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Tilings and the tiling metric

A tiling in 1-d A tiling in 2-d
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Tilings and the tiling metric

Definition (Tile)
A tile is a subset of RY that is homeomorphic to the closed unit ball.

Definition (Partial Tiling, Support)

A partial tiling is a set of tiles, any two of which have disjoint interiors.
The support of a partial tiling is the union of its tiles.

Definition (Tiling)

A tiling of R9 is a partial tiling, the support of which is RY.
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Tilings and the tiling metric

Definition (Tile)
A tile is a subset of RY that is homeomorphic to the closed unit ball.

Definition (Partial Tiling, Support)

A partial tiling is a set of tiles, any two of which have disjoint interiors.
The support of a partial tiling is the union of its tiles.

Definition (Tiling)

A tiling of R9 is a partial tiling, the support of which is RY.

There is a metric on the set of tilings of R?, in which two tilings are close
if, up to a small translation, they agree on a large ball around the origin.

d(T,T') =inf({1} U {e > 0: T — u agrees with T' — v on By /(0)
for some u, v € B.(0)})
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Substitutions

a b
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The Fibonacci substitution l
o A

The Tlbingen triangle substitution
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Substitutions

OL. m# i: O'T
V

b b a

The Fibonacci substitution

T A
Let P ={py,...,px} be a set of
tiles, which we will call prototiles.
Let Q denote the set of all partial

-

tilings containing only translates of

tiles from P. o

Definition (Substitution)

A substitutionis amap o : P — Q
for which there exists an inflation
constant A > 1 such that the

support of o(p;) is Ap;. The Tibingen triangle substitution
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Substitution tiling spaces

o extends to amap o : @ — Q by setting o(T) = | ] (o(p) + Au).
pi+ueT

Definition (Substitution Tiling Space)

The substitution tiling space Q. is the set of all tilings T e  such that
for every patch S of T with bounded support there exist n € N, an index
i, and a vector u such that S C ¢"(p; + ).
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Substitution tiling spaces

o extends to amap o : @ — Q by setting o(T) = | ] (o(p) + Au).
pi+ueT

Definition (Substitution Tiling Space)

The substitution tiling space Q. is the set of all tilings T e  such that
for every patch S of T with bounded support there exist n € N, an index
i, and a vector u such that S C ¢"(p; + ).

We make four standard assumptions about o and €.
@ o is primitive: there is some n € N such that, for all i, j < k, o"(p;)
contains a translate of p;.
Q o:Q, — Q. isinjective.
© Q. has finite local complexity: for any r > 0, there are, up to
translation, finitely many patches supported in a ball of radius r.
© Each T € Q, is a CW-complex, in which the tiles are d-cells.
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Substitution tiling spaces

o extends to amap o : @ — Q by setting o(T) = | ] (o(p) + Au).
pi+ueT

Definition (Substitution Tiling Space)

The substitution tiling space Q. is the set of all tilings T e  such that
for every patch S of T with bounded support there exist n € N, an index
i, and a vector u such that S C ¢"(p; + ).

We make four standard assumptions about o and €.
@ o is primitive: there is some n € N such that, for all i, j < k, o"(p;)
contains a translate of p;.
Q o:Q, — Q. isinjective.
© Q. has finite local complexity: for any r > 0, there are, up to
translation, finitely many patches supported in a ball of radius r.
© Each T € Q, is a CW-complex, in which the tiles are d-cells.
Primitivity = (Q,,RY) is minimal (Q, is the closure of the translation
orbit of any of its points).
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Tiling C*-algebras

Consider the groupoid of Q. under the R%-action by translation.
@ As a topological space, this is , x RY.
@ (T,v)and (T',v') are composable if T" = T + v, and their
compositionis (T, v)(T',v') = (T,v+ V).
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Tiling C*-algebras

Consider the groupoid of Q. under the R%-action by translation.
@ As a topological space, this is , x RY.
@ (T,v)and (T',v') are composable if T" = T + v, and their
compositionis (T, v)(T',v') = (T,v+ V).
Let C*(o) denote the C*-algebra of this groupoid. This has been
studied using two different approaches.
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Tiling C*-algebras

