Dimension reduction and Jiang-Su stability

Aaron Tikuisis a.tikuisis@uni-muenster.de

University of Münster

Workshop on C*-algebras, dynamics, and classification

・過 と く ヨ と く ヨ と

There exist 2 non-isomorphic simple, separable, unital, nuclear C^* -algebras with the same *K*-theory and traces.

Conjecture

For a simple, separable, unital, nonelementary, nuclear C^* -algebra A in the UCT class, the following are equivalent

- (i) A is \mathcal{Z} -stable;
- (ii) A has finite nuclear dimension;
- (iii) A has strict comparison of positive elements;
- (iv) *A* is an inductive limit of nice building blocks (2-NCCW complexes, direct sums of $M_n \otimes \mathcal{O}_m \otimes C(\mathbb{T})$).

Moreover, the algebras satisfying (i)-(iv) are classifiable.

There exist 2 non-isomorphic simple, separable, unital, nuclear C^* -algebras with the same *K*-theory and traces.

Conjecture

For a simple, separable, unital, nonelementary, nuclear C^* -algebra A in the UCT class, the following are equivalent:

- (i) A is \mathcal{Z} -stable;
- (ii) A has finite nuclear dimension;
- (iii) A has strict comparison of positive elements;
- (iv) *A* is an inductive limit of nice building blocks (2-NCCW complexes, direct sums of $M_n \otimes \mathcal{O}_m \otimes C(\mathbb{T})$).

Moreover, the algebras satisfying (i)-(iv) are classifiable.

There exist 2 non-isomorphic simple, separable, unital, nuclear C^* -algebras with the same *K*-theory and traces.

Conjecture

For a simple, separable, unital, nonelementary, nuclear C^* -algebra A in the UCT class, the following are equivalent:

- (i) A is Z-stable;
- (ii) A has finite nuclear dimension;
- (iii) A has strict comparison of positive elements;
- (iv) *A* is an inductive limit of nice building blocks (2-NCCW complexes, direct sums of $M_n \otimes \mathcal{O}_m \otimes C(\mathbb{T})$).

Moreover, the algebras satisfying (i)-(iv) are classifiable.

There exist 2 non-isomorphic simple, separable, unital, nuclear C^* -algebras with the same *K*-theory and traces.

Conjecture

For a simple, separable, unital, nonelementary, nuclear C^* -algebra A in the UCT class, the following are equivalent:

- (i) A is \mathcal{Z} -stable;
- (ii) A has finite nuclear dimension;
- (iii) A has strict comparison of positive elements;
- (iv) *A* is an inductive limit of nice building blocks (2-NCCW complexes, direct sums of $M_n \otimes \mathcal{O}_m \otimes C(\mathbb{T})$).

Moreover, the algebras satisfying (i)-(iv) are classifiable.

There exist 2 non-isomorphic simple, separable, unital, nuclear C^* -algebras with the same *K*-theory and traces.

Conjecture

For a simple, separable, unital, nonelementary, nuclear C^* -algebra A in the UCT class, the following are equivalent:

- (i) A is \mathcal{Z} -stable;
- (ii) A has finite nuclear dimension;
- (iii) A has strict comparison of positive elements;
- (iv) *A* is an inductive limit of nice building blocks (2-NCCW complexes, direct sums of $M_n \otimes \mathcal{O}_m \otimes C(\mathbb{T})$).

Moreover, the algebras satisfying (i)-(iv) are classifiable.

There exist 2 non-isomorphic simple, separable, unital, nuclear C^* -algebras with the same *K*-theory and traces.

Conjecture

For a simple, separable, unital, nonelementary, nuclear C^* -algebra A in the UCT class, the following are equivalent:

- (i) A is \mathcal{Z} -stable;
- (ii) A has finite nuclear dimension;
- (iii) A has strict comparison of positive elements;
- (iv) *A* is an inductive limit of nice building blocks (2-NCCW complexes, direct sums of $M_n \otimes \mathcal{O}_m \otimes C(\mathbb{T})$).

Moreover, the algebras satisfying (i)-(iv) are classifiable.

There exist 2 non-isomorphic simple, separable, unital, nuclear C^* -algebras with the same *K*-theory and traces.

Conjecture

For a simple, separable, unital, nonelementary, nuclear C^* -algebra A in the UCT class, the following are equivalent:

- (i) A is Z-stable;
- (ii) A has finite nuclear dimension;
- (iii) A has strict comparison of positive elements;
- (iv) *A* is an inductive limit of nice building blocks (2-NCCW complexes, direct sums of $M_n \otimes \mathcal{O}_m \otimes C(\mathbb{T})$).

Moreover, the algebras satisfying (i)-(iv) are classifiable.

There exist 2 non-isomorphic simple, separable, unital, nuclear C^* -algebras with the same *K*-theory and traces.

Conjecture

For a simple, separable, unital, nonelementary, nuclear C^* -algebra A in the UCT class, the following are equivalent:

- (i) A is Z-stable;
- (ii) A has finite nuclear dimension;
- (iii) A has strict comparison of positive elements;
- (iv) *A* is an inductive limit of nice building blocks (2-NCCW complexes, direct sums of $M_n \otimes \mathcal{O}_m \otimes C(\mathbb{T})$).

Moreover, the algebras satisfying (i)-(iv) are classifiable.

There exist 2 non-isomorphic simple, separable, unital, nuclear C^* -algebras with the same *K*-theory and traces.

