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Abstract. In this paper, we characterize ℓ-open and ℓ-closed C∗-algebras
and deduce that ℓ-open C∗-algebras are ℓ-closed, as conjectured by
Blackadar. Moreover, we show that a commutative unital C∗-algebra
is ℓ-open if and only if it is semiprojective.

1. Introduction

Lifting properties of C∗-algebras and their ∗-homomorphisms have been well-
studied for some time with prominent connections to notions of stability; see
[1, 10, 14, 15] for example. They play an important role in modern C∗-algebra
theory including the Elliott classification program ([12, 9, 17], for example).
In connection to a non-commutative generalization of Borsuk’s homotopy
extension theorem, Blackadar [3] defined natural classes C∗-algebras in terms
of lifting properties, called ℓ-open and ℓ-closed C∗-algebras. A C∗-algebras is
ℓ-open if the liftable maps from the C∗-algebra to any quotient C∗-algebra is a
point-norm open set, and ℓ-closedness is defined similarly (precise definitions
can be found in Section 2).

While these notions are first formalized only recently by Blackadar,
their study traces back at least to the celebrated work of Brown, Douglas,
and Fillmore: in [5], they seek conditions on a space X that ensure the set of
liftable maps from C(X) to the Calkin algebra is closed. It is open whether
C(D) is ℓ-closed, and a positive answer would settle an open question on page
119 of [4]. More recently, Enders and Shulman further studied when the set of
liftable maps from C(X) to the Calkin algebra is closed, including a sufficient
condition when dim(X) ≤ 2 and a full characterization when dim(X) ≤ 1
[11].

In this paper, we prove the following characterizations of being ℓ-open
and ℓ-closed:

Theorem 1.1 (see Theorem 3.8). Let A be a C∗-algebra. The following are
equivalent:

(i) A is ℓ-open.
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(ii) For every C∗-algebra B and ideal I ⊆ B, the natural map Hom(A,B) →
Hom(A,B/I) is open.

(iii) A satisfies the Homotopy Lifting Theorem (a noncommutative analog of
the Borsuk Homotopy Extension Theorem), and Hom(A,B) is locally
path-connected for every C∗-algebra B.

Condition (ii) can be strengthened to uniform openness (see Theo-
rem 3.8).

Theorem 1.2 (see Theorem 4.1). Let A be a separable C∗-algebra. Then A is
ℓ-closed if and only if for every C∗-algebra B and ideal I ⊆ B, the natural
map Hom(A,B) → Hom(A,B/I) is uniformly relatively open.

As a consequence, we confirm a conjecture of Blackadar from [3], that
ℓ-open C∗-algebras are ℓ-closed.

Additionally, we prove that a unital commutative C∗-algebra is semipro-
jective if and only if it is ℓ-open, confirming another conjecture from [3, Page
299].

2. Preliminaries

Let A and B be C∗-algebras and let I an ideal in B (by which we mean a
closed, two-sided ideal). We write πI : B → B/I be the quotient map. Recall
that a ∗-homomorphism ϕ : A→ B/I is liftable if there exists a ∗-homomor-
phism ϕ : A→ B such that ϕ = πI ◦ ϕ:

A B/I

B

ϕ

πI

∃ ϕ

We denote the space of ∗-homomorphisms from A to B endowed with
the point-norm topology by Hom(A,B) and the subspace of unital ∗-homo-
morphisms by Hom1(A,B) (if A and B are unital). For ϕ ∈ Hom(A,B), a
neighbourhood base of ϕ is made up of sets

UB(ϕ;F , ϵ) := {ψ ∈ Hom(A,B) : ∥ψ(a)− ϕ(a)∥ < ϵ ∀a ∈ F}, (2.1)

ranging over all finite sets F ⊂ A and all positive real numbers ϵ > 0. This
gives a uniform structure to Hom(A,B). In fact, the sets of this neighbour-
hood base are parametrized independently of B, giving a uniform structure
to all of Hom(A,B) at once. (One would like to put a uniform structure
on the disjoint union of Hom(A,B) ranging over all C∗-algebras B, except
that this is not a well-founded set. One can put a uniform structure on∐

B∈B Hom(A,B), for any set B of C∗-algebras.)
The set of liftable ∗-homomorphisms A→ B/I is

Hom(A,B, I) := πI ◦Hom(A,B). (2.2)
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The following is due to Blackadar [3, Definition 6.1].