Consider the groupoid of Q. under the R%-action by translation.
@ As a topological space, this is , x RY.
@ (T,v)and (T’,v') are composable if T" = T + v, and their
compositionis (T, v)(T',v') = (T,v+ V).
Let C*(o) denote the C*-algebra of this groupoid. This has been
studied using two different approaches.
@ (Kellendonk) Pick a distinguished point, called a puncture, in the
interior of each prototile; by translation, this defines a puncture in
the interior of each tile. Then restrict to groupoid elements (T, v)
for which T has a puncture at the origin. This yields a more
tractable groupoid, the C*-algebra of which is strongly Morita
equivalent to that of the original groupoid.
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Tiling C*-algebras

Consider the groupoid of Q. under the R%-action by translation.
@ As a topological space, this is , x RY.
@ (T,v)and (T’,v') are composable if T" = T + v, and their
compositionis (T, v)(T',v') = (T,v+ V).
Let C*(o) denote the C*-algebra of this groupoid. This has been
studied using two different approaches.
@ (Kellendonk) Pick a distinguished point, called a puncture, in the
interior of each prototile; by translation, this defines a puncture in
the interior of each tile. Then restrict to groupoid elements (T, v)
for which T has a puncture at the origin. This yields a more
tractable groupoid, the C*-algebra of which is strongly Morita
equivalent to that of the original groupoid.
© (Anderson-Putnam) The groupoid C*-algebra is isomorphic to the
crossed product C*-algebra of Q. by R?, and so by the
Connes-Thom isomorphism, the K-theory of the algebra is related
to that of the space Q,.
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K-theory of tiling C*-algebras

K-theory is an invariant that we expect will yield useful information
about ., and hence about the tiling T itself. How do we compute
K-theory?

Theorem (Anderson-Putnam 1998)

IfQ, is a substitution tiling space of tilings with dimension 1, then

Ko(C* () = H'(2),  Ki(C*(Q)) = H ().
IfQ, is a substitution tiling space of tilings with dimension 2, then
Ko(C*(Q0)) = HA(Q0) ® HY(Q,),  Ki(C* () = H'(Q).

(Here H* denotes Cech cohomology with integer coefficients.)
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The Anderson-Putnam complex

To compute the K-theory of C*(o), Anderson and Putnam introduced a
cell complex, called the Anderson-Putham complex, or AP(o).

@ lts cells are translation equivalence
classes of tiles from tilings in the space.

@ Cells meet at a boundary if they have
representatives that meet at a boundary.

AP (atip)
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The Anderson-Putnam complex

To compute the K-theory of C*(o), Anderson and Putnam introduced a
cell complex, called the Anderson-Putham complex, or AP(o).

@ lts cells are translation equivalence
classes of tiles from tilings in the space.

@ Cells meet at a boundary if they have g 3
representatives that meet at a boundary.
@ o induces a self map on AP(o).
AP (atip)
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The Anderson-Putnam complex

To compute the K-theory of C*(o), Anderson and Putnam introduced a
cell complex, called the Anderson-Putham complex, or AP(o).

@ lts cells are translation equivalence
classes of tiles from tilings in the space.

@ Cells meet at a boundary if they have g
representatives that meet at a boundary.

@ o induces a self map on AP(o).

@ Consider the inverse limit IIMAP(O') under
this map.

a

P (oiip)
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The Anderson-Putnam complex

To compute the K-theory of C*(o), Anderson and Putnam introduced a
cell complex, called the Anderson-Putham complex, or AP(o).

@ There is a map from the tiling space to the
inverse limit lim AP(0):

—>
a

AP (otip)
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The Anderson-Putnam complex

To compute the K-theory of C*(o), Anderson and Putnam introduced a
cell complex, called the Anderson-Putham complex, or AP(o).

@ There is a map from the tiling space to the
inverse limit lim AP(0):

@ The origin in T gives a point xo € AP(o). g .

AP (otip)

Xo € AP (orip) : T
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The Anderson-Putnam complex

To compute the K-theory of C*(o), Anderson and Putnam introduced a
cell complex, called the Anderson-Putham complex, or AP(o).

@ There is a map from the tiling space to the
inverse limit lim AP(0):

@ The origin in T gives a point xo € AP(o). g

a
@ The originin o~ '(T) gives a point x; €
AP(o) that maps to xp under the self map.
AP (afip)
Xo € AP (orib) : T
X1 € AP(O’ﬁb) . )‘Uﬁ_bl(T)
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The Anderson-Putnam complex

To compute the K-theory of C*(o), Anderson and Putnam introduced a
cell complex, called the Anderson-Putham complex, or AP(o).

