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Recurring theme

We shall compare the studies of the structure of C∗-algebras
and of von Neumann algebras.

We will stick to the separable case.

Remark
There are not many abelian von Neumann algebras L∞(X ) but
many abelian C∗-algebras C0(X ).

v.N. setting: X = (possibly) [0,1] plus ≤ ℵ0 isolated points.

C∗-setting: X = any 2nd countable locally compact Hausdorff
space, up to homeomorphism.
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Regularity: overview

Fundamental to the study of the structure of operator algebras
are notions of regularity.

Classically, this is interpreted as amenability.

More recently (particularly, in the C∗-setting), dimension and
tensorial absorption seem to be more relevant.

Part 1. Introduce these concepts and consider their
relationships.

Part 2. Dimension-reduction (C∗-algebras).
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Amenability

Vastly generalizing partitions of unity in the commutative case,
we have the following:

Definition
A von Neumann algebra or a C∗-algebra is amenable if the
identity map can be approximately factorized by c.p.c. maps
through finite dimensional algebras.
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Amenability

A is amenable:

C∗-setting (CPAP): “approx.” means point-norm: for any finite
subset F ⊂ A and any ε > 0, ∃ (F , φ, ψ) s.t.

‖φψ(x)− x‖ < ε.

v.N. case (semidiscrete): “approx.” means point-weak∗: for any
finite F ⊂ A and any weak∗ nbhd. V of 0, ∃ (F , φ, ψ) s.t.

φψ(x)− x ∈ V .
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Dimension

Covering dimension can be phrased using partitions of unity.

Proposition
Let X be a compact metric space. Then dim X ≤ n iff for any
open cover U of X , ∃ a partition of unity (eα)α∈A ⊂ C(X )+
subordinate to U which is (n + 1)-colourable:

A = A0 q · · · q An,
such that (eα)α∈Ai are pairwise orthogonal.
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Amenability and dimension

Decomposition rank (Kirchberg-Winter ’04)
A C∗-alg. A has decomposition rank ≤ n if

Order 0 means orthogonality preserving,
ab = 0⇒ φ(a)φ(b) = 0.

Think: noncommutative partition of unity, (n + 1) colours.
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Amenability and dimension

Nuclear dimension (Winter-Zacharias ’10)
A C∗-alg. A has decomposition rank ≤ n if

Nuclear dimension is defined by a slight tweaking of the
definition of decomposition rank.
dimnuc(A) ≤ dr (A).
While dr (A) <∞ implies A is quasidiagonal, dimnuc(On) = 1
(for n <∞) for example.

Aaron Tikuisis Dimension and tensorial absorption in operator algebras



Amenability and dimension

Nuclear dimension (Winter-Zacharias ’10)
A C∗-alg. A has decomposition rank nuclear dimension ≤ n if

Nuclear dimension is defined by a slight tweaking of the
definition of decomposition rank.
dimnuc(A) ≤ dr (A).
While dr (A) <∞ implies A is quasidiagonal, dimnuc(On) = 1
(for n <∞) for example.

Aaron Tikuisis Dimension and tensorial absorption in operator algebras



Amenability and dimension

Nuclear dimension (Winter-Zacharias ’10)
A C∗-alg. A has decomposition rank nuclear dimension ≤ n if

Nuclear dimension is defined by a slight tweaking of the
definition of decomposition rank.
dimnuc(A) ≤ dr (A).
While dr (A) <∞ implies A is quasidiagonal, dimnuc(On) = 1
(for n <∞) for example.

Aaron Tikuisis Dimension and tensorial absorption in operator algebras



Amenability and dimension

Nuclear dimension (Winter-Zacharias ’10)
A C∗-alg. A has decomposition rank nuclear dimension ≤ n if

Nuclear dimension is defined by a slight tweaking of the
definition of decomposition rank.
dimnuc(A) ≤ dr (A).
While dr (A) <∞ implies A is quasidiagonal, dimnuc(On) = 1
(for n <∞) for example.