Definition 2.1. Let A be a C∗-algebra

(i) A is ℓ-open if for C∗-algebraB and every ideal I ofB, the set Hom(A,B, I)
is open in Hom(A,B/I).

(ii) A is ℓ-closed if for C∗-algebraB and every ideal I ofB, the set Hom(A,B, I)
is closed in Hom(A,B/I).

Definition 2.2. Recall that a ∗-homomorphism ϕ : A→ C is (weakly) semipro-
jective if for any C∗-algebra B, any increasing sequence I1 ◁ I2 ◁ · · · ◁ B of
ideals in B, and any ∗-homomorphism ψ : C → B/

⋃
n In (and finite set

F ⊂ A, ϵ > 0), there is an n and a ∗-homomorphism ψ : A → B/In such
that ψ ◦ ϕ = πI ◦ ψ (resp. ∥ψ ◦ ϕ(x) − πI ◦ ψ(x)∥ < ϵ for all x ∈ F ), where
πI : B/In → B/I is the quotient map.

C B/
⋃

n In

B/In

ϕ

π
I

ψ

A
ψ

A is (weakly) semiprojective if the identity ∗-homomorphism is (weakly)
semiprojective. Some examples of semiprojective C∗-algebras are finite di-
mensional C∗-algebras, the universal C∗-algebras generated by n unitaries,
C∗(Fn), and {f ∈ C(S1,Mn) : f(1) is scalar} (see [15]).

Example 2.3. [3, Corollary 6.2] All semiprojective C∗-algebras are both ℓ-
open and ℓ-closed C∗-algebras.

By slight abuse of notation, if L ⊆ K ⊆ B are ideals, then we also use
πK to denote the quotient map from B/L to B/K.

We recall the following general Chinese remainder theorem for C∗-
algebras:

Lemma 2.4 ([3], Proposition 2.1). Let B be a C∗-algebra, and I and J ideals
in B. Then B/(I ∩ J) is isomorphic to the fibred product {(x, y) ∈ x ∈
B/I ⊕ y ∈ B/J : πI+J(x) = πI+J(y)} via the map a→ (πI(a), πJ(a)).

3. Properties and characterization of ℓ-open C∗-algebras

The following shows that if A is ℓ-open then the quotient map Hom(A,B) →
Hom(A,B/I) is always open. In fact, it shows that this openness is uniform,
as the relationship between (G, δ) and (F , ϵ) in the statement below does
not depend on the C∗-algebra B, the ideal I, nor any of the ∗-homomor-
phisms under consideration. The conclusion of the following theorem is (in
the separable case) a reformulation of the conclusion of [3, Theorem 4.1]; the
ideas in the proof are similar, but work is needed to allow ℓ-openness instead
of semiprojectivity as the hypothesis.
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Theorem 3.1. Let A be an ℓ-open C∗-algebra. Then for any ϵ > 0 and any
finite set F ⊂ A, there is a δ > 0 and a finite set G ⊂ A such that whenever
B is a C∗-algebra, I is an ideal of B, γ and φ are ∗-homomorphisms from A
to B/I with ∥γ(u)− φ(u)∥ < δ for all u ∈ G and such that γ lifts to a ∗-ho-
momorphism γ : A → B, then φ also lifts to a ∗-homomorphism φ : A → B
with ∥γ(v)−φ(v)∥ < ϵ for all v ∈ F . In other words, in the notation of (2.1),

UB/I(γ;G, δ) ⊆ πI ◦ UB(γ;F , ϵ). (3.1)

Proof. Let (Gn)n∈Λ be an increasing net of finite subsets of A whose union
is dense in A, and let (δn)n∈Λ be a net (over the same index set) of positive
numbers such that δn → 0. Suppose that the conclusion of the theorem is
false for a fixed ϵ > 0 and finite set F . Then, there are C∗-algebras Bn with
ideals In and ∗-homomorphisms γn, φn : A→ Bn/In such that

∥γn(u)− φn(u)∥ < δn (3.2)

for all u ∈ Gn, γn lifts to γn : A → Bn, but no φn lifts to ∗-homomorphism
φn : A→ Bn with ∥γn(v)− φn(v)∥ < ϵ for all v ∈ F .

