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Tilings and the tiling metric

Definition (Tile)

A tile is a subset of Rd that is homeomorphic to the closed unit ball.

Definition (Partial Tiling, Support)
A partial tiling is a set of tiles, any two of which have disjoint interiors.
The support of a partial tiling is the union of its tiles.

Definition (Tiling)

A tiling of Rd is a partial tiling, the support of which is Rd .

There is a metric on the set of tilings of Rd , in which two tilings are close
if, up to a small translation, they agree on a large ball around the origin.

d(T ,T ′) = inf({1} ∪ {ε > 0 : T − u agrees with T ′ − v on B1/ε(0)

for some u, v ∈ Bε(0)})
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The Fibonacci substitution

Let P = {p1, . . . ,pk} be a set of
tiles, which we will call prototiles.
Let Ω̃ denote the set of all partial
tilings containing only translates of
tiles from P.

Definition (Substitution)

A substitution is a map σ : P → Ω̃
for which there exists an inflation
constant λ > 1 such that the
support of σ(pi) is λpi .

σTT

σTT

The Tübingen triangle substitution
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Substitution tiling spaces

σ extends to a map σ : Ω̃→ Ω̃ by setting σ(T ) =
⋃

pi+u∈T

(σ(pi) + λu).

Definition (Substitution Tiling Space)

The substitution tiling space Ωσ is the set of all tilings T ∈ Ω̃ such that
for every patch S of T with bounded support there exist n ∈ N, an index
i , and a vector u such that S ⊆ σn(pi + u).

We make four standard assumptions about σ and Ωσ.
1 σ is primitive: there is some n ∈ N such that, for all i , j ≤ k , σn(pi)

contains a translate of pj .
2 σ : Ωσ → Ωσ is injective.
3 Ωσ has finite local complexity: for any r > 0, there are, up to

translation, finitely many patches supported in a ball of radius r .
4 Each T ∈ Ωσ is a CW -complex, in which the tiles are d-cells.

Primitivity =⇒ (Ωσ,Rd ) is minimal (Ωσ is the closure of the translation
orbit of any of its points).
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Tiling C∗-algebras

Consider the groupoid of Ωσ under the Rd -action by translation.
As a topological space, this is Ωσ × Rd .
(T , v) and (T ′, v ′) are composable if T ′ = T + v , and their
composition is (T , v)(T ′, v ′) = (T , v + v ′).

Let C∗(σ) denote the C∗-algebra of this groupoid. This has been
studied using two different approaches.

1 (Kellendonk) Pick a distinguished point, called a puncture, in the
interior of each prototile; by translation, this defines a puncture in
the interior of each tile. Then restrict to groupoid elements (T , v)
for which T has a puncture at the origin. This yields a more
tractable groupoid, the C∗-algebra of which is strongly Morita
equivalent to that of the original groupoid.

2 (Anderson-Putnam) The groupoid C∗-algebra is isomorphic to the
crossed product C∗-algebra of Ωσ by Rd , and so by the
Connes-Thom isomorphism, the K -theory of the algebra is related
to that of the space Ωσ.
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K -theory of tiling C∗-algebras

K -theory is an invariant that we expect will yield useful information
about Ωσ, and hence about the tiling T itself. How do we compute
K -theory?

Theorem (Anderson-Putnam 1998)
If Ωσ is a substitution tiling space of tilings with dimension 1, then

K0(C∗(Ωσ)) ∼= H1(Ωσ), K1(C∗(Ωσ)) ∼= H0(Ωσ).

If Ωσ is a substitution tiling space of tilings with dimension 2, then

K0(C∗(Ωσ)) ∼= H2(Ωσ)⊕ H0(Ωσ), K1(C∗(Ωσ)) ∼= H1(Ωσ).

(Here H∗ denotes Cech cohomology with integer coefficients.)
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The Anderson-Putnam complex

To compute the K -theory of C∗(σ), Anderson and Putnam introduced a
cell complex, called the Anderson-Putnam complex, or AP(σ).

Its cells are translation equivalence
classes of tiles from tilings in the space.
Cells meet at a boundary if they have
representatives that meet at a boundary.

σ induces a self map on AP(σ).
Consider the inverse limit lim←−AP(σ) under
this map.
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To compute the K -theory of C∗(σ), Anderson and Putnam introduced a
cell complex, called the Anderson-Putnam complex, or AP(σ).

There is a map from the tiling space to the
inverse limit lim←−AP(σ):

The origin in T gives a point x0 ∈ AP(σ).
The origin in σ−1(T ) gives a point x1 ∈
AP(σ) that maps to x0 under the self map.
The sequence (xi)i≥1 is an element of
lim←−AP(σ).
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Computing Cech cohomology

In some cases, the map Ωσ → AP(σ) is a homeomorphism.

