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1. Preliminaries

Operator algebras are subalgebras of #(H)

1. Selfadjoint norm-closed subalgebras, i.e. C*-algebras.

2. Non-involutive, i.e. nonselfadjoint operator algebras (nsa).

By definition every nsa &/ C %(H) generates a C*-algebra C*(.27)
It may happen that 1;: &/ — B(H:1) and 12: &/ — B(H>) but

C(u (o)) # C*(12())-

Example

The disc algebra A(ID) generates the Toeplitz algebra, C(D), and C(T).
However C(T) is the minimal C*-algebra generated by A(D), and we
call C(T) the C*-envelope of A(D).



1. Preliminaries

Question, Arveson (1969)

Does every nsa have a C*-envelope?

Answer: Yes

J1: of — B(H) s.t. for any other 1': o7 — B(K), 3 a *-epimorphism
o C*(()) = C*(1(«)) with ®1'(a) =1(a), Vae .

The C*(1(«)) is the C*-envelope of o/ . We write C;,, () = C*(1(«)).
Proofs by:

1. Hamana (1979): C;, () is generated in the injective envelope.

2. Dritschel-McCullough (2001): C,, (&) is generated by a maximal
dilation.

Arveson's Program on the C*-envelope

Determine! and examine? the C*-envelope of a given nsa.



1. Preliminaries

Dilations
Let T € B(H). A power dilation U € #(K) of T is of the form

*x 0 0
U=1|x T 0
* k%

A dilation is maximal if it has only trivial dilations.

Example
If T is a contraction (|| T|| <1), then the maximal dilation is achieved
by a unitary U (U*U = UU* =1).

Dilations

The idea is that by dilating we obtain “better-behaved” objects.



1. Preliminaries

In this talk we focus on encoding:

{ C*-dynamical systems } s { Operator algebras }

e Origins: Murray, von Neumann (1936, 1940) — Type |, Il, and IlI
factors.

e C*-crossed products. are constructed based on a given group action
o: G — Aut(A) on a C*-algebra A by *-automorphisms.

e We turn our focus to semigroup actions ¢¢: P — End(A) on a
C*-algebra A by *-endomorphisms.

e Case example: P=17,.



II. Philosophy

Definition
A C*-dynamical system a.: Z — End(A) consists of a *-endomorphism
o: A— A of a C*-algebra A.

e Use operators to encode the evolution of the system (in discrete time):
a o(a) a?(a)
t=0 t=1
e The key is to introduce an “external’ operator V' that satisfies the
covariance relation
a-V=V-a(a) forall ac A.

This defines a convolution on monomials V"a for n € Z, and a € A.



I1. Operator algebras over a: Z, — End(A)

Semicrossed product ZJA[ o) (no involution)

Universal nonselafdjoint operator algebra generated by

V"a, withac A, neZy,

such that a-V =V -a(a) and V is a contraction (|| V| <1).

Remark
Inititated by Arveson (1967), formally defined by Peters (1984).

Theorem (Muhly-Solel 2006)

The scp 9(;[ &) coincides with the nsa generated by
V"a, withac€ A, neZy,

such that a-V =V -a(a) and V is an isometry (V*V =1).




I1. Operator algebras over a: Z, — End(A)

Cuntz-Pimsner O o) (with involution)
Universal C*-algebra generated by

V"a, with ace A, neZ,
such that a-V =V -a(a), V is an isometry (V*V =1), and

a-(I-wW*) =0, for ackerat:={acA|a kera=(0)}.

Remarks

1. Example of a C*-correspondence.

2. Notice that a= Va(a)V* for all a € kerat.
3. A= O(A,a) (Katsura 2004).

4. When a € Aut(A) then kerat = A.Thus V is a unitary and O(a) is
the C*-crossed product A Xy Z.



I1. Operator algebras over a: Z, — End(A)

Question

Why such complexity?

Remark

1. Let a faithful p: A— Z(H) and an isometry V such that
p(a)V =Vpa(a).

2. If p(a0) +Xn=0 Vap(as) Vi = 0 then ag € kera (Katsura 2004).

3. This happens because such equations magically transform into

p(a0)(1 - VW) =0.