@ There is a map from the tiling space to the
inverse limit lim AP(0):

@ The origin in T gives a point xy € AP(c). —
@ The origin in ~'(T) gives a point x; €
AP(o) that maps to xo under the self map.
@ The sequence (X;);>1 is an element of
lim AP(o).
Xo € AP (iip) : T
X1 € AP(O’ﬁb) ;
X2 € AP(Uﬁb) : )\ZUﬁ_bZ(T)

a

AP (atip)
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Computing Cech cohomology

@ In some cases, the map Q, — AP(c) is a homeomorphism.
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Computing Cech cohomology

@ In some cases, the map Q, — AP(c) is a homeomorphism.
@ Then we can use AP(o) to compute the Cech cohomology of Q.
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Computing Cech cohomology

@ In some cases, the map Q, — AP(c) is a homeomorphism.

@ Then we can use AP(o) to compute the Cech cohomology of Q.
@ Cech cohomology has a difficult definition . ..

Definition (Cech cohomology, summary from a talk by Putnam)
To find the Cech cohomology of a space X:

@ Take a finite open cover U of X.

© Associated to U/ is a simplicial complex: vertices are the elements
of U, edges are non-empty intersections of two elements of U, etc.

© Take the cohomology of the simplicial complex.

© Refine the open cover, get an inductive system of cohomologies
and take the limit.
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Computing Cech cohomology

@ In some cases, the map Q, — AP(c) is a homeomorphism.

@ Then we can use AP(o) to compute the Cech cohomology of Q,.

@ Cech cohomology has a difficult definition . .. but it satisfies two
important conditions:
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Computing Cech cohomology

@ In some cases, the map Q, — AP(c) is a homeomorphism.

@ Then we can use AP(o) to compute the Cech cohomology of Q,.

@ Cech cohomology has a difficult definition . .. but it satisfies two
important conditions:

@ For CW-complexes, it agrees with singular conomology, and hence
cellular conomology.
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Computing Cech cohomology

@ In some cases, the map Q, — AP(c) is a homeomorphism.

@ Then we can use AP(o) to compute the Cech cohomology of Q,.

@ Cech cohomology has a difficult definition . .. but it satisfies two
important conditions:
@ For CW-complexes, it agrees with singular conomology, and hence
cellular conomology.
@ It behaves well under taking limits.
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Computing Cech cohomology

@ In some cases, the map Q, — AP(c) is a homeomorphism.

@ Then we can use AP(o) to compute the Cech cohomology of Q,.

@ Cech cohomology has a difficult definition . .. but it satisfies two
important conditions:

@ For CW-complexes, it agrees with singular conomology, and hence
cellular conomology.
@ It behaves well under taking limits.

@ Then H*(Q,) = lim H*(AP(c)), where H* on the right hand side
can be computed as cellular cohomology.
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Computing Cech cohomology

@ In some cases, the map Q, — AP(c) is a homeomorphism.

@ Then we can use AP(o) to compute the Cech cohomology of Q,.

@ Cech cohomology has a difficult definition . .. but it satisfies two
important conditions:

@ For CW-complexes, it agrees with singular conomology, and hence
cellular conomology.
@ It behaves well under taking limits.

@ Then H*(Q,) = lim H*(AP(c)), where H* on the right hand side
can be computed as cellular cohomology.

@ If o forces its border, then Q, — IL” AP(o) is a homeomorphism.

Definition (Forcing the border)
o forces its border if there exists some n such that, for any tile t and any
two tilings T, T’ containing t, «"(T) and ¢"( T') coincide, not just on
a"(t), but also on all tiles that meet o"(t).
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The collared Anderson-Putnam complex

But Q, — IL” AP(0o) is not necessarily injective.
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The collared Anderson-Putnam complex

But Q, — IL” AP(0o) is not necessarily injective.

@ Apply o repeatedly to a b-tile that has its left end on the origin;
get a tiling of the right half-line.

—
— e
L ———
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The collared Anderson-Putnam complex

But Q, — IL” AP(0o) is not necessarily injective.
@ Apply o repeatedly to a b-tile that has its left end on the origin;
get a tiling of the right half-line.
@ There are two ways to extend this to the left half-line.

