Nuclear dimension and \mathcal{Z}-stability of simple C*-algebras

Aaron Tikuisis

University of Ottawa

NYC NCG seminar

Joint work with Jorge Castillejos, Sam Evington, Stuart White, and Wilhelm Winter.

Outline

- Background/motivation - classification of C^{*}-algebras, funny examples.
- The Toms-Winter conjecture.
- The Jiang-Su algebra \mathcal{Z}, and \mathcal{Z}-stability.
- Nuclear dimension.
- Main result and applications.

Background: classification of C*-algebras

Conjecture (Elliott, early '90s)

Simple separable nuclear C*-algebras are classified by K-theory and traces.

If A, B are two simple separable nuclear C^{*}-algebras, and there is an isomorphism of their invariants (consisting of ordered K-theory, traces, and the pairing between K_{0} and traces) then $A \cong B$.

More generally, it was hoped that the structure of nuclear C^{*}-algebras would mimic the nice structure of von Neumann algebras, with just a bit of extra topological bookkeeping.

Background: classification of C*-algebras

Examples of unusual C*-algebras soon appeared.

- Villadsen, '98: A simple separable unital nuclear (in fact,

- Rørdam, '97: A simple separable unital nuclear (in fact, AH) C^{*}-algebra A such that A is not stable but $M_{2}(A)$ is.
- Villadsen, '99: A simple separable unital nuclear (in fact, AH) C^{*}-algebra which is finite but has stable rank >1.
- Rørdam, '03: A simple separable unital nuclear C^{*}-algebra which contains both an infinite and a finite projection. $\frac{V Q T}{a}$ like
- Toms, '08: A pair of simple separable unital nuclear (in $\ \underset{N a, ~}{\infty}$ fact, AH) C^{*}-algebras A, B which refute the Elliott conjecture.

The Toms-Winter regularity conjecture

Goal: separate the wheat from the chaff, within the silo of simple nuclear C^{*}-algebras.

Conjecture (Toms and Winter, late '00s)

Among simple, separable, nuclear, unital C^{*}-algebras, the following properties coincide:
(i) Strict comparison of positive elements. / to shaw $A \nsubseteq B$
(ii) \mathcal{Z}-stability $(A \cong A \otimes \mathcal{Z}$ where \mathcal{Z} is the Jiang-Su algebra).
(iii) Finite nuclear dimension $\left(\operatorname{dim}_{n u c} A<\infty\right)$.

The Jiang-Su algebra, \mathcal{Z}

Consider first the CAR algebra:
$M_{2}=$

The Jiang-Su algebra, \mathcal{Z}

Consider first the CAR algebra:
M_{4}

The Jiang-Su algebra, \mathcal{Z}

Consider first the CAR algebra:
$M_{8}=$

The Jiang-Su algebra, \mathcal{Z}

Consider first the CAR algebra:
$M_{2 \infty}$

$$
\begin{aligned}
& \quad M_{2 \infty}=\overline{M_{2}(\mathbb{C})^{\otimes \infty}}\|\cdot\| \\
& M_{3 \infty} \not \approx M_{2 \infty} \\
& M_{3^{\infty}}\left(\otimes M_{2 \infty} \not \approx M_{3 \infty \infty}\right.
\end{aligned}
$$

$\mathcal{Z}:=\underset{\longrightarrow}{\lim } \mathcal{Z}_{2 \infty, 3^{\infty}}$.

$$
\mathcal{Z}:=\underset{\longrightarrow}{\lim } \mathcal{Z}_{2 \infty} \infty, 3^{\infty} .
$$

$$
C^{\text {Vev, nontrivial! }}
$$

Simple, unique trace, $\mathcal{Z} \cong \mathcal{Z} \otimes \mathcal{Z} \cong \mathcal{Z}^{\otimes \infty}$.

$$
\begin{aligned}
& \mathcal{Z}_{2 \infty, 3^{\infty}}:=\left\{f \in C\left([0,1] \mid M_{2 \infty} \otimes M_{3 \infty}\right) \mid f(0) \in 1_{2 \infty} \otimes M_{3 \infty},\right. \\
& \left.f(1) \in M_{2 \infty} \otimes 1_{3 \infty}\right\}
\end{aligned}
$$

Jiang-Su stability

A is \mathcal{Z}-stable if $A \cong A \otimes \mathcal{Z}$.

