Calculating *K*-theory of substitution tiling C*-algebras using dual tilings

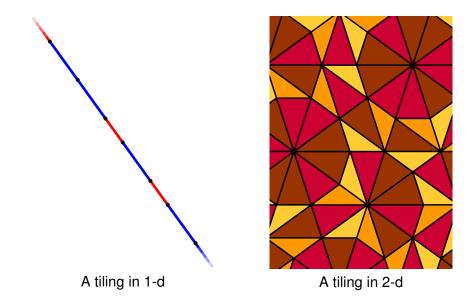
Greg Maloney

Newcastle University

Joint work with Franz Gähler and John Hunton

Scottish Operator Algebras Seminar, 14 March 2014

Tilings and the tiling metric



Definition (Tile)

A *tile* is a subset of \mathbb{R}^d that is homeomorphic to the closed unit ball.

Definition (Partial Tiling, Support)

A *partial tiling* is a set of tiles, any two of which have disjoint interiors. The *support* of a partial tiling is the union of its tiles.

Definition (Tiling)

A *tiling* of \mathbb{R}^d is a partial tiling, the support of which is \mathbb{R}^d .

Definition (Tile)

A *tile* is a subset of \mathbb{R}^d that is homeomorphic to the closed unit ball.

Definition (Partial Tiling, Support)

A *partial tiling* is a set of tiles, any two of which have disjoint interiors. The *support* of a partial tiling is the union of its tiles.

Definition (Tiling)

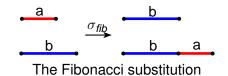
A *tiling* of \mathbb{R}^d is a partial tiling, the support of which is \mathbb{R}^d .

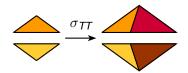
There is a metric on the set of tilings of \mathbb{R}^d , in which two tilings are close if, up to a small translation, they agree on a large ball around the origin.

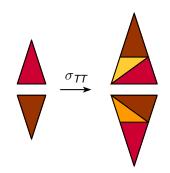
$$d(T, T') = \inf(\{1\} \cup \{\epsilon > 0 : T - u \text{ agrees with } T' - v \text{ on } B_{1/\epsilon}(0)$$

for some $u, v \in B_{\epsilon}(0)\})$

Substitutions

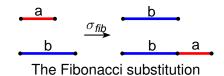


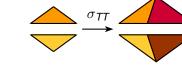




The Tübingen triangle substitution

Substitutions





Let $P = \{p_1, \ldots, p_k\}$ be a set of tiles, which we will call prototiles. Let $\tilde{\Omega}$ denote the set of all partial tilings containing only translates of tiles from *P*.

Definition (Substitution)

A substitution is a map $\sigma : P \to \tilde{\Omega}$ for which there exists an *inflation constant* $\lambda > 1$ such that the support of $\sigma(p_i)$ is λp_i .

The Tübingen triangle substitution

Substitution tiling spaces

 σ extends to a map $\sigma : \tilde{\Omega} \to \tilde{\Omega}$ by setting $\sigma(T) = \bigcup_{p_i+u \in T} (\sigma(p_i) + \lambda u).$

Definition (Substitution Tiling Space)

The substitution tiling space Ω_{σ} is the set of all tilings $T \in \tilde{\Omega}$ such that for every patch *S* of *T* with bounded support there exist $n \in \mathbb{N}$, an index *i*, and a vector *u* such that $S \subseteq \sigma^n(p_i + u)$.

Substitution tiling spaces

 σ extends to a map $\sigma : \tilde{\Omega} \to \tilde{\Omega}$ by setting $\sigma(T) = \bigcup_{p_i+u \in T} (\sigma(p_i) + \lambda u).$

Definition (Substitution Tiling Space)

The substitution tiling space Ω_{σ} is the set of all tilings $T \in \tilde{\Omega}$ such that for every patch *S* of *T* with bounded support there exist $n \in \mathbb{N}$, an index *i*, and a vector *u* such that $S \subseteq \sigma^n(p_i + u)$.