II. Two interpretations of dilation

(1) Identification of the C*-envelope (Katsoulis-Kribs 2005)
The C*-envelope of ‘7(;05) is O(a,q)-

(2) Connecting it to a natural C*-object (K. 2011)

a: Z+ — El’ld(A) ﬁ(ApC)
|
dilation | strong ({ Morita equivalent

B: Z—>vAut(B)

ﬁ(B,ﬁ) ~B NﬁZ



II. Application: Ideal Structure

Theorem (K.-Katsoulis 2011)

[0/ Z+ = End(A) ﬁ(A,a)
\
dilation | strong ( Morita equivalent
Y
BZ Z—>Aut(B) ﬁ(B,ﬁ):BNﬁZ

Corollary (K. 2011)

Let A= C(X). TFAE:

. (A,a) is minimal and a" # a™ for all n,m € Z;

. (B,B) is minimal and B" #id for all n € Z (topol. free);
. BxpgZ is simple;

[y

A wN

- O(a,q) is simple (has no non-trivial two-sided closed ideals).



III. Program on semigroup actions

Question 1

o: P — End(A) ——— C*-envelope of a scp
\
dilation | strong ( Morita equivalent ?
v
B: G — Aut(B) ————— C*-crossed product

Question 2

Is the C*-envelope a Cuntz-type C*-algebra? Can we describe it by
x-algebraic relations?

Applications 3

Relate the intrinsic properties of : P — End(A) to C*-properties of the
obtained object.



III. Program on semigroup actions

Davidson-Fuller-K. (2014)

o: P — End(A) —— C*-envelope of a sem. prod.
\

dilation | strong ( Morita equivalent
Y

B: G— Aut(B) C*-crossed product

1. We confirm this when P is 74, Fﬁ a spanning cone, an Ore sgrp.
2. For P =17 we coin the Cuntz-Nica-Pimsner algebra.

3. We study the Cuntz-Nica-Pimsner algebras in terms of ideal
structure.

K. (2014)

4. We study the Nica-Pimsner algebras in terms of nuclearity, exactness,
KMS states.



III. Operator algebras over a: Z — End(A)

Notation
We write i = (0,...,0,1,0,...,0) forall i =1,...,n.
Thus o: Z7 — End(A) is defined by n commuting o5 € End(A).

Requirements

1. n contractions V; such that a- V; = V;- 05(a).
2. The V4, commute.

Is this enough?

The aim is to reach a crossed product. For A= C we would like to
dilate the V4 to unitaries. Parrott's counterexample shows that this
cannot be done for general n.

3. We focus on doubly commuting V;, i.e. \/i\/j* = \/j*\/i for i # j.



III. Operator algebras over a: Z — End(A)

The Nica-covariant semicrossed product A xgfZ"  (no involution)

Universal nonselafdjoint operator algebra generated by

Vsa, with a€ A, seZ”,
for n doubly commuting contractions V; with a- Vi = V;- a5(a).
Remark
A embeds in Axg~Z" .

Example
For AC H let K= H®(?(Z") and define

Si(§®es) =& ®eits and m(a)(§ ®es) = as(a)g @es

for all s € Z} and & € H. Then 7 is a faithful representation of A.



III. Operator algebras over a: Z — End(A)

Question

Why do we call it Nica covariant?

Theorem (Davidson-Fuller-K. 2014)

The Nc-scp AxF 72" coincides with the nsa generated by doubly
commuting isometries Vi and A such that a- V; = V;- a;(a).

Remark

Doubly commuting isometries form a representation of Z} in the sense
of Nica.

Corollary

Then C; (A xgfZ0 ) ~span{VsaV{ :a€ o/ and s, t € Z" }.



III. Reductions

The plan

Dilate a system o : Z7 — End(A) to a group action f8: Z" — Aut(B).

Injective case: kero; = (0) for all i=1,...,n.

We can then construct the direct limit ff € Aut(B) s.t.

As—"=Agye —= B

o e iﬁi

As—>Agy ——B

where A; = A for all s € Zi.

Then Cf (A xgZ") ~ B xg Z" (Corollary Davidson-Fuller-K. 2014).



III. Reductions

The (revised) plan

Dilate a system a: Z] — End(A) where ker 0; # (0) to a system

B: Z — End(B) such that ker f§; = (0).