Let B :=
∏
n∈Λ

Bn, I :=
∏
n∈Λ

In, and J := {(bn) ∈ B : limn ∥bn∥ = 0}.

Then B/I ∼=
∏
n∈Λ

Bn/In. Define ∗-homomorphisms γ := (γn)n∈Λ : A→ B and

φ := (φn)n∈Λ : A → B/I. Then (3.2) implies that lim
n

∥γn(x) − φn(x)∥ = 0

for all x ∈ A, and so πI+J ◦ γ = πI+J ◦ φ.
Using the general Chinese remainder theorem (Lemma 2.4), there exists

a ∗-homomorphism θ : A→ B/(I ∩ J) such that

πJ ◦ γ = πJ ◦ θ and φ = πI ◦ θ (3.3)

Take a ∗-linear lift (θn)n∈Λ : A → B of θ (which need not be a ∗-homo-
morphism), thus defining θn : A → Bn. For m ∈ Λ, define αm := πI∩J ◦
(αm,n)n∈Λ, where

αm,n :=

{
θn, n ≥ m;

γn, otherwise.
(3.4)

Since θ is a ∗-homomorphism, ∥θn(xy) − θn(x)θn(y)∥ → 0 for all x, y ∈ A;
from this it follows that αm,n is also a ∗-homomorphism.

The first equation of (3.3) implies that limn ∥γn(x)− θn(x)∥ = 0 for all
x ∈ A, which in turn implies that

∥αm(x)− πI∩J(γ(x))∥ = sup
n≥m

∥γn(x)− θn(x)∥ → 0 (3.5)

for all x ∈ A. Thus, (αm)m converges in the point-norm topology to the
liftable ∗-homomorphism πI∩J ◦ γ, and since A is ℓ-open, it follows that αm

is liftable for some sufficiently large m. Let β = (βn)n∈Λ : A→ B be a lift of
αm, where βn : A→ Bn is a ∗-homomorphism for each n. The fact that β is
a lift amounts to

(βn(x)− αm,n(x))n∈Λ ∈ I ∩ J, for all x ∈ A. (3.6)
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This implies first that limn ∥βn(x)− θn(x)∥ = 0 for all x ∈ A, and combining
this with the first equation of (3.3), it follows that

lim
n

∥βn(x)− γn(x)∥ = 0, for all x ∈ A. (3.7)

From (3.6), we also get that πIn ◦ βn(x) − πIn ◦ θn for all n ≥ m, and
combining this with the second equation of (3.3), we have that βn is a lift
of φn for n ≥ m. In summary, for sufficiently large n we find that βn is
a lift of φn which is point-norm close to γn, in contradiction to our initial
assumption. □

We now pick up some consequences, using ideas from of Blackadar [3].
We add the proofs for completion. The first tells us that when A is ℓ-open,
Hom(A,B) is locally path-connected in a uniform way.

Corollary 3.2 (cf. [3, Corollary 4.2]). Let A be an ℓ-open C∗-algebra (or more
generally, one that satisfies the conclusion of Theorem 3.1). For any ϵ > 0
and any finite set F ⊂ A, there is a δ > 0 and a finite set G ⊂ A such that
whenever B is a C∗-algebra, φ0 and φ1 are ∗-homomorphisms from A to B/I
with ∥φ0(u)−φ1(u)∥ < δ for all u ∈ G, then there is a point-norm continuous
path (φt)t∈[0,1] of

∗-homomorphisms from A to B connecting φ0 and φ1 with
∥φ0(v)−φt(v)∥ < ϵ for all v ∈ F and t ∈ [0, 1]. In particular, Hom(A,B) is
locally path-connected for any C∗-algebra B.

