Tensor products of C*-bundles

Dave McConnell

Scottish Operator Algebras Meeting, November 2014

$C_0(X)$ -algebras

Definition

Let X be a locally compact Hausdorff space and A a C*-algebra. If there exists a *-homomorphism $\mu_A : C_0(X) \to ZM(A)$ with the property that $\mu_A(C_0(X)) \cdot A$ is dense in A, we say that the triple (A, X, μ_A) is a $C_0(X)$ -algebra.

For $f \in C_0(X)$, we will write $f \cdot$ for $\mu_A(f)$. For $x \in X$, define

• $C_{0,x}(X) = \{f \in C_0(X) : f(x) = 0\}$, and note that $C_{0,x}(X) \cdot A$ is a closed two-sided ideal of A,

•
$$A_x = \frac{A}{C_{0,x}(X) \cdot A}$$
 the quotient C*-algebra, and

• $\pi_x : A \to A_x$ the quotient homomorphism.

$C_0(X)$ -algebras and C*-bundles

We regard A as an algebra of sections of $\coprod_{x \in X} A_x$, identifying each $a \in A$ with $\hat{a} : X \to \coprod_{x \in X} A_x$, where

$$\hat{a}(x) = \pi_x(a)$$

for all $x \in X$. For all $a \in A$, we have

 $||a|| = \sup_{x \in X} ||\pi_x(a)||,$

If the function X → ℝ₊, x ↦ ||π_x(a)|| is upper-semicontinuous, and vanishes at infinity on X.

Thus, we think of a $C_0(X)$ -algebra as the algebra of sections (vanishing at infinity) of a C*-bundle over X.

If for all $a \in A$, the norm functions $x \mapsto ||\pi_x(a)||$ are continuous on X, then we say that (A, X, μ_A) is a *continuous* $C_0(X)$ -algebra.

$C_0(X)$ -algebras and C*-bundles

Interest in $C_0(X)$ -algebras and C*-bundles: to decompose the study of a given C*-algebra A into that of

- the fibre algebras A_x ,
- the behaviour of A as an algebra of sections of $\coprod_{x \in X} A_x$.

e.g. every irreducible representation of a $C_0(X)$ -algebra A is lifted from a fibre A_x for some $x \in X$.

Question: For two C*-algebras A and B, let $A \otimes B$ denote their minimal tensor product. Given a $C_0(X)$ -algebra structure on A and a $C_0(Y)$ -algebra structure on B, what can be said about $A \otimes B$ as a $C_0(X \times Y)$ -algebra? Related question: ideal structure of $A \otimes B$?

Ideals of $A \otimes B$

If $I \triangleleft A$ and $J \triangleleft B$, let $q_I : A \rightarrow A/I$ and $q_J : B \rightarrow B/J$ be the quotient maps. Then $q_I \odot q_J : A \odot B \rightarrow (A/I) \odot (B/J)$ has

 $\ker(q_I \odot q_J) = I \odot B + A \odot J,$

which, by injectivity, has closure

$$I \otimes B + A \otimes J \triangleleft A \otimes B.$$

Extending $q_I \odot q_J$ to $q_I \otimes q_J : A \otimes B \to (A/I) \otimes (B/J)$ gives a closed two-sided ideal

$$\operatorname{ker}(q_I \otimes q_J) \triangleleft A \otimes B.$$

Clearly

$$\ker(q_I\otimes q_J)\supseteq I\otimes B+A\otimes J.$$

but this inclusion may be strict.

The fibrewise tensor product

- Let (A, X, μ_A) be a C₀(X)-algebra and (B, Y, μ_B) a C₀(Y)-algebra, and denote by π_x : A → A_x and σ_y : B → B_y the quotient *-homomorphisms, where x ∈ X, y ∈ Y.
- We get *-homomorphisms $\pi_x \otimes \sigma_y : A \otimes B \to A_x \otimes B_y$,
- ▶ Hence we may regard $A \otimes B$ as an algebra of sections of $\coprod \{A_x \otimes B_y : (x, y) \in X \times Y\}$, where $c \in A \otimes B$ is identified with

$$\begin{array}{rcl} \hat{c}:X\times Y & \to & \coprod \{A_x\otimes B_y:(x,y)\in X\times Y\}\\ \hat{c}((x,y)) & = & (\pi_x\otimes \sigma_y)(c). \end{array}$$

If A and B are continuous, this construction gives A ⊗ B the structure of a lower-semicontinuous bundle over X × Y.