Then we can use AP(σ) to compute the Cech cohomology of Ωσ.
Cech cohomology has a difficult definition . . .

but it satisfies two
important conditions:

Definition (Forcing the border)
σ forces its border if there exists some n such that, for any tile t and any
two tilings T ,T ′ containing t , σn(T ) and σn(T ′) coincide, not just on
σn(t), but also on all tiles that meet σn(t).
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Then we can use AP(σ) to compute the Cech cohomology of Ωσ.
Cech cohomology has a difficult definition . . .

but it satisfies two
important conditions:

Definition (Cech cohomology, summary from a talk by Putnam)
To find the Cech cohomology of a space X :

1 Take a finite open cover U of X .
2 Associated to U is a simplicial complex: vertices are the elements

of U , edges are non-empty intersections of two elements of U , etc.
3 Take the cohomology of the simplicial complex.
4 Refine the open cover, get an inductive system of cohomologies

and take the limit.
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The collared Anderson-Putnam complex

But Ωσ → lim←−AP(σ) is not necessarily injective.

Apply σfib repeatedly to a b-tile that has its left end on the origin;
get a tiling of the right half-line.
There are two ways to extend this to the left half-line.
So two different tilings are sent to (v , v , v , . . .) ∈ lim←−AP(σfib).
To get injectivity, use the collared AP complex AP1(σ) instead.
This is like AP(σ), but it distinguishes between two translates of the
same tile if they have different neighbours.
Then Ωσ

∼= lim←−AP1(σ).

b

b b

b
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same tile if they have different neighbours.

Then Ωσ
∼= lim←−AP1(σ).
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Combinatorial explosion

Tiles: (1 + 1)× 20 = 40 total

Collared tiles: (25 + 18)× 20 = 860 total
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We need to use a computer

Calculating K -theory involves several steps.
1 Find all the collared tiles and lower-dimensional cells.
2 Compute matrices for the coboundary maps.
3 Compute matrices induced on cohomology by the self-map of the

complex.
4 Compute the inductive limit groups.

If there are 860 collared tiles, then we need to use a computer.
Is it worth it? Yes. Gähler computed the Cech cohomology of the
Tübingen triangle substitution using the Anderson-Putnam method, and
found the following.

H0 : Z, H1 : Z5, H2 : Z24 ⊕ Z2
5.

This was the first known example of torsion in tiling cohomology.
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A Problem

860 is a lot of cells.
The Tübingen triangle substitution is still a very basic one.
We want to compute K -theory for bigger 2-d substitutions.
We want to compute K -theory for 3-d substitutions.

Passing from AP(σ) to AP1(σ) introduces too many new cells. We
would like to replace AP1(σ) with a different, smaller complex.

Ideas:
1 (Barge-Diamond, Barge-Diamond-Hunton-Sadun) Blow up all the

subcells in AP(σ) to cells of full dimension.
2 (Gähler-M) In one dimension, collar on the left only.

3 New: use dual tilings.
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Dual tilings
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Dual tilings

Definition (Combinatorial dual)
Given a tiling T containing an open cell c, the combinatorial dual of c is

c∗ := {t ∈ T | c ⊂ t}.

If c is a vertex, then c∗ is called a vertex star.
A dual tiling T ∗ is a tiling that is a geometric realisation for the set
of combinatorial dual cells of T . Vertex stars play the role of tiles.
The tiling space is homeomorphic to the space of dual tilings.
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Dual substitutions

Idea: define a substitution on the dual so we can use the AP method to
compute K -theory. Be lazy! Combinatorics only.

1 Make a complex from the combinatorial dual cells.
2 Use σ to define a combinatorial substitution σ∗ on the vertex stars.
3 Get a self-map on the dual complex.
4 Take the inverse limit of this complex.
5 The inverse limit is homotopy equivalent, not homeomorphic, to Ωσ.
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Caution

This method works, but we have to be careful how we define the dual
substitution σ∗.

Make sure σ∗ is translation equivariant.
Make sure σ∗ is primitive.
Don’t introduce new adjacency.
Don’t remove existing adjacency.
Don’t let c∗ and σ∗(c∗) have different topology.
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An improvement

Vertex stars: 130 total
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Results

We recover the results of Gähler for the TT substitution and others.
We have new examples with an interesting property: the
substitution matrix is unimodular, but the homomorphism induced
on H2 of the complex by the substitution is not.
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A 3-d substitution

L. Danzer, Discr. Math. 76 (1989) 1–7
Tetrahedra tiling with τ scaling

0 1 2 3
rkCk (Γ) 480 1320 1320 480
Hk (Ω) Z Z7 Z16 Z20
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