We make four standard assumptions about σ and Ω_{σ} .

- σ is *primitive*: there is some $n \in \mathbb{N}$ such that, for all $i, j \leq k, \sigma^n(p_i)$ contains a translate of p_j .
- **2** $\sigma : \Omega_{\sigma} \to \Omega_{\sigma}$ is injective.
- O_σ has *finite local complexity*: for any r > 0, there are, up to translation, finitely many patches supported in a ball of radius r.
- **③** Each $T \in \Omega_{\sigma}$ is a *CW*-complex, in which the tiles are *d*-cells.

Substitution tiling spaces

 σ extends to a map $\sigma : \tilde{\Omega} \to \tilde{\Omega}$ by setting $\sigma(T) = \bigcup_{p_i+u \in T} (\sigma(p_i) + \lambda u).$

Definition (Substitution Tiling Space)

The substitution tiling space Ω_{σ} is the set of all tilings $T \in \tilde{\Omega}$ such that for every patch *S* of *T* with bounded support there exist $n \in \mathbb{N}$, an index *i*, and a vector *u* such that $S \subseteq \sigma^n(p_i + u)$.

We make four standard assumptions about σ and Ω_{σ} .

- σ is *primitive*: there is some $n \in \mathbb{N}$ such that, for all $i, j \leq k, \sigma^n(p_i)$ contains a translate of p_j .
- **2** $\sigma : \Omega_{\sigma} \to \Omega_{\sigma}$ is injective.
- O_σ has *finite local complexity*: for any r > 0, there are, up to translation, finitely many patches supported in a ball of radius r.

• Each $T \in \Omega_{\sigma}$ is a *CW*-complex, in which the tiles are *d*-cells. Primitivity $\implies (\Omega_{\sigma}, \mathbb{R}^{d})$ is *minimal* (Ω_{σ} is the closure of the translation orbit of any of its points).

Consider the groupoid of Ω_{σ} under the \mathbb{R}^d -action by translation.

- As a topological space, this is $\Omega_{\sigma} \times \mathbb{R}^d$.
- (T, v) and (T', v') are composable if T' = T + v, and their composition is (T, v)(T', v') = (T, v + v').

Consider the groupoid of Ω_{σ} under the \mathbb{R}^{d} -action by translation.

- As a topological space, this is $\Omega_{\sigma} \times \mathbb{R}^d$.
- (T, v) and (T', v') are composable if T' = T + v, and their composition is (T, v)(T', v') = (T, v + v').

Let $C^*(\sigma)$ denote the C*-algebra of this groupoid. This has been studied using two different approaches.

Consider the groupoid of Ω_{σ} under the \mathbb{R}^{d} -action by translation.

- As a topological space, this is $\Omega_{\sigma} \times \mathbb{R}^{d}$.
- (T, v) and (T', v') are composable if T' = T + v, and their composition is (T, v)(T', v') = (T, v + v').

Let $C^*(\sigma)$ denote the C*-algebra of this groupoid. This has been studied using two different approaches.

(Kellendonk) Pick a distinguished point, called a *puncture*, in the interior of each prototile; by translation, this defines a puncture in the interior of each tile. Then restrict to groupoid elements (*T*, *v*) for which *T* has a puncture at the origin. This yields a more tractable groupoid, the C*-algebra of which is strongly Morita equivalent to that of the original groupoid.

Consider the groupoid of Ω_{σ} under the \mathbb{R}^{d} -action by translation.

- As a topological space, this is $\Omega_{\sigma} \times \mathbb{R}^{d}$.
- (T, v) and (T', v') are composable if T' = T + v, and their composition is (T, v)(T', v') = (T, v + v').

Let $C^*(\sigma)$ denote the C*-algebra of this groupoid. This has been studied using two different approaches.

