in Cs(∂Γ;A ),

(iii) Each S ∈σop(T) is invertible and supS∈σop(T) ‖S−1‖ <∞.
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Coarse Geometry and Roe C*-algebras

MORE ABOUT PROPERTY A / EXACTNESS

Why?
It’s a “niceness” / “regularity” condition. Many equivalent formulations
(coarse geometric, analytic (approximation properties), dynamical
(actions on compact spaces)).

Strong consequences: e.g. Novikov conjecture in topology (via K-theory
of Roe C*-algebras / index theory).

Examples/Groups:
Groups with A: amenable, linear, hyperbolic, mapping class groups. Also
“finite-dimensional” groups (e.g. Zd).

Groups without A: Gromov Monsters: “groups containing non-property-A
families of graphs in their Cayley graph”. [Hard to construct.]

Unknown: Out(Fn), Thompson’s group F.

Examples/Spaces:
Without A: graphs of large girth, expanders.
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Uniform boundedness of inverses

LINDNER–SEIDEL’S PROOF OF “CORE ISSUE”
PROPOSITION

On `p(Zd): If T ∈A and all S ∈σop(T) are invertible, then ∃S ∈σop(T)
with ‖S−1‖ = supB∈σop(T) ‖B−1‖.

Defn: The lower norm ν(T) of any operator T ∈B(E) is defined to be
ν(T)= inf

{ ‖Tψ‖
‖ψ‖ |ψ ∈E\{0}

}
. [So ν(T)= 1/‖T−1‖ for an invertible T.]

If E= `2Γ, we can talk about support of a vector ψ ∈ `2Γ as a subset of Γ.
Then the localised lower norm (for D≥ 0) of T ∈B(`2Γ) is

νD(T)= inf
{ ‖Tψ‖

‖ψ‖ |ψ ∈ `2Γ\{0},diam(supp(ψ))≤D
}

.

LEMMA (LOCALISATION; STEP 1 OF L-S PROOF)

On `p(Zd): Given δ> 0, R≥ 0, N ≥ 0, there exists D≥ 0, such that for all
T ∈AR,N [band-width ≤R, norm ≤N] we have νD(T)≤ ν(T)+δ.

STEP 2: An “accumulation of singularities” argument; doesn’t actually
use Zd – valid for any group.
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Uniform boundedness of inverses

METRIC SPARSIFICATION PROPERTY

DEFINITION (CHEN–TESSERA–WANG–YU ’07)
A metric space X has the Metric Sparsification Property with c ∈ (0,1], if
∃ non-decreasing f :N→N, such that:
For any m ∈N and any finite positive Borel measure µ on X there exists
Ω=ti∈IΩi ⊂X with

• d(Ωi,Ωj)≥m whenever i 6= j ∈ I;
• diam(Ωi)≤ f (m) for every i ∈ I;
• µ(Ω)≥ cµ(X).

Remark: MSP ⇐⇒ Yu’s property A [Brodzki–Niblo–S–Willett–Wright;
Sako ’12]

PROPOSITION (S–WILLETT)
X has MSP =⇒ Localisation Lemma of L–S on `p(X).

Idea: Use MSP to chop T into a block–diagonal shape.
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Uniform boundedness of inverses

METRIC SPARSIFICATION FOR Z

Let f (m)=m, c= 1
2 . Given m ∈N, consider

−2m −m 0 m 2m 3m

Given any finite measure µ on Z (assignment of weights to points of Z),
either the red “half” of Z, or the blue “half” of Z, has measure ≥ 1

2 .
Denote that “half” by Ω. So µ(Ω)≥ 1

2µ(X).

Whichever Ω is, it naturally splits into m-separated intervals, each of
diameter m= f (m).
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Limit operators in general

LIMIT SPACES

If Γ is a group, we used “shifts” to construct limit ops (all on `pΓ). Don’t
have these in general.

Let X be a countable, bounded geometry metric space.
Let ω ∈ ∂X =βX \X, i.e. a non-principal ultrafilter on X.

We associate a (ctbl, bdd.geom.) metric space to ω: X(ω), the limit space
of X at ω. Comes with a distinguished point, ω ∈X(ω).

Proposition: For any R≥ 0, there exists Y ⊂X, such that
• Y ∈ω and
• ∀y ∈Y, the R-ball BR(y)⊂X is isometric to BR(ω)⊂X(ω).

Example: If X =Γ is a countable group, then X(ω)∼=Γ for all ω ∈ ∂Γ.

Example: If X =N with the natural metric, then all limit spaces are ∼=Z.

Example: If X consists of “spheres of radius n2”, n ∈N inside Z×Z with
`∞-metric, then all limit spaces are ∼=Z.
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Limit operators in general

LIMIT OPERATORS

Limit operators (of an op on `2(X)) will “live” on `2(X(ω)), ω ∈ ∂X.

Notation: For S⊂X, denote PS ∈B(`2(X)) the orthogonal projection
onto `2(S)⊂ `2(X).

“Construction”: Take a band op T on `2(X) and ω ∈ ∂X.

Given R≥ 0, by the Proposition, there is YR ⊂X with YR ∈ω, such that
all balls BR(y), y ∈Y, are isometric [to BR(ω)]. The “cut-downs”
PBR(y)TPBR(y) are finite matrices of the same “shape”.

So, by passing to a subset of YR, we can arrange that the “cut-down”
matrices entry-wise converge to a single matrix, which we declare to be
PBR(ω)Φω(T)PBR(ω) ∈B(`2(X(ω))), the “cut-down” of (so far non-existent)
limit operator Φω(T).

Now, increase R and repeat. The actual Φω(T) will then be strong
operator limit of the “matrices” on `2(X(ω)) that we constructed.
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