$A \otimes B$ as a $C_0(X \times Y)$ -algebra

Since
$$C_0(X) \otimes C_0(Y) \equiv C_0(X \times Y)$$
 and
 $ZM(A) \otimes ZM(B) \subseteq ZM(A \otimes B)$, we get a *-homomorphism
 $\mu_A \otimes \mu_B : C_0(X \times Y) = C_0(X) \otimes C_0(Y) \rightarrow ZM(A) \otimes ZM(B) \subseteq ZM(A \otimes B)$.
The triple $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is then a $C_0(X \times Y)$ -algebra.
For $(x, y) \in X \times Y$, it can be shown that

$$C_{0,(x,y)}(X \times Y) \cdot (A \otimes B) = (C_{0,x}(X) \cdot A) \otimes B + A \otimes (C_{0,y}(Y) \cdot B)$$

Hence the fibre algebras of (A \otimes B, X \times Y, $\mu_{A} \otimes \mu_{B})$ are given by

$$(A \otimes B)_{(x,y)} = \frac{A \otimes B}{\ker(\pi_x) \otimes B + A \otimes \ker(\sigma_y)} \\ \neq A_x \otimes B_y,$$

in general.

Continuity of the fibrewise tensor product

Clearly we have

$$(A \otimes B)_{(x,y)} \equiv A_x \otimes B_y$$

$$\Leftrightarrow \ker(\pi_x) \otimes B + A \otimes \ker(\sigma_y) = \ker(\pi_x \otimes \sigma_y). \quad (F_{X,Y})$$

Theorem (Kirchberg & Wassermann) Let (A, X, μ_A) be a continuous $C_0(X)$ -algebra and (B, Y, μ_B) a continuous $C_0(Y)$ -algebra. Then the norm functions

 $(x,y)\mapsto \|(\pi_x\otimes\sigma_y)(c)\|$

are continuous on $X \times Y$ for all $c \in A \otimes B$ if and only if $(F_{X,Y})$ holds. Note that if $(F_{X,Y})$ holds, then this also implies that the $C_0(X \times Y)$ -algebra $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous.

Continuity of the $C_0(X \times Y)$ -algebra $A \otimes B$

By contrast, we have shown that there exist (A, X, μ_A) and (B, Y, μ_B) , both continuous, such that

- ► the fibrewise tensor product of (A, X, µ_A) and (B, Y, µ_B) is discontinuous, but
- ▶ the $C_0(X \times Y)$ -algebra $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous.
- ▶ Let $A = \prod_{n \ge 1} M_n(\mathbb{C})$, then A defines a continuous $C(\beta \mathbb{N})$ -algebra, with fibres $A_n = M_n(\mathbb{C})$ for $n \in \mathbb{N}$.
- ► B = B(H) and Y = {y} a one-point space, so that B is trivially a continuous C(Y)-algebra.
- ▶ Then $(A \otimes B, \beta \mathbb{N}, \mu_A \otimes 1)$ is a continuous $C(\beta \mathbb{N})$ -algebra, but there is $p \in \beta \mathbb{N} \setminus \mathbb{N}$ such that
 - $(A \otimes B)_{\rho} \neq A_{\rho} \otimes B$ (i.e. property $(F_{X,Y})$ fails) and
 - *p* → ||(π_p ⊗ id)(c)|| is discontinuous at *p* for some c ∈ A ⊗ B, hence the fibrewise tensor product is a discontinuous C*-bundle.
- In fact this occurs whenever B is an inexact C*-algebra.