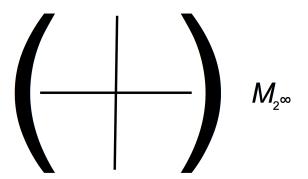
Conjecture

For a simple, separable, unital, nonelementary, nuclear C^* -algebra A in the UCT class, the following are equivalent:

- (i) A is Z-stable;
- (ii) A has finite nuclear dimension;
- (iii) A has strict comparison of positive elements;
- (iv) *A* is an inductive limit of nice building blocks (2-NCCW complexes, direct sums of $M_n \otimes \mathcal{O}_m \otimes C(\mathbb{T})$).

Moreover, the algebras satisfying (i)-(iv) are classifiable.

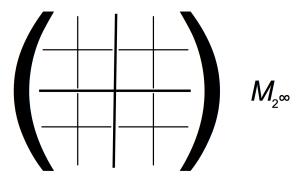
UHF algebras:



 $M_{n^{\infty}}$ -stable algebras (of the form $A \otimes M_{n^{\infty}}$) are very regular: UHF adds uniformity.

(日本)(日本)(日本)

UHF algebras:



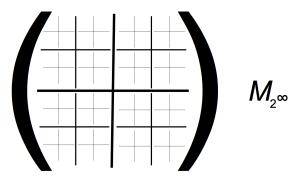
 $M_{n^{\infty}}$ -stable algebras (of the form $A \otimes M_{n^{\infty}}$) are very regular: UHF adds uniformity.

★ E → ★ E →

э

< 🗇 🕨

UHF algebras:

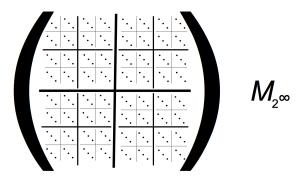


 $M_{n^{\infty}}$ -stable algebras (of the form $A \otimes M_{n^{\infty}}$) are very regular: UHF adds uniformity.

< 🗇 🕨

→ Ξ → < Ξ →</p>

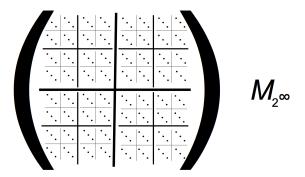
UHF algebras:



 $M_{n^{\infty}}$ -stable algebras (of the form $A \otimes M_{n^{\infty}}$) are very regular: UHF adds uniformity.

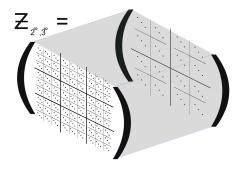
.≣⇒

UHF algebras:



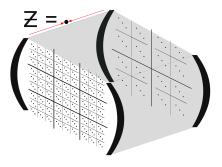
 $M_{n^{\infty}}$ -stable algebras (of the form $A \otimes M_{n^{\infty}}$) are very regular: UHF adds uniformity.

Jiang-Su algebra:



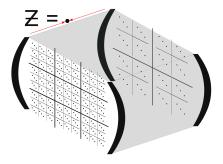
 \mathcal{Z} is a simple inductive limit of $\mathcal{Z}_{2^{\infty},3^{\infty}}$, with unique trace. Strongly self-absorbing; \mathcal{Z} -stability adds uniformity. $K_*(\mathcal{Z}) = K_*(\mathbb{C})$, so \mathcal{Z} -stability is much less restrictive than UHF-stability.

Jiang-Su algebra:



 \mathcal{Z} is a simple inductive limit of $\mathcal{Z}_{2^{\infty},3^{\infty}}$, with unique trace. Strongly self-absorbing; \mathcal{Z} -stability adds uniformity. $K_*(\mathcal{Z}) = K_*(\mathbb{C})$, so \mathcal{Z} -stability is much less restrictive than UHF-stability.

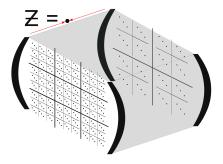
Jiang-Su algebra:



 \mathcal{Z} is a simple inductive limit of $\mathcal{Z}_{2^{\infty},3^{\infty}}$, with unique trace.

Strongly self-absorbing; \mathcal{Z} -stability adds uniformity. $K_*(\mathcal{Z}) = K_*(\mathbb{C})$, so \mathcal{Z} -stability is much less restrictive than UHF-stability.

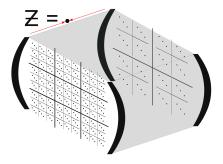
Jiang-Su algebra:



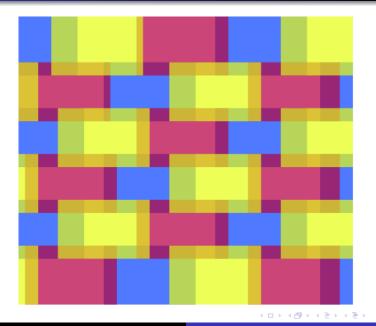
 \mathcal{Z} is a simple inductive limit of $\mathcal{Z}_{2^{\infty},3^{\infty}}$, with unique trace. Strongly self-absorbing; \mathcal{Z} -stability adds uniformity.

 $K_*(\mathcal{Z}) = K_*(\mathbb{C})$, so \mathcal{Z} -stability is much less restrictive than UHF-stability.