—
— e
L ———
| e —
| e G —
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The collared Anderson-Putnam complex

But Q, — IL” AP(0o) is not necessarily injective.
@ Apply o repeatedly to a b-tile that has its left end on the origin;
get a tiling of the right half-line.
@ There are two ways to extend this to the left half-line.
@ So two different tilings are sentto (v, v, v,...) € im AP(ogp).

\"

—
P— e
L ————
| e —
| e G —

AP (aiip)
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The collared Anderson-Putnam complex

But Q, — IL” AP(0o) is not necessarily injective.
@ Apply o repeatedly to a b-tile that has its left end on the origin;
get a tiling of the right half-line.
@ There are two ways to extend this to the left half-line.
@ So two different tilings are sentto (v, v, v,...) € im AP(ogp).
@ To get injectivity, use the collared AP complex AP:(c) instead.

X

AP (i APl(Unb)

Glasgow, 14 March 2014 K-theory of tiling algebras via dual tilings 9/18

—
P— e
L ————
| e —
| e G —



The collared Anderson-Putnam complex

But Q, — IL” AP(0o) is not necessarily injective.

@ Apply o repeatedly to a b-tile that has its left end on the origin;
get a tiling of the right half-line.

@ There are two ways to extend this to the left half-line.

@ So two different tilings are sentto (v, v, v,...) € im AP(ogp).

@ To get injectivity, use the collared AP complex AP:(c) instead.

@ This is like AP(o), but it distinguishes between two translates of the
—
P— e
L ————

| e —

same tile if they have different neighbours.
)
— abb bba 4‘\

AP (i APl(Unb)
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The collared Anderson-Putnam complex

But Q, — IL” AP(0o) is not necessarily injective.
@ Apply o repeatedly to a b-tile that has its left end on the origin;

get a tiling of the right half-line.

@ There are two ways to extend this to the left half-line.

@ So two different tilings are sentto (v, v, v,...) € im AP(ogp).

@ To get injectivity, use the collared AP complex AP:(c) instead.

@ This is like AP(o), but it distinguishes between two translates of the
—
P— e
L ————

| e —

same tile if they have different neighbours.
)
— abb bba 4‘\

o Then Q, = im AP, (o).
AP (i APl(Unb)
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Combinatorial explosion

A A
Tiles: (1 + 1) x 20 = 40 total

Glasgow, 14 March 2014 K-theory of tiling algebras via dual tilings 10/18



Combinatorial explosion

A -
iles: (1 +1) x 20 = 40 total
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We need to use a computer

Calculating K-theory involves several steps.
@ Find all the collared tiles and lower-dimensional cells.
© Compute matrices for the coboundary maps.

© Compute matrices induced on cohomology by the self-map of the
complex.

© Compute the inductive limit groups.
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We need to use a computer

Calculating K-theory involves several steps.
@ Find all the collared tiles and lower-dimensional cells.
© Compute matrices for the coboundary maps.

© Compute matrices induced on cohomology by the self-map of the
complex.

© Compute the inductive limit groups.
If there are 860 collared tiles, then we need to use a computer.

Glasgow, 14 March 2014 K-theory of tiling algebras via dual tilings



We need to use a computer

Calculating K-theory involves several steps.
@ Find all the collared tiles and lower-dimensional cells.
© Compute matrices for the coboundary maps.

© Compute matrices induced on cohomology by the self-map of the
complex.

© Compute the inductive limit groups.

If there are 860 collared tiles, then we need to use a computer.
Is it worth it?
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We need to use a computer

Calculating K-theory involves several steps.
@ Find all the collared tiles and lower-dimensional cells.
© Compute matrices for the coboundary maps.

© Compute matrices induced on cohomology by the self-map of the
complex.

© Compute the inductive limit groups.

If there are 860 collared tiles, then we need to use a computer.

Is it worth it? Yes. Gahler computed the Cech cohomology of the
Tlbingen triangle substitution using the Anderson-Putnam method, and
found the following.

HO .z, H':z° H?:7%*q72.

This was the first known example of torsion in tiling cohomology.
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A Problem

@ 860 is a lot of cells.

@ The Tubingen triangle substitution is still a very basic one.
@ We want to compute K-theory for bigger 2-d substitutions.
@ We want to compute K-theory for 3-d substitutions.