- (Kellendonk) Pick a distinguished point, called a *puncture*, in the interior of each prototile; by translation, this defines a puncture in the interior of each tile. Then restrict to groupoid elements (*T*, *v*) for which *T* has a puncture at the origin. This yields a more tractable groupoid, the C*-algebra of which is strongly Morita equivalent to that of the original groupoid.
- (Anderson-Putnam) The groupoid C*-algebra is isomorphic to the crossed product C*-algebra of Ω_{σ} by \mathbb{R}^{d} , and so by the Connes-Thom isomorphism, the *K*-theory of the algebra is related to that of the space Ω_{σ} .

K-theory is an invariant that we expect will yield useful information about Ω_{σ} , and hence about the tiling *T* itself. How do we compute *K*-theory?

Theorem (Anderson-Putnam 1998)

If Ω_{σ} is a substitution tiling space of tilings with dimension 1, then

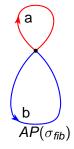
 $K_0(C^*(\Omega_\sigma)) \cong H^1(\Omega_\sigma), \quad K_1(C^*(\Omega_\sigma)) \cong H^0(\Omega_\sigma).$

If Ω_{σ} is a substitution tiling space of tilings with dimension 2, then

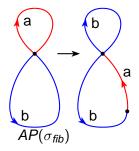
 $K_0(C^*(\Omega_\sigma))\cong H^2(\Omega_\sigma)\oplus H^0(\Omega_\sigma), \quad K_1(C^*(\Omega_\sigma))\cong H^1(\Omega_\sigma).$

(Here H* denotes Cech cohomology with integer coefficients.)

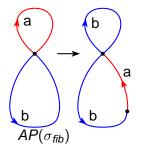
- Its cells are translation equivalence classes of tiles from tilings in the space.
- Cells meet at a boundary if they have representatives that meet at a boundary.



- Its cells are translation equivalence classes of tiles from tilings in the space.
- Cells meet at a boundary if they have representatives that meet at a boundary.
- σ induces a self map on $AP(\sigma)$.

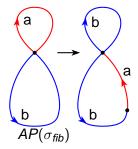


- Its cells are translation equivalence classes of tiles from tilings in the space.
- Cells meet at a boundary if they have representatives that meet at a boundary.
- σ induces a self map on $AP(\sigma)$.
- Consider the inverse limit lim AP(σ) under this map.

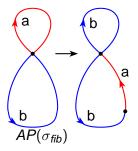


To compute the *K*-theory of $C^*(\sigma)$, Anderson and Putnam introduced a cell complex, called the Anderson-Putnam complex, or $AP(\sigma)$.

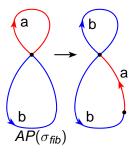
There is a map from the tiling space to the inverse limit lim AP(σ):

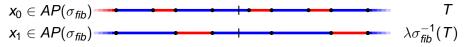


- There is a map from the tiling space to the inverse limit lim AP(σ):
- The origin in *T* gives a point $x_0 \in AP(\sigma)$.

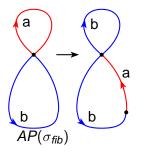


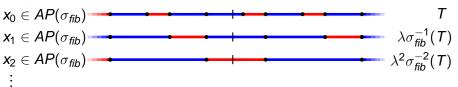
- There is a map from the tiling space to the inverse limit lim AP(σ):
- The origin in *T* gives a point $x_0 \in AP(\sigma)$.
- The origin in σ⁻¹(T) gives a point x₁ ∈ AP(σ) that maps to x₀ under the self map.





- There is a map from the tiling space to the inverse limit lim AP(σ):
- The origin in *T* gives a point $x_0 \in AP(\sigma)$.
- The origin in σ⁻¹(T) gives a point x₁ ∈ AP(σ) that maps to x₀ under the self map.
- The sequence $(x_i)_{i\geq 1}$ is an element of $\lim_{i \in I} AP(\sigma)$.





• In some cases, the map $\Omega_{\sigma} \rightarrow AP(\sigma)$ is a homeomorphism.

- In some cases, the map $\Omega_{\sigma} \to AP(\sigma)$ is a homeomorphism.
- Then we can use $AP(\sigma)$ to compute the Cech cohomology of Ω_{σ} .