Aaron Tikuisis Dimension and tensorial absorption in operator algebras



Amenability and dimension

Semidiscreteness dimension
A C∗-alg. A has decomposition rank nuclear dimension ≤ n if

Nuclear dimension is defined by a slight tweaking of the
definition of decomposition rank.
dimnuc(A) ≤ dr (A).
While dr (A) <∞ implies A is quasidiagonal, dimnuc(On) = 1
(for n <∞) for example.
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Amenability and dimension

Semidiscreteness dimension
A C∗-alg. v.N. alg. A has decomposition rank nuclear dimension
semidiscreteness dimension ≤ n if
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Amenability and dimension

Semidiscreteness dimension
A C∗-alg. v.N. alg. A has decomposition rank nuclear dimension
semidiscreteness dimension ≤ n if

Hirshberg-Kirchberg-White (’12): All amenable von Neumann
algebras have semidiscreteness dimension 0.
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Amenability and dimension, remarks

Theorem (Hirshberg-Kirchberg-White ’12)

If A is an amenable C∗-algebra, then the map φ in the CPAP
can always be taken to be n-colourable, for some n.

But, n depends on the degree of approximation (i.e. on ε > 0
and the finite set F ⊂ A); it may not be bounded.

Winter (’03): dimnucC(X ) = dr C(X ) = dim(X ), so there exist
amenable C∗-algebras with dimnuc arbitrarily large, even∞.

Moreover:

Example (Villadsen ’98, Toms-Winter ’09, Robert ’11)
There exists a simple, separable, amenable C∗-algebra with
dimnuc =∞.
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Tensorial absorption: R and Mp∞

Tensorial absorption involves certain self-absorbing algebras.

R =
∞⊗

n=1

M2

weak∗

is the unique hyperfinite II1 factor.

Every simple, amenable, non-type I v.N. alg. M satisfies
M ∼= M ⊗R, and this property is crucial to the classification of
amenable factors (even R itself).
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Tensorial absorption: R and Mp∞

Tensorial absorption involves certain self-absorbing algebras.

∞⊗
n=1

Mp

weak∗

∼= R ∼=
∞⊗

n=1

Mq

weak∗

but Mp∞ :=
⊗∞

n=1 Mp
‖·‖
6∼= Mq∞ (for p 6= q prime).
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Tensorial absorption: R and Mp∞

Tensorial absorption involves certain self-absorbing algebras.

Mp∞ :=
⊗∞

n=1 M2
‖·‖
6∼= Mq∞ (for p 6= q prime).

Moreover, projections are rarely divisible in C∗-algebras, so we
would be crazy to expect A ∼= A⊗Mp∞ to hold for all (or many)
simple, amenable, non-type I C∗-algebras A.
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The Jiang-Su algebra

The Jiang-Su algebra is like a UHF algebra, but no projections.
Construction:

More precisely, let p,q be coprime,
Zp∞,q∞ := {f ∈ C([0,1],Mp∞ ⊗Mq∞)|f (0) ∈ Mp∞ ⊗ 1q∞ ,

f (1) ∈ 1p∞ ⊗Mq∞}.
The dimension drop alg. Zp∞,q∞ has no non-triv. projections.
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The Jiang-Su algebra

Zp∞,q∞ := {f ∈ C([0,1],Mp∞ ⊗Mq∞)|f (0) ∈ Mp∞ ⊗ 1q∞ ,

f (1) ∈ 1p∞ ⊗Mq∞}.

Fact: ∃ cts. field of embeddings Zp∞,q∞ → Mp∞ ⊗Mq∞ , with
endpoint images in Mp∞ ⊗ 1q∞ , 1p∞ ⊗Mp∞ ,
i.e. a trace-collapsing endomorphism α : Zp∞,q∞ → Zp∞,q∞ .
Z := lim−→ (Zp∞,q∞ , α).
Fact: Z ∼= Z ⊗ Z ∼= Z⊗∞.
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Tensorial absorption

Let D be a (strongly) self-absorbing algebra (eg. R,Mp∞ ,Z, or
even O2 or O∞). (Strongly: i.e. D → D ⊗ 1D ⊂ D ⊗D is
approximately unitarily equivalent to an isomorphism.)

Definition
A C∗-algebra (von Neumann algebra) A is D-absorbing if
A ∼= A⊗D.

(Of course, the meaning of ⊗ is different in the C∗- and von
Neumann cases.)

D-absorption adds uniformity and regularity.

It complements, rather than overcomes, amenability.