Proof. For any ϵ > 0 and finite set F , choose δ > 0 and finite set G as in
Theorem 3.1. LetD := C([0, 1], B) and I := C0((0, 1), B). ThenD/I ∼= B⊕B.
Define ∗-homomorphisms γ, φ : A → D/I by γ(x) := (φ0(x), φ0(x)) and
φ(x) := (φ0(x), φ1(x)). Then γ lifts to a ∗-homomorphism idC([0,1]) ⊗ φ0 :
A→ D, and so these two maps satisfy the hypothesis of Theorem 3.1. Hence
the conclusion of Theorem 3.1 holds and there exists a ∗-homomorphism
φ = (φt)t∈[0,1] : A→ D such that

∥γ(a)− φ(a)∥ < ϵ for all a ∈ F . (3.8)

Then φ is a homotopy of ∗-homomorphisms A→ B connecting φ0 to φ1, and
(3.8) tells us that ∥φt(a)− φ0(a)∥ < ϵ for all a ∈ F , as required. □

Example 3.3. Consider the topologist’ sine curve:

X := {(x, y) : y = sin(
π

x
), 0 < x ≤ 1} ∪ {(0, y) : −1 ≤ y ≤ 1}. (3.9)

Then Hom(C(X),C) = X, which is not locally path-connected; therefore by
the above corollary, C(X) is not ℓ-open.

Theorem 3.4 (Homotopy Lifting Theorem; cf. [3, Theorem 5.1]). Let A be
an ℓ-open C∗-algebra (or more generally, one that satisfies the conclusion of
Theorem 3.1). Let B be a C∗-algebra, I a closed ideal of B, (φt)t∈[0,1] a point-
norm continuous path of ∗-homomorphisms from A to B/I. Suppose φ0 lifts
to a ∗-homomorphism φ0 : A → B. Then there is a point-norm continuous
path (φt)t∈[0,1] of

∗-homomorphisms from A to B starting at φ0 such that φt

is a lift of φt for all t ∈ [0, 1].
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Proof. Take an arbitrary finite set F of A and real number ϵ > 0, and let G, δ
be given by Theorem 3.1. We can find a partition t0 = 0 < t1 < t2 < · · · <
tn = 1 such that ∥φt(a) − φs(a)∥ < δ for all a ∈ G whenever t, s ∈ [ti−1, ti],
for any i.

Let D := C([0, t1], B) and J := C0((0, t1], I), which is an ideal of D, so
that

D/J ∼= C([0, t1] : B/I)⊕πI
B

= {(f, b) ∈ C([0, t1] : B/I)⊕B : f(0) = πI(b)}.
(3.10)

Making this identification, define ∗-homomorphisms γ := (idC([0,t1]) ⊗ φ0)⊕
φ0, θ := φ|[0,t1] ⊕ φ0 : A→ D/J (where φ|[0,t1] denotes the ∗-homomorphism
A → C([0, t1], B/I) given by restricting the homotopy (φt) to [0, t1]). Then
γ lifts to the ∗-homomorphism idC([0,t1]) ⊗ φ, so by Theorem 3.1, φ lifts,
giving a continuous path of lifts (φt) of (φt) for t ∈ [0, t1]. Continuing the
same process for successive intervals [t1, t2], . . . , [tn−1, tn], we get the required
continuous path (φt)t∈[0,1], such that φt lifts φt for all t ∈ [0, 1]. □

Proposition 3.5. Let A be an unital C∗-algebra. Then A satisfies the conclu-
sion of the Homotopy Lifting Theorem if and only if A satisfies the conclusion
in the category of unital C∗-algebras and unital ∗-morphisms.

Proof. Suppose A satisfies the conclusion of the Homotopy Lifting Theorem
in the category of unital C∗-algebras and unital ∗-morphisms. Let B be a
C∗-algebra, I a closed ideal of B, (φt)t∈[0,1] a point-norm continuous path
of ∗-homomorphisms from A to B/I, and φ0 : A → B a lift of φ0. Set
q0 := φ0(1), q1 := φ1(1), and p0 := φ0(1). Then, q0 is homotopic to q1.
Since C is ℓ-open, Theorem 3.4 implies that there exists a continuous path of
projections (pt)t∈[0,1] connecting p0 and p1 with q1 = πI(p1). Consequently,
we can find a continuous path of partial isometries (vt)t∈[0,1] such that

v0 = p0,

v∗t vt = p0 ∀ t,
vtv

∗
t = pt.

(3.11)

Let ψ1 := πI(v
∗
1)φ1πI(v1) : A → q0(B/I)q0. Then, (πI(v

∗
t )φtπI(vt))t∈[0,1]

is a point-norm continuous paths of unital ∗-homomorphisms from A to
q0(B/I)q0. Using the conclusion of the Homotopy Lifting Theorem in the
unital category, ψ1 lifts to a unital ∗-homomorphism α1 : A → p0Bp0 and
there is a point-norm continuous path (αt)t∈[0,1] of unital

∗-homomorphisms
connecting φ0 to α1. Moreover, αt is a lift of πI(v

∗
t )φtπI(vt) for each t ∈ [0, 1].