The n=1 case (K. 2011)

For I =kerat let B=A® co(A/l) and B(a,(xn)) = (at(a),a+ I, (xn))-
o

qi A id
AT A/l A/l T

The n= 2 case

Let og,ap € End(A) such that o0 = 0poyy. We want two injective
commuting fB1,B2 on some B D A that dilate a1, 0.



III. Non-injective case

A first attempt
Let /(1’1) = (kerog - keraz)L, h = ﬂ,,ozz_"(l(l’l)) , = ﬂnaf"(/(1,1))-

Let B; be the solid arrows and f; the broken arrows:

A A

| |
i id _ id
@/4//2 q1
A

A/I(I,I)L)
A

:C'Iz

a :CIQ
QA q Al id
/A

. LA
aQ// (X2(/

with d1q2 = g102 and §1q1 = q(1,1) (plus the symmetrical ones).
Then B is injective and generalises the n =1 case.

However this construction is bound to fail!



III. Non-injective case

How did we end up with /1 1) = (kerog - ker o) 7

1. Let a faithful p: A— Z(H) and doubly commuting isometries V4
such that

p(a)Vi = Vipai(a).
2. Because of a gauge action, we will have to deal with equations
P(a0) + Lsso Vep(as) Vi = 0.
3. This magically transforms into

p(a0)(/ ~ Vi V§)(I — VaV5) = 0.

4. From this we get that ag L ker oy, ker ap.



III. Non-injective case

Why isn't /1 1) = (ker oy - ker ap)* enough?
However we will also have equations of the form

p(a0) +Xn=0 Vinoyp(an) V(i 0) =0
which magically transform into
plao)(I ~ V1 V{) =0.
From this we get that ag L keraj.
From this we also get that o )(a0) L ker oy for all n > 0.
This happens because pay(a) = V5 p(a)Va.
So we need the ideal / =N,a, "(keraj') instead of Nyat, (/).

And of course its symmetrical /.



III. Non-injective case

Correct tail
Iy = (kerag -kerop)t  h=nNn0, "(kerag) b =Nn0y "(ker oy ).
Then define B and B, by

A A
| |
(071 (id . id .
GA/Iz i A//(l,l) ld% coa
A A
a2 '
alQ/‘A @ A)I id
N /A C
(05 /v/ o,

with 0192 = g102 and G2q1 = q(1,1) (plus the symmetrical ones).
Then B; and B, generalise the n=1 case.

It is not immediate but they are commuting and injective.



III. General construction

For x = (x1,...,X,) € Z", define
supp(x) = {i: x; # 0} and x* = {y € Z] : supp(y) Nsupp(x) = 0}
and let the ideals
he=Nyext % ((Micauppi ker ) )
Let By = A/Ix and on the C*-algebra
B =Yy ez Bx
define the x-endomorphisms

9x05(a) @ ex + qx+i(a) @ exyi  forie x*t,
gx(a) ® exti for i € supp(x).

Bi(gx(a) ® ex) = {

Then the f; commute and are injective (this is not trivial).



ITI. C*-envelope

Theorem (Davidson-Fuller-K. 2014)
Let a: 7' — End(A) be a semigroup action and define the Nc scp
Axg Z . Apply the constructions:

1. dilate a to an injective system by adding a tail;

2. use the direct limit to extend it to B: Z" — Aut(B).

Then the C*-envelope of A xS Z" is strong Morita equivalent to
B Xﬁ Z".

Remarks
1. The C*-envelope is defined by a co-universal property.

2. This was one of the challenging points in the proof.

What about the structure of the C*-envelope?

Can we identify the C*-envelope by C*-algebraic relations?



III. Towards a Cuntz algebra

Recall
For n =2 we arrived to the equalities
1. a(l-wVy)=0;
2. a(l— W V5) =0;
3. a(l—vi V)1 — Vo V5) = 0;
subject to a. Then we used the solutions/ideals to produce the tail.
This appears to be more than an innocent coincidence!