(At times, this is hidden for von Neumann algebras, since
R-absorption comes for free.)
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Z-absorption

Theorem (Winter ’11)
D-absorption implies Z-absorption.

Z-absorption does not come for free for amenable C∗-algebras:
Villadsen’s examples (with dimnuc =∞) are not Z-absorbing.

Theorem (Winter ’12, Robert ’11)
If A is simple, separable, non-type I, unital and dimnucA <∞
then A is Z-absorbing.
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Z-absorption and dimension

Theorem (Winter ’12, Robert ’11, T ’12)
If A is simple, separable, non-type I and dimnucA <∞ then A is
Z-absorbing.

Conjecture (Toms-Winter)
For a simple, separable, amenable, non-type I C∗-algebra A,
TFAE:

(i) dimnucA <∞;
(ii) A is Z-absorbing.

One also expects to be able to classify the algebras satisfying
these conditions which satisfy the Universal Coefficient
Theorem, using K -theory and traces.
This sets a new standard for regularity of C∗-algebras (more
stringent than amenability).
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Amenability, tensorial absorption, and dimension

v.N. algebras C∗-algebras

Amenable⇔ dimsd = 0 Amenable 6⇒⇐ dimnuc <∞

Amenable
⇒
6⇐ R-absorbing Amenable

6⇒
6⇐ Z-absorbing

Simple, amenable, non-type I case:

dimsd <∞⇔ R-absorbing dimnuc <∞⇒ Z-absorbing.

Conjecture:
dimnuc <∞⇐ Z-absorbing.
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Dimension reduction (C∗-algebras)

Conjecture (Toms-Winter)
For a simple, separable, amenable C∗-algebra A,
(i) dimnucA <∞⇔ (ii) A is Z-absorbing.

(ii)⇒ (i) is a matter of dimension reduction.
For many classes of C∗-algebras (such as simple AH algebras,
i.e. inductive limits of certain homogeneous C∗-algebras),
(ii)⇒ (i) is known through classification:

1. A class C of Z-stable C∗-algebras is classified (by
K -theory and traces);

2. The class C is shown to contain certain models which
exhaust the invariant;

3. The models are shown to satisfy dimnuc <∞;
4. Therefore, dimnuc <∞ holds for every algebra in C.
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Dimension reduction

Conjecture (Toms-Winter)
For a simple, separable, amenable C∗-algebra A,
(i) dimnucA <∞⇔ (ii) A is Z-absorbing.

For example, the classification approach shows that
(Villadsen’s example)⊗Z has nuclear dimension ≤ 2.

But, the classification approach to (i)⇒ (ii) is not very
transparent.

Classification has only been shown with restrictions on the
C∗-algebras in C, such as a certain inductive limit structure (and
simplicity).

It is difficult to see the role of these restrictions on C (even
simplicity) in (i)⇒ (ii).
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Dimension reduction

A significantly different approach to dimension reduction:

Theorem (Kirchberg-Rørdam ’04)

For any space X , dimnucC0(X ,O2) ≤ 3.

The proof is short, and mostly uses K∗(O2) = 0 (more
specifically, that the unitary group of C(S1,O2) is connected).

It follows (by permanence properties of nuclear dimension) that
dimnuc (A⊗O2) ≤ 3 for any AH algebra A.
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Dimension reduction

Theorem (T-Winter ’12)

For any space X , dimnucC0(X ,Z) ≤ 2.

(In fact, dr C0(X ,Z) ≤ 2, which is stronger.)

Again, it follows that dr (A⊗Z) ≤ 2 for any AH algebra A.
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Dimension reduction – proof

Theorem (T-Winter ’12)

For any space X , dr C0(X ,Z) ≤ 2.

Ideas in the proof:

Reduce to Mp∞ in place of Z, using UHF fibres in Zp∞,q∞ .

Want to use Kirchberg-Rørdam’s result, requiring us to put
C0(Y ,O2) into C0(X ,Mp∞) somehow.

The cone over O2 is quasidiagonal, allowing us to
approximately embed it into Mp∞ .

Manipulating this allows us to get an approximate embedding
C0(Y ,O2)→ C0(X ,Mp∞) (for X = [0,1]d ), complemented by a
family of orthogonal positive functions.