Property (F)

▶ Let A and B be C*-algebras. If for all ideals $I \triangleleft A$ and $J \triangleleft B$ we have

$$\ker(q_I \otimes q_J) = I \otimes B + A \otimes J, \tag{F}$$

then $A \otimes B$ is said to satisfy Tomiyama's property (F).

- Given (A, X, μ_A) and (B, Y, μ_B) , $(F) \Rightarrow (F_{X,Y})$, which in turn implies
 - $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ has fibres $A_x \otimes B_y$, and
 - if A and B are continuous then so is $A \otimes B$.
- A is exact iff $A \otimes B$ satisfies (F) for all B.
- If (A, X, µ_A) is continuous and A exact, then (A ⊗ B, X × Y, µ_A ⊗ µ_B) is continuous whenever (B, Y, µ_B) continuous.

Continuity and exactness

Theorem (M.)

Let (A, X, μ_A) be a continuous $C_0(X)$ -algebra. TTFAE:

- (i) A is exact,
- (ii) for every continuous $C_0(Y)$ -algebra B, the $C_0(X \times Y)$ -algebra $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ is continuous.

Analogous result for the fibrewise tensor product due to Kirchberg and Wassermann: A exact \Leftrightarrow fibrewise tensor product continuous for all B.

$$\ker(\pi_x)\otimes B + A\otimes \ker(\sigma_y) = \ker(\pi_x\otimes\sigma_y). \tag{F}_{X,Y}$$

By contrast, given continuous (A, X, μ_A) and (B, Y, μ_B) , we have

- ▶ fibrewise tensor product of A and B continuous \Leftrightarrow ($F_{X,Y}$) holds,
- ▶ $(F_{X,Y})$ holds \Rightarrow $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ continuous, but
- $(A \otimes B, X \times Y, \mu_A \otimes \mu_B)$ continuous $\neq (F_{X,Y})$ holds.

Glimm ideals

Let A be a C*-algebra, and \hat{Z} the maximal (primitive) ideal space of ZM(A), so that we have an isomorphism $\theta_A : C(\hat{Z}) \equiv ZM(A)$.

- ▶ Note that any C*-algebra A defines a $C(\hat{Z})$ -algebra (A, \hat{Z}, θ_A) .
- ▶ For $p \in \hat{Z}$, denote by G_p the ideal of A given by

$$G_p = \{f \in C(\hat{Z}) : f(p) = 0\} \cdot A.$$

Define the space of Glimm ideals of A via

$$\operatorname{Glimm}(A) = \{G_p : p \in \hat{Z}, G_p \neq A\},\$$

with subspace topology inherited from \hat{Z} .

- If $\operatorname{Glimm}(A)$ is locally compact then A is a $C_0(\operatorname{Glimm}(A))$ -algebra.
- ▶ For a locally compact Hausdorff space X, a C*-algebra A is a $C_0(X)$ -algebra iff there exists a continuous map $\operatorname{Glimm}(A) \to X$.

Remark: $\operatorname{Glimm}(A)$ may be constructed from the topological space $\operatorname{Prim}(A)$ of primitive ideals of A (with the hull kernel topology) alone; no need for multiplier algebras.

Characterisation of $\operatorname{Glimm}(A \otimes B)$

Theorem (M.) Let A and B be C^{*}-algebras. Then the map

$$egin{array}{rcl} \operatorname{Glimm}(A) imes \operatorname{Glimm}(B) & o & \operatorname{Glimm}(A \otimes B) \ & (G_p, G_q) & \mapsto & G_p \otimes B + A \otimes G_q \end{array}$$

is an open bijection , which is a homeomorphism if

- (i) A is σ-unital and Glimm(A) locally compact (in particular if A unital), or
- (ii) A is a continuous $C_0(\operatorname{Glimm}(A))$ -algebra.

Remark: in general, the topology on $\operatorname{Glimm}(A \otimes B)$ depends only on the product space $\operatorname{Prim}(A) \times \operatorname{Prim}(B)$.

Exactness and Glimm ideals

Theorem (M.)