- In some cases, the map $\Omega_{\sigma} \to AP(\sigma)$ is a homeomorphism.
- Then we can use $AP(\sigma)$ to compute the Cech cohomology of Ω_{σ} .
- Cech cohomology has a difficult definition

Definition (Cech cohomology, summary from a talk by Putnam)

To find the Cech cohomology of a space X:

- **①** Take a finite open cover \mathcal{U} of X.
- Associated to U is a simplicial complex: vertices are the elements of U, edges are non-empty intersections of two elements of U, etc.
- Take the cohomology of the simplicial complex.
- Refine the open cover, get an inductive system of cohomologies and take the limit.

- In some cases, the map $\Omega_{\sigma} \rightarrow AP(\sigma)$ is a homeomorphism.
- Then we can use $AP(\sigma)$ to compute the Cech cohomology of Ω_{σ} .
- Cech cohomology has a difficult definition ... but it satisfies two important conditions:

- In some cases, the map $\Omega_{\sigma} \to AP(\sigma)$ is a homeomorphism.
- Then we can use $AP(\sigma)$ to compute the Cech cohomology of Ω_{σ} .
- Cech cohomology has a difficult definition ... but it satisfies two important conditions:
 - For *CW*-complexes, it agrees with singular cohomology, and hence cellular cohomology.

- In some cases, the map $\Omega_{\sigma} \rightarrow AP(\sigma)$ is a homeomorphism.
- Then we can use $AP(\sigma)$ to compute the Cech cohomology of Ω_{σ} .
- Cech cohomology has a difficult definition ... but it satisfies two important conditions:
 - For *CW*-complexes, it agrees with singular cohomology, and hence cellular cohomology.
 - It behaves well under taking limits.

- In some cases, the map $\Omega_{\sigma} \rightarrow AP(\sigma)$ is a homeomorphism.
- Then we can use $AP(\sigma)$ to compute the Cech cohomology of Ω_{σ} .
- Cech cohomology has a difficult definition ... but it satisfies two important conditions:
 - For *CW*-complexes, it agrees with singular cohomology, and hence cellular cohomology.
 - It behaves well under taking limits.
- Then H^{*}(Ω_σ) ≃ lim H^{*}(AP(σ)), where H^{*} on the right hand side can be computed as cellular cohomology.

- In some cases, the map $\Omega_{\sigma} \to AP(\sigma)$ is a homeomorphism.
- Then we can use $AP(\sigma)$ to compute the Cech cohomology of Ω_{σ} .
- Cech cohomology has a difficult definition ... but it satisfies two important conditions:
 - For *CW*-complexes, it agrees with singular cohomology, and hence cellular cohomology.
 - It behaves well under taking limits.
- Then $H^*(\Omega_{\sigma}) \cong \varinjlim H^*(AP(\sigma))$, where H^* on the right hand side can be computed as cellular cohomology.
- If σ forces its border, then $\Omega_{\sigma} \to \varprojlim AP(\sigma)$ is a homeomorphism.

Definition (Forcing the border)

 σ forces its border if there exists some *n* such that, for any tile *t* and any two tilings *T*, *T'* containing *t*, $\sigma^n(T)$ and $\sigma^n(T')$ coincide, not just on $\sigma^n(t)$, but also on all tiles that meet $\sigma^n(t)$.

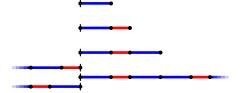
But $\Omega_{\sigma} \rightarrow \varprojlim AP(\sigma)$ is not necessarily injective.

But $\Omega_{\sigma} \rightarrow \lim AP(\sigma)$ is not necessarily injective.

 Apply σ_{fib} repeatedly to a b-tile that has its left end on the origin; get a tiling of the right half-line.

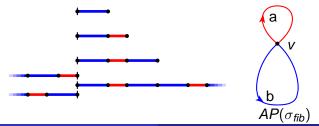
But $\Omega_{\sigma} \rightarrow \lim AP(\sigma)$ is not necessarily injective.