The Cuntz-Nica-Pimsner algebra for n =2 case

It is the universal C*-algebra such that: (a) V; are doubly commuting
isometries; (b) aV4 = V;o5(a); and (c) we have

c.l a(l—ViV§) =0 for all a€ Ny, "(kerog-);

c.2 a(l — Vo V3) =0 for all a € Nyoy "(ker oty );

c.3 a(l —ViV§) (I — VaV3) =0 for all a € (keray - kerap)*.



III. The Cuntz-Nica-Pimsner algebra

Definition (Davidson-Fuller-K. 2014)

The Cuntz-Nica-Pimsner algebra .V O(A,a) of a: Z! — End(A) is the
universal C*-algebra generated by A and V; so that:

1. V; are commuting isometries;

2. aV, = Vio4(a); and
* -1 1
3. a‘Hiesupp(g)(l - VIV| ) =0forac meKL ax ((ﬂiESUPP(i) ker ai) )

Corollary (Davidson-Fuller-K. 2014)

1. The C*-envelope of AxyC 20 is N/ O(A, ).

2. For a: Z!, — End(A) there exists a dilation B: Z" — Aut(B) such

that N O(A, &) % B xg Z".



III. Simplicity

Theorem (Davidson-Fuller-K. 2014)

o: Z1 — End(A)
I
dilation | strong ( Morita equivalent
A
B:Z" — Aut(B) BxgZ"

NO(A &) ~Cg (AxpEZT)

Corollary (Corollary Davidson-Fuller-K. 2014)

Let A= C(X) and let ¢s: X — X related to as: X — X. TFAE:

1. (A, ) is minimal and {x € X | ¢s(x) # ¢,(x)}° =0 for all s,r € Z]
(top. free);

. (B,B) is minimal and topologically free;

N

3. BxgZ is simple;

o

- N O(aq) is simple.



III. Exactness/Nuclearity

Cuntz-Pimsner 04 ) (with involution)
Universal C*-algebra generated by

V'a, with ac€ A neZ,,
such that a-V =V -a(a), V is an isometry (V*V =), and

a-(I—VVv*)=0, forackerat:={acA|a kera=(0)}.

Theorem (Katsura 2004)

1. O(A,) is exact if and only if A is exact.

2. O(A, ) is nuclear if and only if: (a) A/kera™ is nuclear; and (b) the
embedding ker ot — C*(V,aV¥ | a€ A,n € N) is nuclear.

3. If A is nuclear then O(A, @) is nuclear. The converse is not true.



III. Exactness/Nuclearity

Theorem (K. 2014)
N O(A,q) is exact if and only if A is exact.

Theorem (K. 2014)
Let B: Z" — Aut(B) be the automorphic dilation of o : Z, — End(A).
TFAE:

1. the embeddings A,A/ls — B are nuclear for all s € 21} ;

2. B is nuclear;

3. BxpgZ" is nuclear;

4. N O(A, ) is nuclear.

Proposition (K. 2014)

If Ais nuclear or if A— C*(VpaV}y |a€ A,n€Zy) is nuclear then
N O(A, ) is nuclear. The converse is not true.



IV. Remarks

Remarks on 4.7 (A, o) (K. 2014)
1. There is a second variant, the Toeplitz-Nica-Pimsner algebra.

2. For this we get A is nuclear (resp. exact) if and only if /.7 (A, ) is
nuclear (resp. exact).

KMS states (K. 2014)

3. The gauge action implements an action of R on the Nica-Pimsner
algebras. We are able to identify all KMS states at finite temperature:
for any T < oo there is exactly one KMS; 1 state.

4. For T = o the KMS states are the tracial states and there is no
bijection (there might be more than one).



IV. Remarks

Remarks on simplicity

5. Recently there was a major progress in simplicity of C*-crossed
product (reduced) by Kalantar-Kennedy 2014. They show that it is
equivalent to topological freeness of the group action on a boundary.

6. With Ken and Adam we are working towards formulating this
property for semigroups and showing its stability under the automorphic
dilation.

Remarks on product systems
7. Both /"7 (A,a) and A O(A, ) are examples of C*-algebras
associated to product systems.

8. A gauge invariance uniqueness theorem for general
Toeplitz-Nica-Pimsner algebras is easy to obtain by our methods.

9. We believe that the same is true for the Cuntz-Nica-Pimsner algebras.



Thank You