For a C^* -algebra A, the following are equivalent:

- (i) A is exact,
- (ii) For every C^* -algebra B and $q \in \text{Glimm}(B)$, the sequence

$$0 \longrightarrow A \otimes G_q \xrightarrow{\operatorname{id} \otimes \iota} A \otimes B \xrightarrow{\operatorname{id} \otimes \sigma_q} A \otimes (B/G_q) \longrightarrow 0$$

is exact, where $\sigma_q : B \to B/G_q$ is the quotient map, (i.e. $A \otimes G_q = \text{ker}(\text{id} \otimes \sigma_q)).$

(iii) For every C*-algebra B and $(p,q) \in \text{Glimm}(A) \times \text{Glimm}(B)$, we have

$$A\otimes G_q+G_p\otimes B=\ker(\pi_p\otimes\sigma_q),$$

with $\pi_p : A \to A/G_p, \sigma_q : B \to B/G_q$ the quotient maps.

$C_0(\operatorname{Glimm}(A))$ -representations

If $\operatorname{Prim}(A)$ is Hausdorff in the hull-kernel topology, then

- Prim(A) = Glimm(A) as sets of ideals and topologically, and
- ► A is canonically a continuous C₀(Prim(A))-algebra, with simple fibres given by the primitive quotients of A.

The converse is true also: given a continuous $C_0(X)$ -algebra (A, X, μ_A) with all fibres simple (and nonzero), then Prim(A) is homeomorphic to X.

More generally, a separable C*-algebra A is called quasi-standard if

- 1. $(A, \operatorname{Glimm}(A), \theta_A)$ is a continuous $C_0(\operatorname{Glimm}(A))$ -algebra, and
- 2. there is a dense subset $D \subseteq \text{Glimm}(A)$ with G_p primitive for all $p \in D$.

General definition: replace ' G_p primitive' with ' G_p primal' (is the kernel of the GNS representation π_{ϕ} associated with a state ϕ which is a weak-* limit of factorial states on A).

Examples of quasi-standard C*-algebras: all von Neumann algebras, many group C*-algebras, all homogeneous C*-algebras, $\ell^{\infty}(A)$ for A primitive.

Examples

1. Let A be the C*-algebra of sequences $x = (x_n) \subset M_2(\mathbb{C})$ such that $x_n \to x_\infty \in M_2(\mathbb{C})$. Then $\operatorname{Prim}(A)$ is homeomorphic to $\hat{\mathbb{N}}$ (one-point compactification), where $n \in \hat{\mathbb{N}}$ is identified with the ideal

$$P_n = \{x \in A : x_n = 0\}, \ 1 \le n \le \infty.$$

Thus the Dauns-Hofmann representation of A gives the trivial bundle $C(\hat{\mathbb{N}}, M_2(\mathbb{C}))$.

2. Let $B = \{x \in A : x_{\infty} = \operatorname{diag}(\lambda(x), \mu(x))\} \subset A$. Then $\operatorname{Prim}(B) = \{P_n : n \in \mathbb{N}\} \cup \{\operatorname{ker}(\lambda)\} \cup \{\operatorname{ker}(\mu)\}, \text{ where the } P_n \text{ are isolated and } \operatorname{ker}(\lambda) \approx \operatorname{ker}(\mu)$. Thus

$$\operatorname{Glimm}(B) = \{P_n : n \in \mathbb{N}\} \cup \{\operatorname{ker}(\lambda \oplus \mu)\} \equiv \hat{\mathbb{N}},$$

and the Dauns-Hofmann bundle $(\hat{\mathbb{N}}, B, \pi_n : B o B_n)$ has fibres

$$B_n = \begin{cases} M_2(\mathbb{C}) & \text{if } n \in \mathbb{N} \\ \mathbb{C} \oplus \mathbb{C} & \text{if } n = \infty \end{cases}$$

and B is quasi-standard.