Aaron Tikuisis Dimension and tensorial absorption in operator algebras



Dimension reduction – proof

Theorem (T-Winter ’12)

For any space X , dr C0(X ,Z) ≤ 2.

Ideas in the proof:

Reduce to Mp∞ in place of Z, using UHF fibres in Zp∞,q∞ .

Want to use Kirchberg-Rørdam’s result, requiring us to put
C0(Y ,O2) into C0(X ,Mp∞) somehow.

The cone over O2 is quasidiagonal, allowing us to
approximately embed it into Mp∞ .

Manipulating this allows us to get an approximate embedding
C0(Y ,O2)→ C0(X ,Mp∞) (for X = [0,1]d ), complemented by a
family of orthogonal positive functions.

Aaron Tikuisis Dimension and tensorial absorption in operator algebras



Dimension reduction – proof

Theorem (T-Winter ’12)

For any space X , dr C0(X ,Z) ≤ 2.

Ideas in the proof:

Reduce to Mp∞ in place of Z, using UHF fibres in Zp∞,q∞ .

Want to use Kirchberg-Rørdam’s result, requiring us to put
C0(Y ,O2) into C0(X ,Mp∞) somehow.

The cone over O2 is quasidiagonal, allowing us to
approximately embed it into Mp∞ .

Manipulating this allows us to get an approximate embedding
C0(Y ,O2)→ C0(X ,Mp∞) (for X = [0,1]d ), complemented by a
family of orthogonal positive functions.

Aaron Tikuisis Dimension and tensorial absorption in operator algebras



Dimension reduction – proof

Theorem (T-Winter ’12)

For any space X , dr C0(X ,Z) ≤ 2.

Ideas in the proof:

Reduce to Mp∞ in place of Z, using UHF fibres in Zp∞,q∞ .

Want to use Kirchberg-Rørdam’s result, requiring us to put
C0(Y ,O2) into C0(X ,Mp∞) somehow.

The cone over O2 is quasidiagonal, allowing us to
approximately embed it into Mp∞ .

Manipulating this allows us to get an approximate embedding
C0(Y ,O2)→ C0(X ,Mp∞) (for X = [0,1]d ), complemented by a
family of orthogonal positive functions.

Aaron Tikuisis Dimension and tensorial absorption in operator algebras



Dimension reduction – proof

Theorem (T-Winter ’12)

For any space X , dr C0(X ,Z) ≤ 2.

Ideas in the proof:

Reduce to Mp∞ in place of Z, using UHF fibres in Zp∞,q∞ .

Want to use Kirchberg-Rørdam’s result, requiring us to put
C0(Y ,O2) into C0(X ,Mp∞) somehow.

The cone over O2 is quasidiagonal, allowing us to
approximately embed it into Mp∞ .

Manipulating this allows us to get an approximate embedding
C0(Y ,O2)→ C0(X ,Mp∞) (for X = [0,1]d ), complemented by a
family of orthogonal positive functions.

Aaron Tikuisis Dimension and tensorial absorption in operator algebras



Dimension reduction – proof

Theorem (T-Winter ’12)

For any space X , dr C0(X ,Z) ≤ 2.

Ideas in the proof:

Reduce to Mp∞ in place of Z, using UHF fibres in Zp∞,q∞ .

Want to use Kirchberg-Rørdam’s result, requiring us to put
C0(Y ,O2) into C0(X ,Mp∞) somehow.

The cone over O2 is quasidiagonal, allowing us to
approximately embed it into Mp∞ .

Manipulating this allows us to get an approximate embedding
C0(Y ,O2)→ C0(X ,Mp∞) (for X = [0,1]d ), complemented by a
family of orthogonal positive functions.

Aaron Tikuisis Dimension and tensorial absorption in operator algebras



Dimension reduction – proof

An approximate embedding C0(Y ,O2)→ C0(X ,Mp∞) (for
X = [0,1]d ), complemented by a family of orthogonal positive
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Questions

Question
Can we say more about the structure of C(X ,Z)?
Is it an inductive limit of subhomogeneous C∗-algebras with
dimnuc ≤ 2?

Question
Is dimnuc(A⊗Z) <∞ for every nuclear C∗-algebra A?
Equivalently, is dimnuc(A⊗Z) universally bounded for such A?

Current project: extend our result to A subhomogeneous
(hence even locally subhomogeneous).
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