Set φt := vtαtv
∗
t : A → B. Then, (φt)t∈[0,1] defines a point-norm continuous

path of ∗-homomorphisms from A to B starting at φ0 such that φt is a lift
of φt for all t ∈ [0, 1]. The proof of the converse follows directly from the
statement. □

Example 3.6. Using Proposition 3.5 and [18, Theorem 3.5], AF -algebras sat-
isfy the condition of the Homotopy Lifting Theorem.
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Remark 3.7. Conway ([7, 8]) studied a restricted version of the homotopy
lifting theorem, which he called the C∗-covering homotopy property. He con-
sidered Theorem 3.4 in the case where B/I is the Calkin algebra.

Combining all the previous theorems and corollaries, we have the fol-
lowing characterization of ℓ-open C∗-algebra.

Theorem 3.8. Let A be a C∗-algebra. Then the following are equivalent

(i) A is ℓ-open.
(ii) The system of maps Hom(A,B) → Hom(A,B/J) (over all C∗-algebras

B and ideals J) is uniformly open, as in the conclusion of Theorem 3.1
(iii) A satisfies the conclusion of the Homotopy Lifting Theorem (Theo-

rem 3.4) and Hom(A,B) is locally path-connected for all C∗-algebras
B.

Proof. (i)⇒(ii) is Theorem 3.1 and (ii)⇒(iii) is by Corollary 3.2 and Theo-
rem 3.4.

To prove that (iii)⇒(i), let ϕn : A → B/I be a net of ∗-homomor-
phisms which converges point-norm to a liftable ∗-homomorphism ϕ : A →
B/I. Since Hom(A,B/I) is locally path-connected, ϕn is homotopic to ϕ for
sufficiently large n. The conclusion of the Homotopy Lifting Theorem then
implies that ϕn is liftable for these n. This shows that Hom(A,B, I) is open
in Hom(A,B/I), as required. □

Example 3.9. Satisfying the condition of the Homotopy Lifting Theorem
doesn’t guarantee ℓ-openness of C∗-algebras. M2∞ satisfies the condition of
the Homotopy Lifting Therem (see Example 3.6), but it is not an ℓ-open C∗-
algebra. To see that M2∞ is not ℓ-open, suppose otherwise. Using any finite
set F ⊆M2∞ and any ϵ > 0, obtain δ > 0 and a finite set G ⊂M2∞ according
to Theorem 3.1. Without loss of generality, we can assume G ⊂M2k for some
k.

Let us set B := B(H) and J := K, so that B/J is the Calkin algebra.
Let ϕ1, ϕ2 : A→ B/J be ∗-homomorphisms such that ϕ1 is liftable but ϕ2 is
not (which exists by [20]). Define φi := idM

2k
⊗ ϕi : M2k ⊗M2∞

∼= M2∞ →
M2k⊗(B/J) ∼= (M2k⊗B)/(M2k⊗J). Then we have that φ1(a) = φ2(a) for all
a ∈ G. Hence, Theorem 3.1 tells us that since φ1 is liftable, so is φ2. The Ext-
class of φ2 is 2k times the Ext-class of ϕ2; Ext(M2∞) is the 2-adic integers,
which is torsion-free, it follows that φ2 is not liftable, a contradiction. Hence,
M2∞ is not ℓ-open.

The characterization of ℓ-openness confirms a conjecture of Blackadar
[3, Page 299], as follows.

Corollary 3.10. Let A be an ℓ-open C∗-algebra. Then A is ℓ-closed.

Proof. Fix a ϵ > 0 and a finite set F and choose a δ > 0 and finite set G
as in Theorem 3.1. Let ϕn : A → B/I be a net of liftable ∗-homomorphisms
which converges point-norm to a ∗-homomorphism ϕ : A → B/I. We can
find m such that ∥ϕm(u)− ϕ(u)∥ < δ for all u ∈ G. Since ϕm is liftable, the
conclusion of Theorem 3.1 implies that ϕ is liftable. Hence, A is ℓ-closed. □
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4. Characterization of ℓ-closed C∗-algebras

We now characterize ℓ-closed C∗-algebras, showing that the condition is
equivalent to a uniform relative openness of the map Hom(A,B) → Hom(A,B/I).
We require separability for this characterization, and one direction uses a
Cauchy sequence argument.