Jiang-Su algebra:



 \mathcal{Z} is a simple inductive limit of $\mathcal{Z}_{2^{\infty},3^{\infty}}$, with unique trace. Strongly self-absorbing; \mathcal{Z} -stability adds uniformity. $K_*(\mathcal{Z}) = K_*(\mathbb{C})$, so \mathcal{Z} -stability is much less restrictive than UHF-stability.



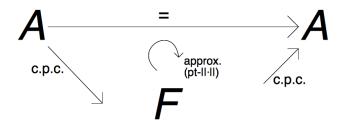
Aaron Tikuisis Dimension reduction and Jiang-Su stability

æ

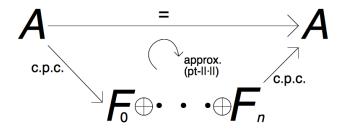
Decomposition rank (Kirchberg-Winter '04) A C^* -alg. A has decomposition rank $\leq n$ if

크 > < 크 >

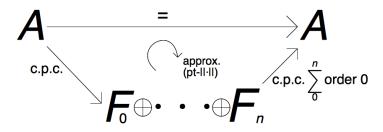
Decomposition rank (Kirchberg-Winter '04) A C^* -alg. A has decomposition rank $\leq n$ if



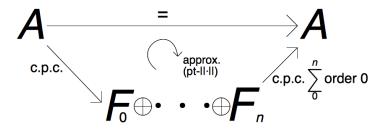
Decomposition rank (Kirchberg-Winter '04) A C^* -alg. A has decomposition rank $\leq n$ if



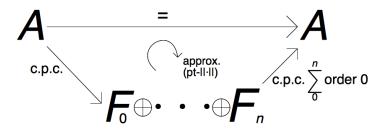
Decomposition rank (Kirchberg-Winter '04) A C^* -alg. A has decomposition rank $\leq n$ if



Decomposition rank (Kirchberg-Winter '04) A C^* -alg. A has decomposition rank $\leq n$ if



Decomposition rank (Kirchberg-Winter '04) A C^* -alg. A has decomposition rank $\leq n$ if

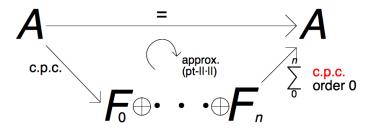


Nuclear dimension is defined by a slight tweaking of the definition of decomposition rank.

While $dr(A) < \infty$ implies A is quasidiagonal, $\dim_{nuc}(\mathcal{O}_n) = 1$ (for $n < \infty$) for example.

Nuclear dimension (Winter-Zacharias '10)

A C^* -alg. A has decomposition rank nuclear dimension $\leq n$ if

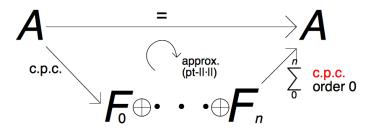


Nuclear dimension is defined by a slight tweaking of the definition of decomposition rank.

While $dr(A) < \infty$ implies A is quasidiagonal, $\dim_{nuc}(\mathcal{O}_n) = 1$ (for $n < \infty$) for example.

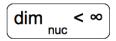
Nuclear dimension (Winter-Zacharias '10)

A C^* -alg. A has decomposition rank nuclear dimension $\leq n$ if



Nuclear dimension is defined by a slight tweaking of the definition of decomposition rank.

While $dr(A) < \infty$ implies A is quasidiagonal, $\dim_{nuc}(\mathcal{O}_n) = 1$ (for $n < \infty$) for example.



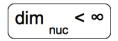
strict comparison

special inductive limit structure

ヘロア 人間 アメヨア 人口 ア

ъ

Aaron Tikuisis Dimension reduction and Jiang-Su stability

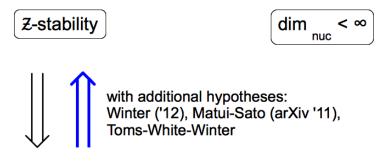


strict comparison

special inductive limit structure

ヘロア 人間 アメヨア 人口 ア

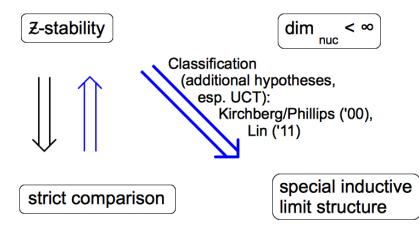
ъ



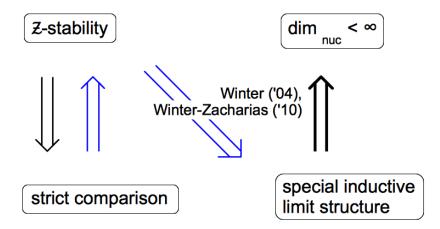
strict comparison

special inductive limit structure

くロト (過) (目) (日)

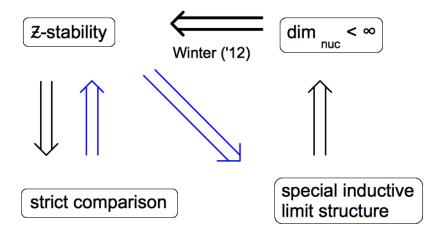


イロト イポト イヨト イヨト



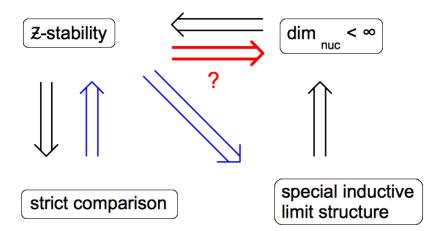
→ Ξ → < Ξ →</p>

< 🗇 🕨



★ Ξ → ★ Ξ →

< 🗇 🕨



→ Ξ → < Ξ →</p>

< 🗇 🕨

 \mathcal{Z} -stable $\stackrel{?}{\Rightarrow}$ finite nuclear dimension is a question of dimension reduction, which has some history.