Theorem (McDuff, Kirchberg, Rørdam, Toms-Winter,
 Dadarlat-Toms)

Let A be a unital C^{*}-algebra. The following are equivalent.
(i) A is \mathcal{Z}-stable.
(ii) \mathcal{Z} embeds unitally into $A_{\infty} \cap A^{\prime}$ (where $\left.A_{\infty}:=l_{\infty}(\mathbb{N}, A) / c_{0}(\mathbb{N}, A)\right)$.
(iii) There is a subhomogeneous C^{*}-algebra with no characters, which embeds unitally into $A_{\infty} \cap A^{\prime}$.

Nuclear dimension

Partition of unity (topology)

Lebesgue covering
Noncommutative POU dimension

Nuclear dimension

Nuclear dimension

Completely positive approximation property:

$$
F \text { f.d. }
$$

$$
\begin{gathered}
\text { (Equivelent to } \\
\text { nuclearity } \\
\text { of A.) }
\end{gathered}
$$

approximately commuting in point-\|.\|, i.e., $\|\phi(\psi(a))-a\|<\epsilon$ for all a in a finite set F.

Nuclear dimension at most $n\left(\operatorname{dim}_{n u c} A \leq n\right)$ (Kirchberg-Winter '04, Winter-Zacharias '10):

approximately commuting in point- $\|$.$\| , i.e., \|\phi(\psi(a))-a\|<\epsilon$ for all a in a finite set F.
ϕ is $(n+1)$-colourable: $F=F_{0} \oplus \cdots \oplus F_{n}$ such that $\left.\phi\right|_{F_{i}}$ is c.p.c. and orthogonality-preserving (aka order zero). $\quad x y=0 \quad x, y \in F_{i}$

Eg. $\operatorname{dim}_{n u c} C(X)=\operatorname{dim} X$.

$$
\phi(x) \phi(y)=0
$$

Equivalence of finite nuclear dimension and Z-stability

Theorem

If A is a simple separable nuclear C^{*}-algebra, then A is \mathcal{Z}-stable iff $\operatorname{dim}_{\text {nuc }} A<\infty .\left(\Rightarrow \operatorname{dim}_{\text {nuc }} A \leq 1\right.$

- Winter, '10, '12: $\operatorname{dim}_{n u c} A<\infty \Rightarrow A \cong A \otimes \mathcal{Z}$.
- Using Kirchberg-Phillips classification:

$$
A \cong A \otimes \mathcal{Z} \Rightarrow \operatorname{dim}_{n u c} A<\infty \text {, if } T(A)=\emptyset \text {. (} A \text { is infinite) }
$$

- Matui-Sato, '14: $A \cong A \otimes \mathcal{Z} \Rightarrow \operatorname{dim}_{n u c} A<\infty$, assuming unique trace and quasidiagonality.
- Sato-White-Winter '15: $A \cong A \otimes \mathcal{Z} \Rightarrow \operatorname{dim}_{n u c} A<\infty$, assuming unique trace.
- Bosa-Brown-Sato-T-White-Winter '19:
$A \cong A \otimes \mathcal{Z} \Rightarrow \operatorname{dim}_{n u c} A<\infty$, if $T(A)$ is a Bauer simplex.
- CETWW '21: $A \cong A \otimes \mathcal{Z} \Rightarrow \operatorname{dim}_{n u c} A<\infty$ (nonunital case: Castillejos-Evington '20).

Applications

Classification again:

Theorem

Simple separable unital C*-algebras with finite nuclear dimension which satisfy the UCT are classified by K-theory and traces.

It turns out that \mathcal{Z}-stability often easier than $\operatorname{dim}_{n u c}<\infty$. If G is countable and $G \curvearrowright X$ is a free minimal action on a finite dim. metrizable compact space then $C(X) \rtimes G$ is \mathcal{Z}-stable (hence classifiable) if:

- Kerr-Szabó '20: G has subexponential growth;
- Kerr-Naryshkin '21: G is elementary amenable;
- Conley-Jackson-Kerr-Marks-Seward-Tucker-Drop '18: G is amenable, for a generic action;
- Question: for all amenable groups?
- Niu '19: weakening $\operatorname{dim}(X)<\infty$ to $\operatorname{mdim}(G \curvearrowright X)=0$, and $G=\mathbb{Z}^{d}$.