Theorem 4.1. Let A be a separable C∗-algebra. Then the following are equiv-
alent:

(i) A is ℓ-closed.
(ii) For any ϵ > 0 and finite set F ⊂ A, there is a δ > 0 and a finite set

G ⊂ A such that whenever B is a C∗-algebra, I is a closed ideal of B, ψ
and ϕ are ∗-homomorphisms from A to B with ∥πI◦ϕ(u)−πI◦ψ(u)∥ < δ
for all u ∈ G, then there exists a ∗-homomorphism η : A→ B such that
∥ϕ(v)− η(v)∥ < ϵ for all v ∈ F and πI ◦ ψ = πI ◦ η.

Proof. (i)⇒(ii). Let (Gn) be an increasing sequence of finite subsets of A
whose union is dense in A. Suppose (ii) is false for a fixed ϵ > 0 and finite set
F ⊂ A. Then, there are C∗-algebras Bn with ideals In, and

∗-homomorphisms
ϕn, ψn : A→ Bn such that

∥πIn ◦ ϕn(a)− πIn ◦ ψn(a)∥ <
1

n
for all a ∈ Gn, (4.1)

but no ∗-homomorphism ηn : A→ Bn satisfies both ∥ϕn(a)− ηn(a)∥ < ϵ for
all a ∈ F and πIn ◦ ψn = πIn ◦ ηn.

Let B :=
∞∏

n=1
Bn, I :=

∞∏
n=1

In, and J :=
∞⊕

n=1
Bn. Define ∗-homomor-

phisms ϕ := (ϕ1, ϕ2, . . . ), ψ := (ψ1, ψ2, . . . ) : A→ B.

By (4.1), it follows that πI+J ◦ ϕ = πI+J ◦ ψ. Then by the general
Chinese remainder theorem (Lemma 2.4), there exists a ∗-homomorphism
θ : A→ B/(I ∩ J) such that

πJ ◦ ϕ = πJ ◦ θ and πI ◦ ψ = πI ◦ θ (4.2)

For each n ∈ N, define the ∗-homomorphism

αn := (ψ1, ψ2, . . . , ψn−1, ϕn, ϕn+1, . . .) : A→ B. (4.3)

Then by the definition of J , we have πJ ◦ αn = πJ ◦ ϕ. Therefore by (4.2),
for x ∈ A,

∥πI∩J ◦ αn(x)− θ(x)∥ = ∥πI ◦ αn(x)− πI ◦ ψ(x)∥
= sup

m≥n
∥πIm ◦ ϕm(x)− πIm ◦ ψm(x)∥ → 0. (4.4)

SinceA is ℓ-closed, we deduce that θ lifts to a ∗-homomorphism η = (η1, η2, . . . ) :
A→ B. Then (4.2) implies that πIn◦ψn = πIn◦ηn and lim

n→∞
∥ϕn(x)−ηn(x)∥ =

0 for all x ∈ A. Hence, there is a k such that

∥ϕk(a)− ηk(a)∥ < ϵ (4.5)

for all a ∈ F . This is a contradiction.
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(ii)⇒(i). Suppose ηn : A → B/I is a sequence of liftable ∗-homomor-
phisms which converges pointwise to a ∗-homomorphism η : A → B/I. Let
Fn be an increasing sequence of finite sets whose union is dense in A. Choose
δn > 0 and a finite set Gn such that they satisfy the conditions of (ii) with
ϵ := 1

2n and F := Fn. By passing to a subsequence, we may assume without
loss of generality that

∥ηn(u)− ηn+1(u)∥ < δn for all u ∈ Gn. (4.6)

Let ηn : A → B be a lift of ηn. Then by the choice of G1 and δ1 from (ii)
implies that there exists a ∗-homomorphism ξ2 : A → B such that ∥η1(v) −
ξ2(v)∥ < 1