- Apply σ_{fib} repeatedly to a b-tile that has its left end on the origin; get a tiling of the right half-line.
- There are two ways to extend this to the left half-line.



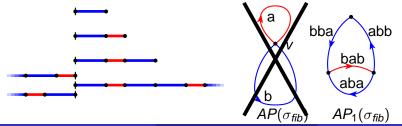
But $\Omega_{\sigma} \rightarrow \lim AP(\sigma)$ is not necessarily injective.

- Apply σ_{fib} repeatedly to a b-tile that has its left end on the origin; get a tiling of the right half-line.
- There are two ways to extend this to the left half-line.
- So two different tilings are sent to $(v, v, v, ...) \in \lim AP(\sigma_{fib})$.



But $\Omega_{\sigma} \rightarrow \varprojlim AP(\sigma)$ is not necessarily injective.

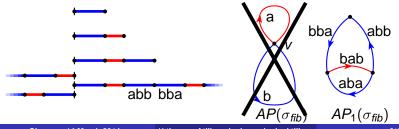
- Apply σ_{fib} repeatedly to a b-tile that has its left end on the origin; get a tiling of the right half-line.
- There are two ways to extend this to the left half-line.
- So two different tilings are sent to $(v, v, v, ...) \in \lim AP(\sigma_{fib})$.
- To get injectivity, use the collared AP complex $A\dot{P}_1(\sigma)$ instead.



K-theory of tiling algebras via dual tilings

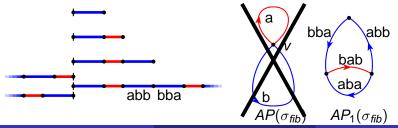
But $\Omega_{\sigma} \rightarrow \lim AP(\sigma)$ is not necessarily injective.

- Apply σ_{fib} repeatedly to a b-tile that has its left end on the origin; get a tiling of the right half-line.
- There are two ways to extend this to the left half-line.
- So two different tilings are sent to $(v, v, v, ...) \in \lim AP(\sigma_{fib})$.
- To get injectivity, use the collared AP complex $AP_1(\sigma)$ instead.
- This is like AP(σ), but it distinguishes between two translates of the same tile if they have different neighbours.



But $\Omega_{\sigma} \rightarrow \varprojlim AP(\sigma)$ is not necessarily injective.

- Apply σ_{fib} repeatedly to a b-tile that has its left end on the origin; get a tiling of the right half-line.
- There are two ways to extend this to the left half-line.
- So two different tilings are sent to $(v, v, v, ...) \in \lim AP(\sigma_{fib})$.
- To get injectivity, use the collared AP complex $AP_1(\sigma)$ instead.
- This is like AP(σ), but it distinguishes between two translates of the same tile if they have different neighbours.
- Then $\Omega_{\sigma} \cong \varprojlim AP_1(\sigma)$.

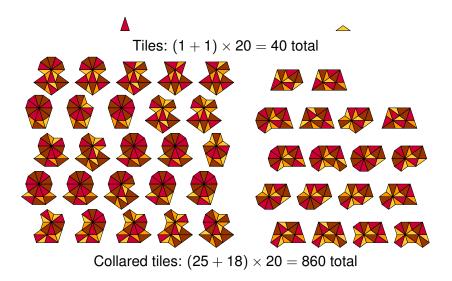


Combinatorial explosion

Tiles: $(1 + 1) \times 20 = 40$ total

 \bigtriangleup

Combinatorial explosion



- Find all the collared tiles and lower-dimensional cells.
- Ompute matrices for the coboundary maps.
- Ocmpute matrices induced on cohomology by the self-map of the complex.
- Ompute the inductive limit groups.

- Find all the collared tiles and lower-dimensional cells.
- Ompute matrices for the coboundary maps.
- Ocmpute matrices induced on cohomology by the self-map of the complex.
- Ompute the inductive limit groups.
- If there are 860 collared tiles, then we need to use a computer.

