Nuclear dimension and \mathcal{Z} -stability of simple C*-algebras

Aaron Tikuisis

University of Ottawa

NYC NCG seminar

Joint work with Jorge Castillejos, Sam Evington, Stuart White, and Wilhelm Winter.

1

- Background/motivation classification of C*-algebras, funny examples.
- The Toms–Winter conjecture.
- The Jiang–Su algebra \mathcal{Z} , and \mathcal{Z} -stability.
- Nuclear dimension.
- Main result and applications.

Conjecture (Elliott, early '90s)

Simple separable nuclear C*-algebras are classified by K-theory and traces.

If *A*, *B* are two simple separable nuclear C*-algebras, and there is an isomorphism of their invariants (consisting of ordered K-theory, traces, and the pairing between K_0 and traces) then $A \cong B$.

More generally, it was hoped that the structure of nuclear C*-algebras would mimic the nice structure of von Neumann algebras, with just a bit of extra topological bookkeeping.

Background: classification of C*-algebras

Examples of unusual C*-algebras soon appeared.

- Villadsen, '98: A simple separable unital nuclear (in fact,) but AH) C*-algebra such that the order on K_0 is experiorated. $P \neq P$
- Rørdam, '97: A simple separable unital nuclear (in fact, AH) C*-algebra *A* such that *A* is not stable but *M*₂(*A*) is.
- Villadsen, '99: A simple separable unital nuclear (in fact, AH) C*-algebra which is finite but has stable rank > 1.
- Rørdam, '03: A simple separable unital nuclear C*-algebra which contains both an infinite and a finite projection.
- Toms, '08: A pair of simple separable unital nuclear (in \sqrt{N} and \sqrt{N} fact, AH) C*-algebras A, B which refute the Elliott $\exists p(0, P)$ that $\forall f(0, P)$ that $\forall f(0, P)$ that $\forall f(0, P)$ for $\forall f(0, P$

is infinite.

Goal: separate the wheat from the chaff, within the silo of simple nuclear C*-algebras.

Conjecture (Toms and Winter, late '00s)

Among simple, separable, nuclear, unital C*-algebras, the (i) Strict comparison of positive elements. 2-stability (4.2) following properties coincide:

- (ii) \mathcal{Z} -stability ($A \cong A \otimes \mathcal{Z}$ where \mathcal{Z} is the Jiang–Su algebra).
- (iii) Finite nuclear dimension (dim_{*nuc*} $A < \infty$).

$$M_{2^{\infty}} = \overline{M_{2}(\mathbb{C})^{\otimes \infty}}^{\|\cdot\|}$$

$$M_{3^{\infty}} \xrightarrow{\mathcal{H}} M_{2^{\infty}} \xrightarrow{\mathcal{H}} M_{3^{\infty}}$$

$$M_{3^{\infty}} \xrightarrow{\mathcal{H}} M_{3^{\infty}} \xrightarrow{\mathcal{H}} M_{3^{\infty}}$$

Simple, unique trace, $\mathcal{Z} \cong \mathcal{Z} \otimes \mathcal{Z} \cong \mathcal{Z}^{\otimes \infty}$.

 $\begin{aligned} \mathcal{Z}_{2^{\infty},3^{\infty}} &:= \{ f \in C([0,1] \mid M_{2^{\infty}} \otimes M_{3^{\infty}}) \mid f(0) \in 1_{2^{\infty}} \otimes M_{3^{\infty}}, \\ f(1) \in M_{2^{\infty}} \otimes 1_{3^{\infty}} \} \end{aligned}$

 $\mathcal{Z} := \varinjlim \mathcal{Z}_{2^{\infty}, 3^{\infty}}.$ $\bigvee_{ev_{\tau}} \operatorname{von} + \mathfrak{r} : \operatorname{vol}!$ Simple, unique trace, $\mathcal{Z} \cong \mathcal{Z} \otimes \mathcal{Z} \cong \mathcal{Z}^{\otimes \infty}.$

A is \mathcal{Z} -stable if $A \cong A \otimes \mathcal{Z}$.