2 for all v ∈ G1 and πI ◦ η2 = πI ◦ ξ2. Then we have ∥πI ◦ η2(u)−
πI ◦ η3(u)∥ = ∥π1 ◦ ξ2(u)− πI ◦ η3(u)∥ < δ2 for all u ∈ G2. Using the choice
of G2 and δ2 from (ii), we have a ∗-homomorphism ξ3 : A → B such that
∥ξ2(v)−ξ3(v)∥ < 1

22 and πI ◦η3 = πI ◦ξ3. Continuing the process and setting

ξ1 = η1, we get a (ξn : A → B) such that ∥ξn(a) − ξn+1(a)∥ < 1
2n for all

a ∈ Fn and ηn = πI ◦ξn. Consequently, the sequence (ξn(a))∞n=1 is Cauchy for
each a ∈ A, so it converges to some ξ(a) ∈ B. This defines a ∗-homomorphism
ξ : A→ B, and for a ∈ A,

πI ◦ ξ(a) = lim
n
πI ◦ ξn(a) = lim

n
ηn(a) = η(a). (4.7)

Therefore we obtain a lift of η, and this shows that A is ℓ-closed. □

Note that condition (iii) of Theorem 3.8 strengthens condition (ii) in
Theorem 4.1, by replacing ψ : A → B with a map A → B/I which is (a
priori) not liftable. This gives a quick proof of Corollary 3.10 in the separable
case.

Theorem 4.1 may be reformulated as follows.

Theorem 4.2. Let A be a separable C∗-algebra and S a generating set of A.
Then the following are equivalent:

(i) A is ℓ-closed.
(ii) For any ϵ > 0 and finite set F ⊂ S, there is a δ > 0 and a finite set

G ⊂ S such that whenever B is a C∗-algebra, I is a closed ideal of B, ψ
and ϕ are ∗-homomorphisms from A to B with ∥πI◦ϕ(u)−πI◦ψ(u)∥ < δ
for all u ∈ G, then there exists a ∗-homomorphism η : A→ B such that
∥ϕ(v)− η(v)∥ < ϵ for all v ∈ F and πI ◦ ψ = πI ◦ η.

In [3, Example 6.4], Blackadar asks whether C∗(F∞), the universal C∗-
algebra generated by a sequence of unitaries, is ℓ-closed. We now show that
it is.

Example 4.3. C∗(F∞) is ℓ-closed. To see this, consider ϵ > 0, a finite set
F ⊂ {u1, u2, . . .}, an ideal I of B, and ∗-homomorphisms ϕ, ψ : C∗(F∞) → B.
Without loss of generality, we may assume F = {u1, u2, . . . , un} for some n.
C∗(F ) ∼= C∗(Fn) is semiprojective ((this is well-known; see [1, Corollary
2.22 and Proposition 2.31] for example) and so ℓ-closed by [3, Corollary 6.2].
Choose δ > 0 and a finite set G ⊂ F as in Theorem 4.2 (applied to C∗(F )).
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Then ∥πI ◦ ϕ(u) − πI ◦ ψ(u)∥ < δ for all u ∈ G implies there exists a ∗-ho-
momorphism ξ : C∗(Fn) → B such that ∥ϕ(v)− ξ(v)∥ < ϵ for all v ∈ F and
πI ◦ ξ = πI ◦ ψ|C∗(Fn). η : C∗(F∞) → B defined by

η(um) :=

{
ξ(um), m ≤ n;

ψ(um), m > n
(4.8)

is a ∗-homomorphism satisfying ∥ϕ(v)− η(v)∥ < ϵ for all v ∈ F and πI ◦ ξ =
πI ◦ η, as required.

5. Commutative unital ℓ-open C∗-algebras

In this section, we show that commutative unital separable ℓ-open C∗-algebras
coincide with commutative unital separable semiprojective C∗-algebras. We
begin with the following which may be of independent interest.

Proposition 5.1. Let A be an ℓ-open C∗-algebra and ψ : A → B a weakly
semiprojective ∗-homomorphism. Then ψ is a semiprojective ∗-homomor-
phism.