- Find all the collared tiles and lower-dimensional cells.
- Ompute matrices for the coboundary maps.
- Ocmpute matrices induced on cohomology by the self-map of the complex.
- Ompute the inductive limit groups.
- If there are 860 collared tiles, then we need to use a computer. Is it worth it?

- Find all the collared tiles and lower-dimensional cells.
- Ompute matrices for the coboundary maps.
- Ocmpute matrices induced on cohomology by the self-map of the complex.
- Ompute the inductive limit groups.

If there are 860 collared tiles, then we need to use a computer. Is it worth it? Yes. Gähler computed the Cech cohomology of the Tübingen triangle substitution using the Anderson-Putnam method, and found the following.

$$H^0: \mathbb{Z}, \quad H^1: \mathbb{Z}^5, \quad H^2: \mathbb{Z}^{24} \oplus \mathbb{Z}_5^2.$$

This was the first known example of torsion in tiling cohomology.

- 860 is a lot of cells.
- The Tübingen triangle substitution is still a very basic one.
- We want to compute *K*-theory for bigger 2-d substitutions.
- We want to compute *K*-theory for 3-d substitutions.

Passing from $AP(\sigma)$ to $AP_1(\sigma)$ introduces too many new cells. We would like to replace $AP_1(\sigma)$ with a different, smaller complex.

- 860 is a lot of cells.
- The Tübingen triangle substitution is still a very basic one.
- We want to compute *K*-theory for bigger 2-d substitutions.
- We want to compute *K*-theory for 3-d substitutions.

Passing from $AP(\sigma)$ to $AP_1(\sigma)$ introduces too many new cells. We would like to replace $AP_1(\sigma)$ with a different, smaller complex. Ideas:

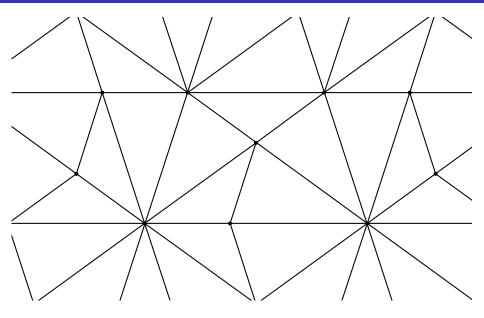
- (Barge-Diamond, Barge-Diamond-Hunton-Sadun) Blow up all the subcells in $AP(\sigma)$ to cells of full dimension.
- (Gähler-M) In one dimension, collar on the left only.

- 860 is a lot of cells.
- The Tübingen triangle substitution is still a very basic one.
- We want to compute *K*-theory for bigger 2-d substitutions.
- We want to compute *K*-theory for 3-d substitutions.

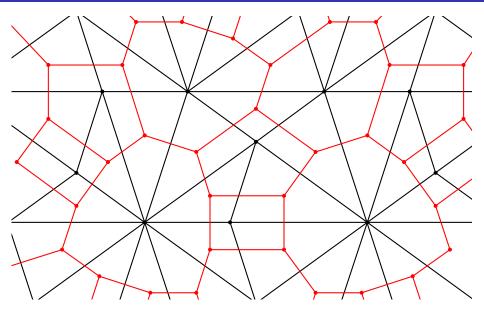
Passing from $AP(\sigma)$ to $AP_1(\sigma)$ introduces too many new cells. We would like to replace $AP_1(\sigma)$ with a different, smaller complex. Ideas:

- (Barge-Diamond, Barge-Diamond-Hunton-Sadun) Blow up all the subcells in $AP(\sigma)$ to cells of full dimension.
- (Gähler-M) In one dimension, collar on the left only.
- New: use dual tilings.