Toms' example (cf. Villadsen)

There exists a simple C^* -algebra A with infinite nuclear dimension, yet $dr(A \otimes Z) \leq 1$.

Gong's reduction theorem

If *A* is a simple AH algebra with very slow dimension growth then it is a limit of algebras with topological dimension at most three.

イロト イポト イヨト イヨト

 \mathcal{Z} -stable $\stackrel{?}{\Rightarrow}$ finite nuclear dimension is a question of dimension reduction, which has some history.

Toms' example (cf. Villadsen)

There exists a simple C^* -algebra A with infinite nuclear dimension, yet $dr(A \otimes \mathcal{Z}) \leq 1$.

Gong's reduction theorem

If *A* is a simple AH algebra with very slow dimension growth then it is a limit of algebras with topological dimension at most three.

ヘロト ヘワト ヘビト ヘビト

 \mathcal{Z} -stable $\stackrel{?}{\Rightarrow}$ finite nuclear dimension is a question of dimension reduction, which has some history.

Toms' example (cf. Villadsen)

There exists a simple C^* -algebra A with infinite nuclear dimension, yet $dr(A \otimes \mathcal{Z}) \leq 1$.

Gong's reduction theorem

If *A* is a simple AH algebra with very slow dimension growth then it is a limit of algebras with topological dimension at most three.

 \mathcal{Z} -stable $\stackrel{?}{\Rightarrow}$ finite nuclear dimension is a question of dimension reduction, which has some history.

Gong's reduction theorem

If *A* is a simple AH algebra with very slow dimension growth then it is a limit of algebras with topological dimension at most three.

Theorem (Rørdam-Kirchberg '04)

For any space X, $C_0(X, \mathbb{C} \cdot 1_{\mathcal{O}_2}) \subset C(X, \mathcal{O}_2)$ factors (exactly!) $C_0(X) \to C_0(Y) \to C(X, \mathcal{O}_2)$, where dim Y < 1.

This highly relies on $K_*(\mathcal{O}_2) = 0$.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

 \mathcal{Z} -stable $\stackrel{?}{\Rightarrow}$ finite nuclear dimension is a question of dimension reduction, which has some history.

Gong's reduction theorem

If *A* is a simple AH algebra with very slow dimension growth then it is a limit of algebras with topological dimension at most three.

Theorem (Rørdam-Kirchberg '04)

For any space X, $C_0(X, \mathbb{C} \cdot 1_{\mathcal{O}_2}) \subset C(X, \mathcal{O}_2)$ factors (exactly!) $C_0(X) \to C_0(Y) \to C(X, \mathcal{O}_2)$,

where dim $Y \leq 1$.

This highly relies on $K_*(\mathcal{O}_2) = 0$.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Theorem (T-Winter '12)

 $\dim_{nuc} C(X, \mathcal{Z}) \leq 2.$

In fact, dr $C(X, \mathbb{Z}) \leq 2$.

Corollary

Every \mathcal{Z} -stable *AH* algebra *A* satisfies dr *A* \leq 2.

Aaron Tikuisis Dimension reduction and Jiang-Su stability

ヘロン ヘアン ヘビン ヘビン

Theorem (T-Winter '12)

 $\dim_{nuc} C(X, \mathcal{Z}) \leq 2.$

In fact, dr $C(X, \mathcal{Z}) \leq 2$.

Corollary

Every \mathcal{Z} -stable *AH* algebra *A* satisfies dr *A* \leq 2.

Aaron Tikuisis Dimension reduction and Jiang-Su stability

・ロト ・ 理 ト ・ ヨ ト ・

Theorem (T-Winter '12)

 $\dim_{nuc} C(X, \mathcal{Z}) \leq 2.$

In fact, dr $C(X, \mathcal{Z}) \leq 2$.

Corollary

Every \mathcal{Z} -stable *AH* algebra *A* satisfies dr $A \leq 2$.

Aaron Tikuisis Dimension reduction and Jiang-Su stability

イロト 不得 とくほと くほとう

A key point in the proof is establishing the following:

_emma

 $C_0(X, \mathbb{C} \cdot 1_{n^{\infty}}) \subset C_0(X, M_{n^{\infty}})$ can be approx. factorized as

 $C_0(X) \stackrel{\psi}{\longrightarrow} C_0(Y, \mathbb{C} \cdot 1_{\mathcal{O}_2}) \oplus F \subset C_0(Y, \mathcal{O}_2) \oplus F \stackrel{\phi}{\longrightarrow} C_0(X, M_{n^{\infty}}),$

where ψ , ϕ are c.p.c. and ϕ is order zero when restricted to $C_0(Y, \mathcal{O}_2)$ or F.

In fact, the result follows (at least with $M_{n^{\infty}}$ in place of \mathcal{Z}) from this and Kirchberg-Rørdam's result for $C_0(Y) \subset C_0(Y, \mathcal{O}_2)$.