Proof. Fix ϵ > 0 and a finite set F in A, and let δ > 0 and G ⊂ A be
given by Theorem 3.1. Given any ∗-homomorphism φ : B → C/

⋃
n Jn with

J1 ◁ J2 ◁ · · · ◁ C an increasing sequence of closed ideals of a C∗-algebra C, by
weak semiprojectivity we can find some n and a ∗-homomorphism ϕ : A →
C/Jn such that

∥φ ◦ ψ(u)− π ◦ ϕ(u)∥ < δ (5.1)

for all u ∈ G. It follows from Theorem 3.1 that there exists a ∗-homomor-
phism ρ : A → C/Jn such that φ ◦ ψ = π ◦ ρ. Hence ψ is a semiprojective
∗-homomorphism. □

Lemma 5.2 ([6], Proposition 3.1). Let X be a compact, connected, and lo-
cally connected metric space, of covering dimension > 1. Then X contains a
topological copy of the circle S1.

Theorem 5.3. Let X be a compact metric space. Then the following are equiv-
alent

(i) C(X) is a semiprojective C∗-algebra.
(ii) C(X) is an ℓ-open C∗-algebra.
(iii) X is an ANR and dim(X) ≤ 1.

Proof. (i)⇒(ii) follows from [3, Corollary 6.2] and (iii)⇒(i) follows from [19,
Theorem 1.2]. We prove that (ii)⇒(iii), along the lines of Sørensen and Thiel’s
proof of [19, Proposition 3.1].

Suppose C(X) is ℓ-open. Blackadar showed that X is e-open and thus
locally contractible [2, Corollary 4.3]. The Homotopy Lifting Theorem (The-
orem 3.4) implies the homotopy extension theorem for X; since X is also
locally contractible, we have that X is an ANR by [13, Theorem IV.2.4].
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Suppose by contradiction that dim(X) ≥ 2. Since X is compact, we
have that locdim(X) = dim(X) ≥ 2, which implies that there is an x0 ∈ X
such that dim(D) ≥ 2 for every closed neighbourhood D of x0 (see [16] for
details on locdim(X)). Let D1, D2, . . . be a decreasing sequence of closed
neighbourhoods of x0 with dim(Dk) ≥ 2 for all k. Using Lemma 5.2, there
exists a topological embedding ψk : S1 ↪−→ Dk ⊂ X for each k. Let

Y := (0, 0) ∪
⋃
k≥1

S((
1

2k
, 0),

1

4 · 2k
) ⊂ R2. (5.2)

Then C(Y ) is weakly semiprojective ([19]]). Define ψ : Y → X to send (0, 0)
to x0 and to be ψk on the circle S(( 1

2k
, 0), 1

4.2k
). Then ψ induces a ∗-homo-

morphism ψ∗ : C(X) → C(Y ), which is weakly semiprojective since C(Y )
is.

Let T be the Toeplitz algebra and let K be the ideal of compact opera-
tors. Writing A† for the unitization of A, set

B := (
⊕
k≥1

T )†

= {(t1, t2, . . . , ) ∈
∏
k≥1

T : (tk)k converges to a scalar multiple of 1T }

(5.3)

and Jk := K ⊕K ⊕ · · · K︸ ︷︷ ︸
k times

⊕0⊕0 · · · . Then Jk ⊂ Jk+1, J =
⋃

k Jk =
⊕

k≥1 K ,

B/Jk = C(S1)⊕ C(S1)⊕ · · · ⊕ C(S1)︸ ︷︷ ︸
k times

⊕(
⊕

l≥k+1

T )†, (5.4)

andB/J = (
⊕

k≥1(C(S
1)))† ∼= C(Y ). Proposition 5.1 implies ψ∗ is a semipro-

jective ∗-homomorphism, so ψ∗ lifts to some ψ : C(X) → B/Jk.

C(X) C(Y ) B/J

TB/Jk

C
(
S1

)∼=
ψ∗ ρk+1

σk+1

ψ∗
k+1

ψ

Let σk+1 : B/Jk → T be the projection of B/Jk onto the (k+1)-th
coordinate and ρk+1 : B/J → C(S1) be the projection of B/J onto the
(k+1)-th coordinate. Note that ρk+1 ◦ψ∗ : C(X) → C(S1) coincide with the
∗-homomorphism induced by ψk+1 : S1 ↪−→ Dk+1 ⊂ X and it is surjective
since ψk+1 is an inclusion. The generating unitary of C(S1) lifts to a normal
element in C(X) under ψ∗

k+1, but it does not lift to a normal element in T ,
which is a contradiction. Hence, dim(X) ≤ 1. □
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