A discontinuous example

Take the C*-algebra C of sequences $x = (x_n) \subset M_2(\mathbb{C})$ such that

$$egin{array}{rcl} x_{2n} &
ightarrow & \mathrm{diag}(\lambda_1(x),\lambda_2(x)) \ x_{2n+1} &
ightarrow & \mathrm{diag}(\lambda_2(x),\lambda_3(x)). \end{array}$$

Then

$$\begin{aligned} \operatorname{Prim}(\mathcal{C}) &= \{P_n : n \in \mathbb{N}\} \cup \{\operatorname{ker}(\lambda_i) : i = 1, 2, 3\}.\\ \operatorname{Glimm}(\mathcal{C}) &= \{P_n : n \in \mathbb{N}\} \cup \{\operatorname{ker}(\oplus_{i=1}^3 \lambda_i)\} \equiv \hat{\mathbb{N}} \end{aligned}$$

The bundle $(\hat{\mathbb{N}}, C, \pi_n : C \to C_n)$ has fibres $C_n = M_2(\mathbb{C})$ for $n \in \mathbb{N}$, and $C_{\infty} = \mathbb{C}^3$, where $\pi_{\infty}(x) = (\lambda_1(x), \lambda_2(x), \lambda_3(x))$. Upper-semicontinuous, but not continuous: take $x = (x_n) \in C$ with

$$x_{2n} = \text{diag}(1,0) \text{ and } x_{2n+1} = 0.$$

Group C*-algebras

Let G be the discrete Heisenberg group, then $A = C^*(G)$ is quasi-standard, with

- $\operatorname{Glimm}(A) \equiv \mathbb{T}$,
- For λ ∈ T irrational, the corresponding Glimm quotient A/G_λ is the irrational rotation algebra A_λ. Since A_λ is simple, G_λ is primitive.
- For λ ∈ T rational, A/G_λ is non-simple and *n*-homogeneous, where *n* is the least positive integer such that λⁿ = 1.

With *H* the continuous Heisenberg group, $B = C^*(H)$ is also quasi-standard; here $\operatorname{Glimm}(B) \equiv \mathbb{R}$, quotients given by $B/H_t \equiv K(H)$ and $B/H_0 \equiv C_0(\mathbb{R}^2)$.

In fact many group C*-algebras are quasi-standard (E. Kaniuth, G. Schlichting, K. Taylor); $C_r^*(G)$ for every locally compact [SIN]-group G. In particular, $C^*(G)$ is quasi-standard for every discrete, amenable G.

Classes of Dauns-Hofmann representations

We have the following relations:

{ C*-algebras A with Prim(A) Hausdorff }

- = { continuous $C_0(Prim(A))$ -algebras }
- \subseteq { quasi-standard C*-algebras A}
- \subseteq { continuous $C_0(\operatorname{Glimm}(A))$ -algebras }
- $\subsetneq \ \{ \ C(\hat{Z})\text{-algebras} \ \}$
- $= \quad \{ \text{ all } C^*\text{-algebras } \}.$

Question: are these classes closed under tensor products?

Characterisation of exactness

Theorem (M.)

Let A be a C^* -algebra.

- (i) If (A, Glimm(A), θ_A) is a continuous C₀(Glimm(A))-algebra, then A is exact ⇔ for all C*-algebras B with (B, Glimm(B), θ_B) continuous, the C₀(Glimm(A ⊗ B))-algebra
 (A ⊗ B, Glimm(A ⊗ B), θ_A ⊗ θ_B) is continuous,
- (ii) If A is quasi-standard, then A is exact $\Leftrightarrow A \otimes B$ is quasi standard for all quasi-standard C^{*}-algebras B,
- (iii) If Prim(A) is Hausdorff, then A is exact $\Leftrightarrow Prim(A \otimes B)$ is Hausdorff for all C^{*}-algebras B with Prim(B) Hausdorff.

Tensor products of C*-bundles

Thus none of the classes

{ C*-algebras A with Prim(A) Hausdorff }

- = { continuous C*-bundles over Prim(A) }
- \subseteq { quasi-standard C*-algebras A}
- \subseteq { continuous C*-bundles over Glimm(A)}

are closed under tensor products. In each case, their intersection with the class of exact C*-algebras is the largest \otimes -closed subclass.