A key point in the proof is establishing the following:

Lemma

 $C_0(X, \mathbb{C} \cdot \mathbf{1}_{n^{\infty}}) \subset C_0(X, M_{n^{\infty}})$ can be approx. factorized as

 $C_0(X) \stackrel{\psi}{\longrightarrow} C_0(Y, \mathbb{C} \cdot 1_{\mathcal{O}_2}) \oplus F \subset C_0(Y, \mathcal{O}_2) \oplus F \stackrel{\phi}{\longrightarrow} C_0(X, M_{n^{\infty}}),$

where ψ , ϕ are c.p.c. and ϕ is order zero when restricted to $C_0(Y, \mathcal{O}_2)$ or F.

In fact, the result follows (at least with $M_{n^{\infty}}$ in place of \mathcal{Z}) from this and Kirchberg-Rørdam's result for $C_0(Y) \subset C_0(Y, \mathcal{O}_2)$.

A key point in the proof is establishing the following:

Lemma

 $C_0(X, \mathbb{C} \cdot \mathbf{1}_{n^{\infty}}) \subset C_0(X, M_{n^{\infty}})$ can be approx. factorized as

 $C_0(X) \stackrel{\psi}{\longrightarrow} C_0(Y, \mathbb{C} \cdot 1_{\mathcal{O}_2}) \oplus F \subset C_0(Y, \mathcal{O}_2) \oplus F \stackrel{\phi}{\longrightarrow} C_0(X, M_{n^{\infty}}),$

where ψ , ϕ are c.p.c. and ϕ is order zero when restricted to $C_0(Y, \mathcal{O}_2)$ or F.

In fact, the result follows (at least with $M_{n^{\infty}}$ in place of \mathcal{Z}) from this and Kirchberg-Rørdam's result for $C_0(Y) \subset C_0(Y, \mathcal{O}_2)$.

A key point in the proof is establishing the following:

Lemma

 $C_0(X, \mathbb{C} \cdot 1_{n^{\infty}}) \subset C_0(X, M_{n^{\infty}})$ can be approx. factorized as

$$C_0(X) \stackrel{\psi}{\longrightarrow} C_0(Y, \mathbb{C} \cdot 1_{\mathcal{O}_2}) \oplus F \subset C_0(Y, \mathcal{O}_2) \oplus F \stackrel{\phi}{\longrightarrow} C_0(X, M_{n^{\infty}}),$$

where ψ , ϕ are c.p.c. and ϕ is order zero when restricted to $C_0(Y, \mathcal{O}_2)$ or F.

In fact, the result follows (at least with $M_{n^{\infty}}$ in place of \mathcal{Z}) from this and Kirchberg-Rørdam's result for $C_0(Y) \subset C_0(Y, \mathcal{O}_2)$.

・ロト ・ ア・ ・ ヨト ・ ヨト

A key point in the proof is establishing the following:

Lemma

 $C_0(X, \mathbb{C} \cdot \mathbf{1}_{n^{\infty}}) \subset C_0(X, M_{n^{\infty}})$ can be approx. factorized as

 $\begin{array}{ll} C_0(X) \stackrel{\psi}{\longrightarrow} C_0(Y, \mathbb{C} \cdot 1_{\mathcal{O}_2}) \oplus F \subset C_0(Y, \mathcal{O}_2) \oplus F \stackrel{\phi}{\longrightarrow} C_0(X, M_{n^{\infty}}), \\ \text{where } \psi, \phi \text{ are c.p.c. and } \phi \text{ is order zero when restricted to} \\ C_0(Y, \mathcal{O}_2) \text{ or } F. \end{array}$

Edit added after the talk: The lemma may be false as stated for general (compact Hausdorff) *X* (the last line in the next slide isn't accurate). However, it is true for $X = [0, 1]^d$, and the idea of local approximation does allow the theorem (with \mathcal{Z} replaced by $M_{n^{\infty}}$) to be proven using the lemma in this weakened form.

Lemma

 $\begin{array}{ccc} C_0(X,\mathbb{C}\cdot 1_{n^{\infty}})\subset C_0(X,M_{n^{\infty}})_{\infty} \text{ approx. factorizes:} \\ C_0(X) & \stackrel{\text{c.p.c.}}{\longrightarrow} & C_0(Y)\oplus F\subset C_0(Y,\mathcal{O}_2)\oplus F \stackrel{\text{2-colour}}{\longrightarrow} & C_0(X,M_{n^{\infty}})_{\infty}. \end{array}$

Reduce to the case X = [0, 1]:

If we have it for X = [0, 1], then we take products to get it for $X = [0, 1]^d$.

(No restriction demanded for dim *Y*; triviality of \mathcal{O}_2 -fibred $C_0(Y)$ -algebras also used.)

General X reduces to $[0, 1]^d$ by local approximation.

ヘロト ヘアト ヘビト ヘビト

Lemma

$$C_0(X, \mathbb{C} \cdot 1_{n^{\infty}}) \subset C_0(X, M_{n^{\infty}})_{\infty}$$
 approx. factorizes:
 $C_0(X) \xrightarrow{\text{c.p.c.}} C_0(Y) \oplus F \subset C_0(Y, \mathcal{O}_2) \oplus F \xrightarrow{2\text{-colour}} C_0(X, M_{n^{\infty}})_{\infty}.$

Reduce to the case X = [0, 1]:

If we have it for X = [0, 1], then we take products to get it for $X = [0, 1]^d$.