Theorem (McDuff, Kirchberg, Rørdam, Toms–Winter, Dadarlat–Toms)

Let *A* be a unital C*-algebra. The following are equivalent.

- (i) A is \mathcal{Z} -stable.
- (ii) \mathcal{Z} embeds unitally into $A_{\infty} \cap A'$ (where $A_{\infty} := l_{\infty}(\mathbb{N}, A)/c_0(\mathbb{N}, A)$).
- (iii) There is a subhomogeneous C*-algebra with no characters, which embeds unitally into $A_{\infty} \cap A'$.

Nuclear dimension

Completely positive approximation property:

approximately commuting in point-||.||, i.e., $||\phi(\psi(a)) - a|| < \epsilon$ for all *a* in a finite set *F*.

Nuclear dimension

Nuclear dimension at most *n* (dim_{*nuc*} $A \le n$) (Kirchberg–Winter '04, Winter–Zacharias '10):

approximately commuting in point-||.||, i.e., $||\phi(\psi(a)) - a|| < \epsilon$ for all *a* in a finite set *F*.

 ϕ is (n + 1)-colourable: $F = F_0 \oplus \cdots \oplus F_n$ such that $\phi|_{F_i}$ is c.p.c. and orthogonality-preserving (aka order zero). $\chi_{Y} = \mathcal{D}$ $\chi_{Y} \in F_i$ Eg. dim_{nuc} $C(X) = \dim X$.

Equivalence of finite nuclear dimension and \mathcal{Z} -stability

Theorem

If *A* is a simple separable nuclear C*-algebra, then *A* is \mathbb{Z} -stable iff dim_{*nuc*} $A < \infty$. (=> $d_{\text{im}_{\text{nuc}}} A \leq 1$

- Winter, '10, '12: $\dim_{nuc} A < \infty \Rightarrow A \cong A \otimes \mathcal{Z}$.
- Using Kirchberg–Phillips classification: $A \cong A \otimes \mathcal{Z} \Rightarrow \dim_{nuc} A < \infty$, if $T(A) = \emptyset$. (A is infinite)
- Matui–Sato, '14: $A \cong A \otimes \mathcal{Z} \Rightarrow \dim_{nuc} A < \infty$, assuming unique trace and quasidiagonality.
- Sato–White–Winter '15: $A \cong A \otimes \mathcal{Z} \Rightarrow \dim_{nuc} A < \infty$, assuming unique trace.
- Bosa–Brown–Sato–T–White–Winter '19: $A \cong A \otimes \mathcal{Z} \Rightarrow \dim_{nuc} A < \infty$, if T(A) is a Bauer simplex.
- CETWW '21: $A \cong A \otimes \mathcal{Z} \Rightarrow \dim_{nuc} A < \infty$ (nonunital case: Castillejos–Evington '20).

Applications

Classification again:

Theorem

Simple separable unital C*-algebras with finite nuclear dimension which satisfy the UCT are classified by K-theory and traces.

It turns out that \mathcal{Z} -stability often easier than dim_{*nuc*} $< \infty$. If *G* is countable and $G \curvearrowright X$ is a free minimal action on a finite dim. metrizable compact space then $C(X) \rtimes G$ is \mathcal{Z} -stable (hence classifiable) if:

- Kerr–Szabó '20: *G* has subexponential growth;
- Kerr-Naryshkin '21: *G* is elementary amenable;
- Conley–Jackson–Kerr–Marks–Seward–Tucker-Drop '18: *G* is amenable, for a generic action;
- **Question**: for all amenable groups?
- Niu '19: weakening $\dim(X) < \infty$ to $\operatorname{mdim}(G \frown X) = 0$, and $G = \mathbb{Z}^d$.

 \bigtriangledown Strongly Self-absorbing : 700 $D \rightarrow D = 1 \leq D = P$ 2 ∞ is a. u.e. to an isomorphism ((Cantor set) X