Dual tilings



Dual tilings

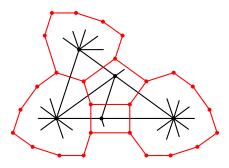


Definition (Combinatorial dual)

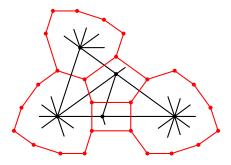
Given a tiling T containing an open cell c, the combinatorial dual of c is

$$\boldsymbol{c}^* := \{t \in T \mid \boldsymbol{c} \subset t\}.$$

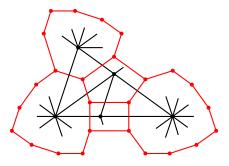
- If *c* is a vertex, then *c*^{*} is called a *vertex star*.
- A *dual tiling* T* is a tiling that is a geometric realisation for the set of combinatorial dual cells of T. Vertex stars play the role of tiles.
- The tiling space is homeomorphic to the space of dual tilings.



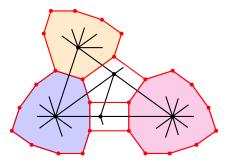
- Make a complex from the combinatorial dual cells.
- 2 Use σ to define a combinatorial substitution σ^* on the vertex stars.
- Get a self-map on the dual complex.
- Take the inverse limit of this complex.



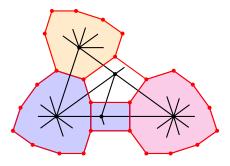
- Make a complex from the combinatorial dual cells.
- 2 Use σ to define a combinatorial substitution σ^* on the vertex stars.
- Get a self-map on the dual complex.
- Take the inverse limit of this complex.
- **③** The inverse limit is homotopy equivalent, not homeomorphic, to Ω_{σ} .



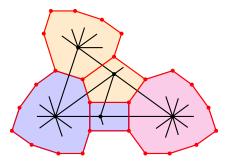
- Make a complex from the combinatorial dual cells.
- 2 Use σ to define a combinatorial substitution σ^* on the vertex stars.
- Get a self-map on the dual complex.
- Take the inverse limit of this complex.
- **③** The inverse limit is homotopy equivalent, not homeomorphic, to Ω_{σ} .



- Make a complex from the combinatorial dual cells.
- 2 Use σ to define a combinatorial substitution σ^* on the vertex stars.
- Get a self-map on the dual complex.
- Take the inverse limit of this complex.
- **③** The inverse limit is homotopy equivalent, not homeomorphic, to Ω_{σ} .



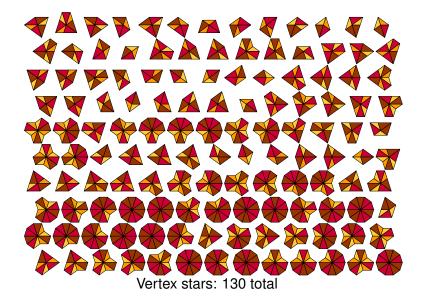
- Make a complex from the combinatorial dual cells.
- 2 Use σ to define a combinatorial substitution σ^* on the vertex stars.
- Get a self-map on the dual complex.
- Take the inverse limit of this complex.
- **③** The inverse limit is homotopy equivalent, not homeomorphic, to Ω_{σ} .



This method works, but we have to be careful how we define the dual substitution σ^* .

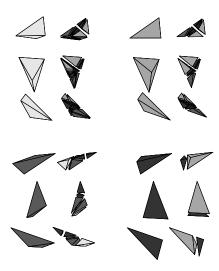
- Make sure σ^* is translation equivariant.
- Make sure σ^* is primitive.
- Don't introduce new adjacency.
- Don't remove existing adjacency.
- Don't let c^* and $\sigma^*(c^*)$ have different topology.

An improvement



- We recover the results of Gähler for the TT substitution and others.
- We have new examples with an interesting property: the substitution matrix is unimodular, but the homomorphism induced on H² of the complex by the substitution is not.

A 3-d substitution



L. Danzer, Discr. Math. **76** (1989) 1–7 Tetrahedra tiling with τ scaling

	0	1	2	3
rk <i>C^k</i> (Γ)	480	1320	1320	480
$H^k(\Omega)$	\mathbb{Z}	\mathbb{Z}^7	\mathbb{Z}^{16}	\mathbb{Z}^{20}