Passing from AP(o) to AP4(o) introduces too many new cells. We
would like to replace APi(c) with a different, smaller complex.
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A Problem

@ 860 is a lot of cells.
@ The Tubingen triangle substitution is still a very basic one.
@ We want to compute K-theory for bigger 2-d substitutions.
@ We want to compute K-theory for 3-d substitutions.
Passing from AP(o) to AP4(o) introduces too many new cells. We

would like to replace APi(c) with a different, smaller complex.
ldeas:

@ (Barge-Diamond, Barge-Diamond-Hunton-Sadun) Blow up all the
subcells in AP(o) to cells of full dimension.

© (Gahler-M) In one dimension, collar on the left only.
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A Problem

@ 860 is a lot of cells.
@ The Tubingen triangle substitution is still a very basic one.
@ We want to compute K-theory for bigger 2-d substitutions.
@ We want to compute K-theory for 3-d substitutions.
Passing from AP(o) to AP4(o) introduces too many new cells. We

would like to replace APi(c) with a different, smaller complex.
ldeas:

@ (Barge-Diamond, Barge-Diamond-Hunton-Sadun) Blow up all the
subcells in AP(o) to cells of full dimension.

© (Gahler-M) In one dimension, collar on the left only.
© New: use dual tilings.
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Dual tilings
/ A
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Dual tilings

AN

LT~
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Dual tilings

Definition (Combinatorial dual)
Given a tiling T containing an open cell ¢, the combinatorial dual of ¢ is

ct:={teT|ccCt}

@ If cis a vertex, then c* is called a vertex star.

@ A dual tiling T* is a tiling that is a geometric realisation for the set
of combinatorial dual cells of T. Vertex stars play the role of tiles.

@ The tiling space is homeomorphic to the space of dual tilings.
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Dual substitutions

Idea: define a substitution on the dual so we can use the AP method to
compute K-theory. Be lazy! Combinatorics only.

A
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Dual substitutions

Idea: define a substitution on the dual so we can use the AP method to
compute K-theory. Be lazy! Combinatorics only.
@ Make a complex from the combinatorial dual cells.
@ Use o to define a combinatorial substitution o* on the vertex stars.
© Get a self-map on the dual complex.
© Take the inverse limit of this complex.

A
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Dual substitutions

Idea: define a substitution on the dual so we can use the AP method to
compute K-theory. Be lazy! Combinatorics only.

@ Make a complex from the combinatorial dual cells.

© Use o to define a combinatorial substitution o* on the vertex stars.
© Get a self-map on the dual complex.

© Take the inverse limit of this complex.

©@ The inverse limit is homotopy equivalent, not homeomorphic, to Q.

4
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Dual substitutions

Idea: define a substitution on the dual so we can use the AP method to
compute K-theory. Be lazy! Combinatorics only.

@ Make a complex from the combinatorial dual cells.

© Use o to define a combinatorial substitution o* on the vertex stars.
© Get a self-map on the dual complex.

© Take the inverse limit of this complex.

©@ The inverse limit is homotopy equivalent, not homeomorphic, to Q.

4
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compute K-theory. Be lazy! Combinatorics only.

@ Make a complex from the combinatorial dual cells.

© Use o to define a combinatorial substitution o* on the vertex stars.
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Dual substitutions

Idea: define a substitution on the dual so we can use the AP method to
compute K-theory. Be lazy! Combinatorics only.

@ Make a complex from the combinatorial dual cells.

© Use o to define a combinatorial substitution o* on the vertex stars.
© Get a self-map on the dual complex.

© Take the inverse limit of this complex.

©@ The inverse limit is homotopy equivalent, not homeomorphic, to Q.

4
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This method works, but we have to be careful how we define the dual
substitution o*.

Make sure o* is translation equivariant.

@ Make sure o* is primitive.

@ Don'tintroduce new adjacency.

@ Don’t remove existing adjacency.

@ Don'tlet ¢* and o*(c*) have different topology.
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An improvement



@ We recover the results of Gahler for the TT substitution and others.

@ We have new examples with an interesting property: the
substitution matrix is unimodular, but the homomorphism induced
on H? of the complex by the substitution is not.
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A 3-d substitution

L. Danzer, Discr. Math. 76 (1989) 1-7
Tetrahedra tiling with 7 scaling

0 1 2 3
rkC*(T") | 480 | 1320 | 1320 | 480
H'Q) | z | z7 | z'° | 7%

r < h

\ 7<)

(»Q 7<d B
3 F9h

¢ -
dy
4
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