(No restriction demanded for dim Y; triviality of \mathcal{O}_2 -fibred $C_0(Y)$ -algebras also used.)

General X reduces to $[0, 1]^d$ by local approximation.

ヘロト 人間 ト ヘヨト ヘヨト

Lemma

$$C_0(X, \mathbb{C} \cdot 1_{n^{\infty}}) \subset C_0(X, M_{n^{\infty}})_{\infty}$$
 approx. factorizes:
 $C_0(X) \stackrel{\text{c.p.c.}}{\longrightarrow} C_0(Y) \oplus F \subset C_0(Y, \mathcal{O}_2) \oplus F \stackrel{2\text{-colour}}{\longrightarrow} C_0(X, M_{n^{\infty}})_{\infty}.$

Reduce to the case X = [0, 1]:

If we have it for X = [0, 1], then we take products to get it for $X = [0, 1]^d$.

(No restriction demanded for dim Y; triviality of \mathcal{O}_2 -fibred $C_0(Y)$ -algebras also used.)

General X reduces to $[0, 1]^d$ by local approximation.

イロト 不得 とくほ とくほとう

Lemma

$$C_0(X, \mathbb{C} \cdot 1_{n^{\infty}}) \subset C_0(X, M_{n^{\infty}})_{\infty}$$
 approx. factorizes:
 $C_0(X) \stackrel{\text{c.p.c.}}{\longrightarrow} C_0(Y) \oplus F \subset C_0(Y, \mathcal{O}_2) \oplus F \stackrel{2\text{-colour}}{\longrightarrow} C_0(X, M_{n^{\infty}})_{\infty}.$

Reduce to the case X = [0, 1]:

If we have it for X = [0, 1], then we take products to get it for $X = [0, 1]^d$.

(No restriction demanded for dim *Y*; triviality of \mathcal{O}_2 -fibred $C_0(Y)$ -algebras also used.)

General X reduces to $[0, 1]^d$ by local approximation.

ヘロン 人間 とくほ とくほ とう

Lemma

$$\begin{array}{ccc} C_0(X, \mathbb{C} \cdot 1_{n^{\infty}}) \subset C_0(X, M_{n^{\infty}})_{\infty} \text{ approx. factorizes:} \\ C_0(X) & \stackrel{\text{c.p.c.}}{\longrightarrow} & C_0(Y) \oplus F \subset C_0(Y, \mathcal{O}_2) \oplus F \stackrel{2\text{-colour}}{\longrightarrow} & C_0(X, M_{n^{\infty}})_{\infty}. \end{array}$$

Reduce to the case X = [0, 1]:

If we have it for X = [0, 1], then we take products to get it for $X = [0, 1]^d$.

(No restriction demanded for dim *Y*; triviality of \mathcal{O}_2 -fibred $C_0(Y)$ -algebras also used.)

General X reduces to $[0, 1]^d$ by local approximation.

ヘロト ヘアト ヘビト ヘビト

Lemma

$$\begin{array}{ccc} C_0(X,\mathbb{C}\cdot 1_{n^{\infty}})\subset C_0(X,M_{n^{\infty}})_{\infty} \text{ approx. factorizes:} \\ C_0(X) & \stackrel{\text{c.p.c.}}{\longrightarrow} & C_0(Y)\oplus F\subset C_0(Y,\mathcal{O}_2)\oplus F & \stackrel{\text{2-colour}}{\longrightarrow} & C_0(X,M_{n^{\infty}})_{\infty}. \end{array}$$

 $C_0((0, 1], \mathcal{O}_2)$ is quasidiagonal: $\exists \beta : C_0((0, 1], \mathcal{O}_2) \rightarrow M_n$ c.p.c., approx. monomorphism. Let $c \in C_0((0, 1])_+, \|c\| = 1$. WLOG,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Lemma

$$C_0(X, \mathbb{C} \cdot 1_{n^{\infty}}) \subset C_0(X, M_{n^{\infty}})_{\infty}$$
 approx. factorizes:
 $C_0(X) \xrightarrow{\text{c.p.c.}} C_0(Y) \oplus F \subset C_0(Y, \mathcal{O}_2) \oplus F \xrightarrow{2\text{-colour}} C_0(X, M_{n^{\infty}})_{\infty}.$

 $C_0((0, 1], \mathcal{O}_2)$ is quasidiagonal:

 $\exists eta: C_0((0,1],\mathcal{O}_2)
ightarrow I$ c.p.c., approx. monomorphism. Let $c \in C_0((0,1])_+, \|c\| = 1.$ WLOG,

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Lemma

$$\begin{array}{ccc} C_0(X, \mathbb{C} \cdot 1_{n^{\infty}}) \subset C_0(X, M_{n^{\infty}})_{\infty} \text{ approx. factorizes:} \\ C_0(X) & \stackrel{\text{c.p.c.}}{\longrightarrow} & C_0(Y) \oplus F \subset C_0(Y, \mathcal{O}_2) \oplus F \stackrel{2\text{-colour}}{\longrightarrow} & C_0(X, M_{n^{\infty}})_{\infty}. \end{array}$$