Other C*-norms

- Given (A, X, μ_A) and (B, Y, μ_B) with A and B unital and X and Y compact, let ||·||_γ be any C*-norm on A ⊙ B.
- ▶ By a result of Archbold $Z(A \otimes_{\gamma} B) = Z(A) \otimes Z(B)$,
- ▶ It follows that $A \otimes_{\gamma} B$ is a $C(X \times Y)$ -algebra, with fibres $(A \otimes_{\gamma} B)/J_{x,y}$ where

$$J_{x,y} = \overline{(C_x(X) \cdot A) \odot B + A \odot (C_y(Y) \cdot B)}^{A \otimes_{\gamma} B}$$

If ||·||_γ is defined via a tensor product functor (A, B) → A ⊗_γ B, then the evaluation maps {π_x : A → A_x : x ∈ X} and {σ_y : B → B_y : y ∈ Y} give rise to *-homomorphisms

$$\{\pi_x \otimes_\gamma \sigma_y : A \otimes_\gamma B \to A_x \otimes_\gamma B_y\}$$

▶ Can also study the tensor product fibrewise; identify $c \in A \otimes_{\gamma} B$ with

$$\hat{c}: X \times Y \to \coprod A_x \otimes_{\gamma} B_y$$

 $\hat{c}((x, y)) = (\pi_x \otimes_{\gamma} \sigma_y)(c)$

Exact tensor product functors

If the tensor product functor γ is exact (in both variables), then these two representations of A ⊗_γ B agree, that is,

$$\frac{A \otimes_{\gamma} B}{(C_x(X) \cdot A) \otimes_{\gamma} B + A \otimes_{\gamma} (C_y(Y) \cdot B)} = A_x \otimes_{\gamma} B_y$$

In particular, it follows that the norm functions

$$(x,y)\mapsto \|(\pi_x\otimes_\gamma\sigma_y)(x)\|$$

are upper-semicontinuous on $X \times Y$ for all $c \in A \otimes_{\gamma} B$.

On the other hand, if the tensor product functor γ fails to be injective, one can construct continuous A and B and c ∈ A ⊗_γ B whose norm function fails to be lower semicontinuous on A ⊗_γ B.

This last fact is also true for *partial tensor product functors*; that is, for a fixed C*-algebra B, the functor $\cdot \otimes_{\gamma} B : A \mapsto A \otimes_{\gamma} B$.

The maximal tensor product

The maximal tensor product is an example of an exact tensor product functor which fails to be injective.

In particular, a C*-algebra B is nuclear if and only if the partial tensor product functor $\cdot \otimes_{\max} B$ is injective.

If A and B are unital, then

 $\operatorname{Glimm}(A \otimes_{\max} B) = \{ G \otimes_{\max} B + A \otimes_{\max} H : (G, H) \in \operatorname{Glimm}(A) \times \operatorname{Glimm}(B) \}$

and by exactness of \otimes_{max}

$$\frac{A \otimes_{\max} B}{G \otimes_{\max} B + A \otimes_{\max} H} = (A/G) \otimes_{\max} (B/H).$$

Theorem (M.)

Let A be a unital quasi-standard C*-algebra. Then A is nuclear $\Leftrightarrow A \otimes_{\max} B$ is quasi-standard for all quasi-standard C*-algebras B.

Questions on other tensor product functors

- 1. Does there exist a tensor product functor \otimes_{γ} which preserves continuity of C(X)-algebras?
 - Clearly, exactness and injectivity are central to this question.
 - ▶ By Pisier and Ozawa, there exist uncountably many distinct injective tensor product functors. On the other hand, by Kirchberg, ⊗_{max} is the unique exact tensor product functor iff Connes' embedding holds.
- If we fix a continuous C(Y)-algebra B, is there a partial tensor product functor · ⊗_γ B which preserves continuity for all continuous A? By a result of Kirchberg, for separable B, there always exists · ⊗_γ B which is both injective and exact.