 $C_0((0, 1], \mathcal{O}_2)$ is quasidiagonal: $\exists \beta : C_0((0, 1], \mathcal{O}_2) \to M_{n^k}$ c.p.c., approx. monomorphism.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Lemma

$$\begin{array}{ccc} C_0(X, \mathbb{C} \cdot 1_{n^{\infty}}) \subset C_0(X, M_{n^{\infty}})_{\infty} \text{ approx. factorizes:} \\ C_0(X) & \stackrel{\text{c.p.c.}}{\longrightarrow} & C_0(Y) \oplus F \subset C_0(Y, \mathcal{O}_2) \oplus F \stackrel{2\text{-colour}}{\longrightarrow} & C_0(X, M_{n^{\infty}})_{\infty}. \end{array}$$

 $C_0((0, 1], \mathcal{O}_2)$ is quasidiagonal: $\exists \beta : C_0((0, 1], \mathcal{O}_2) \rightarrow M_{n^k}$ c.p.c., approx. monomorphism. Let $c \in C_0((0, 1])_+, ||c|| = 1$. WLOG,

・ 同 ト ・ ヨ ト ・ ヨ ト …

Lemma

$$\begin{array}{ccc} C_0(X, \mathbb{C} \cdot 1_{n^{\infty}}) \subset C_0(X, M_{n^{\infty}})_{\infty} \text{ approx. factorizes:} \\ C_0(X) & \stackrel{\text{c.p.c.}}{\longrightarrow} & C_0(Y) \oplus F \subset C_0(Y, \mathcal{O}_2) \oplus F \stackrel{2\text{-colour}}{\longrightarrow} & C_0(X, M_{n^{\infty}})_{\infty}. \end{array}$$

 $C_0((0, 1], \mathcal{O}_2)$ is quasidiagonal: $\exists \beta : C_0((0, 1], \mathcal{O}_2) \rightarrow M_{n^k}$ c.p.c., approx. monomorphism. Let $c \in C_0((0, 1])_+$, $\|c\| = 1$. WLOG,

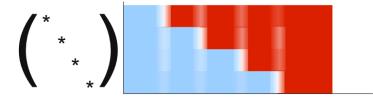
・ 同 ト ・ ヨ ト ・ ヨ ト …

Use β to produce an approximate order zero map $\alpha : C_0((0, 1]) \otimes C_0((0, 1], \mathcal{O}_2) \rightarrow C(X, M_{n^k}).$

Get orthogonal positive elements a_1 , a_2 such that $a_1 + a_2 + \alpha(c) = 1$.

Repeat, $2 \rightarrow m$ so that each a_i has small support.

イロト イポト イヨト イヨト

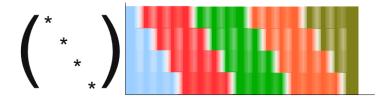


Use β to produce an approximate order zero map $\alpha : C_0((0, 1]) \otimes C_0((0, 1], \mathcal{O}_2) \rightarrow C(X, M_{n^k}).$

Get orthogonal positive elements a_1 , a_2 such that $a_1 + a_2 + \alpha(c) = 1$.

Repeat, $2 \rightarrow m$ so that each a_i has small support.

(本間) (本語) (本語)



Use β to produce an approximate order zero map $\alpha : C_0((0, 1]) \otimes C_0((0, 1], \mathcal{O}_2) \rightarrow C(X, M_{n^k}).$

Get orthogonal positive elements a_1 , a_2 such that $a_1 + a_2 + \alpha(c) = 1$.

Repeat, $2 \rightarrow m$ so that each a_i has small support.

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Want:

Lemma

 $\begin{array}{l} C_0(X, \mathbb{C} \cdot \mathbf{1}_{n^{\infty}}) \subset C_0(X, M_{n^{\infty}})_{\infty} \text{ approx. factorizes:} \\ C_0(X) \xrightarrow{\mathrm{c.p.c.}} C_0(Y) \oplus \mathbb{C}^m \subset C_0(Y, \mathcal{O}_2) \oplus \mathbb{C}^m \xrightarrow{2 \text{-colour}} C_0(X, M_{n^{\infty}}). \end{array}$

Have:

 $\alpha : C_0((0, 1], \mathcal{O}_2) \to C(X, M_{n^k})$ approx. order zero, $c \in C_0((0, 1], \mathcal{O}_2)_+$ contractive, $a_1, \ldots, a_m \in C(X, M_{n^k})_+$ orthogonal with small support such that

 $a_1 + \cdots + a_m + \alpha(c) = 1.$

Set $Y = X \times (0, 1]$, then use α, a_1, \ldots, a_m to define $C_0(Y, \mathcal{O}_2) \oplus \mathbb{C}^m \to C_0(X, M_{n^k})$.

Define the other map in a natural way, using c.

Want:

Lemma

 $\begin{array}{l} C_0(X, \mathbb{C} \cdot 1_{n^{\infty}}) \subset C_0(X, M_{n^{\infty}})_{\infty} \text{ approx. factorizes:} \\ C_0(X) \xrightarrow{\text{c.p.c.}} C_0(Y) \oplus \mathbb{C}^m \subset C_0(Y, \mathcal{O}_2) \oplus \mathbb{C}^m \xrightarrow{\text{2-colour}} C_0(X, M_{n^{\infty}}). \end{array}$

Have:

 $\alpha : C_0((0, 1], \mathcal{O}_2) \rightarrow C(X, M_{n^k})$ approx. order zero, $c \in C_0((0, 1], \mathcal{O}_2)_+$ contractive, $a_1, \ldots, a_m \in C(X, M_{n^k})_+$ orthogonal with small support such that

 $a_1 + \cdots + a_m + \alpha(c) = 1.$

Set $Y = X \times (0, 1]$, then use α, a_1, \ldots, a_m to define $C_0(Y, \mathcal{O}_2) \oplus \mathbb{C}^m \to C_0(X, M_{n^k})$.

Define the other map in a natural way, using c.

Want:

Lemma

 $\begin{array}{l} C_0(X, \mathbb{C} \cdot 1_{n^{\infty}}) \subset C_0(X, M_{n^{\infty}})_{\infty} \text{ approx. factorizes:} \\ C_0(X) \xrightarrow{\text{c.p.c.}} C_0(Y) \oplus \mathbb{C}^m \subset C_0(Y, \mathcal{O}_2) \oplus \mathbb{C}^m \xrightarrow{2\text{-colour}} C_0(X, M_{n^{\infty}}). \end{array}$

Have:

 $\alpha : C_0((0, 1], \mathcal{O}_2) \rightarrow C(X, M_{n^k})$ approx. order zero, $c \in C_0((0, 1], \mathcal{O}_2)_+$ contractive, $a_1, \ldots, a_m \in C(X, M_{n^k})_+$ orthogonal with small support such that

 $a_1 + \cdots + a_m + \alpha(c) = 1.$

Set $Y = X \times (0, 1]$, then use α, a_1, \ldots, a_m to define $C_0(Y, \mathcal{O}_2) \oplus \mathbb{C}^m \to C_0(X, M_{n^k})$.

Define the other map in a natural way, using *c*.

Question

Can we say more about the structure of $C(X) \subset C(X, \mathbb{Z})$? Does it (approx.) factorize through C(Y) with dim Y small?

Theorem (Santiago '12)

C(X, W) is approximated by 1-NCCW complexes.

Question

Is $\dim_{nuc}(A \otimes \mathbb{Z}) < \infty$ for every nuclear C^* -algebra A? Equivalently, is $\dim_{nuc}(A \otimes \mathbb{Z})$ universally bounded for such A?

Question

Question

Can we say more about the structure of $C(X) \subset C(X, \mathbb{Z})$? Does it (approx.) factorize through C(Y) with dim Y small?

Theorem (Santiago '12)

C(X, W) is approximated by 1-NCCW complexes.

Question

Is $\dim_{nuc}(A \otimes \mathbb{Z}) < \infty$ for every nuclear C^* -algebra A? Equivalently, is $\dim_{nuc}(A \otimes \mathbb{Z})$ universally bounded for such A?

Question

Question

Can we say more about the structure of $C(X) \subset C(X, \mathbb{Z})$? Does it (approx.) factorize through C(Y) with dim Y small?

Theorem (Santiago '12)

C(X, W) is approximated by 1-NCCW complexes.

Question

Is $\dim_{nuc}(A \otimes \mathcal{Z}) < \infty$ for every nuclear C^* -algebra A? Equivalently, is $\dim_{nuc}(A \otimes \mathcal{Z})$ universally bounded for such A?

Question

Question

Can we say more about the structure of $C(X) \subset C(X, \mathbb{Z})$? Does it (approx.) factorize through C(Y) with dim Y small?

Theorem (Santiago '12)

C(X, W) is approximated by 1-NCCW complexes.

Question

Is $\dim_{nuc}(A \otimes \mathcal{Z}) < \infty$ for every nuclear *C**-algebra *A*? Equivalently, is $\dim_{nuc}(A \otimes \mathcal{Z})$ universally bounded for such *A*?

Question

Question

Can we say more about the structure of $C(X) \subset C(X, \mathbb{Z})$? Does it (approx.) factorize through C(Y) with dim Y small?

Theorem (Santiago '12)

C(X, W) is approximated by 1-NCCW complexes.

Question

Is $\dim_{nuc}(A \otimes \mathcal{Z}) < \infty$ for every nuclear C^* -algebra A? Equivalently, is $\dim_{nuc}(A \otimes \mathcal{Z})$ universally bounded for such A?

Question

Question

Can we say more about the structure of $C(X) \subset C(X, \mathbb{Z})$? Does it (approx.) factorize through C(Y) with dim Y small?

Theorem (Santiago '12)

C(X, W) is approximated by 1-NCCW complexes.

Question

Is $\dim_{nuc}(A \otimes \mathcal{Z}) < \infty$ for every nuclear C^* -algebra A? Equivalently, is $\dim_{nuc}(A \otimes \mathcal{Z})$ universally bounded for such A?

Question

Question

Can we say more about the structure of $C(X) \subset C(X, \mathbb{Z})$? Does it (approx.) factorize through C(Y) with dim Y small?

Theorem (Santiago '12)

C(X, W) is approximated by 1-NCCW complexes.

Question

Is $\dim_{nuc}(A \otimes \mathcal{Z}) < \infty$ for every nuclear C^* -algebra A? Equivalently, is $\dim_{nuc}(A \otimes \mathcal{Z})$ universally bounded for such A?

Question

Question

Can we say more about the structure of $C(X) \subset C(X, \mathbb{Z})$? Does it (approx.) factorize through C(Y) with dim Y small?

Theorem (Santiago '12)

C(X, W) is approximated by 1-NCCW complexes.

Question

Is $\dim_{nuc}(A \otimes \mathcal{Z}) < \infty$ for every nuclear C^* -algebra A? Equivalently, is $\dim_{nuc}(A \otimes \mathcal{Z})$ universally bounded for such A?

Question