Semigroup actions on operator algebras

Evgenios Kakariadis

Newcastle University

Scottish Operator Algebras Seminar, November 2014

I. Preliminaries

Operator algebras are subalgebras of $\mathscr{B}(H)$

1. Selfadjoint norm-closed subalgebras, i.e. C^{*}-algebras.
2. Non-involutive, i.e. nonselfadjoint operator algebras (nsa).

By definition every nsa $\mathscr{A} \subseteq \mathscr{B}(H)$ generates a C^{*}-algebra $\mathrm{C}^{*}(\mathscr{A})$

 It may happen that $t_{1}: \mathscr{A} \rightarrow \mathscr{B}\left(H_{1}\right)$ and $t_{2}: \mathscr{A} \rightarrow \mathscr{B}\left(H_{2}\right)$ but$$
\mathrm{C}^{*}\left(l_{1}(\mathscr{A})\right) \not 千 \mathrm{C}^{*}\left(l_{2}(\mathscr{A})\right) .
$$

Example

The disc algebra $\mathbb{A}(\mathbb{D})$ generates the Toeplitz algebra, $C(\overline{\mathbb{D}})$, and $C(\mathbb{T})$. However $C(\mathbb{T})$ is the minimal C^{*}-algebra generated by $\mathbb{A}(\mathbb{D})$, and we call $C(\mathbb{T})$ the C^{*}-envelope of $\mathbb{A}(\mathbb{D})$.

I. Preliminaries

Question, Arveson (1969)

Does every nsa have a C^{*}-envelope?

Answer: Yes

$\exists \imath: \mathscr{A} \rightarrow \mathscr{B}(H)$ s.t. for any other $\imath^{\prime}: \mathscr{A} \rightarrow \mathscr{B}(K), \exists \mathrm{a} *$-epimorphism $\Phi: \mathrm{C}^{*}\left(\imath^{\prime}(\mathscr{A})\right) \rightarrow \mathrm{C}^{*}(\imath(\mathscr{A}))$ with $\Phi^{\prime}(a)=\imath(a), \forall a \in \mathscr{A}$.
The $\mathrm{C}^{*}(\imath(\mathscr{A}))$ is the C^{*}-envelope of \mathscr{A}. We write $\mathrm{C}_{\text {env }}^{*}(\mathscr{A})=\mathrm{C}^{*}(\imath(\mathscr{A}))$.
Proofs by:

1. Hamana (1979): $\mathrm{C}_{\mathrm{env}}^{*}(\mathscr{A})$ is generated in the injective envelope.
2. Dritschel-McCullough (2001): $\mathrm{C}_{\text {env }}^{*}(\mathscr{A})$ is generated by a maximal dilation.

Arveson's Program on the C*-envelope
Determine ${ }^{1}$ and examine ${ }^{2}$ the C^{*}-envelope of a given nsa.

I. Preliminaries

Dilations

Let $T \in \mathscr{B}(H)$. A power dilation $U \in \mathscr{B}(K)$ of T is of the form

$$
U=\left[\begin{array}{lll}
* & 0 & 0 \\
* & T & 0 \\
* & * & *
\end{array}\right] .
$$

A dilation is maximal if it has only trivial dilations.

Example

If T is a contraction $(\|T\| \leq 1)$, then the maximal dilation is achieved by a unitary $U\left(U^{*} U=U U^{*}=I\right)$.

Dilations

The idea is that by dilating we obtain "better-behaved" objects.

I. Preliminaries

In this talk we focus on encoding:

$$
\left\{C^{*} \text {-dynamical systems }\right\} \quad \text { m } \quad\{\text { Operator algebras }\}
$$

- Origins: Murray, von Neumann $(1936,1940)$ - Type I, II, and III factors.
- C*-crossed products: are constructed based on a given group action $\alpha: G \rightarrow \operatorname{Aut}(A)$ on a C^{*}-algebra A by *-automorphisms.
- We turn our focus to semigroup actions $\alpha: P \rightarrow \operatorname{End}(A)$ on a C*-algebra A by ${ }^{*}$-endomorphisms.
- Case example: $P=\mathbb{Z}_{+}$.

II. Philosophy

Definition

A C^{*}-dynamical system $\alpha: \mathbb{Z}_{+} \rightarrow \operatorname{End}(A)$ consists of a *-endomorphism $\alpha: A \rightarrow A$ of a C^{*}-algebra A.

- Use operators to encode the evolution of the system (in discrete time):

- The key is to introduce an "external" operator V that satisfies the covariance relation

$$
a \cdot V=V \cdot \alpha(a) \text { for all } a \in A
$$

This defines a convolution on monomials V^{n} a for $n \in \mathbb{Z}_{+}$and $a \in A$.

II. Operator algebras over $\alpha: \mathbb{Z}_{+} \rightarrow \operatorname{End}(A)$

Semicrossed product $\mathscr{T}_{(A, \alpha)}^{+}$
 (no involution)

Universal nonselafdjoint operator algebra generated by

$$
V^{n} a \text {, with } a \in A, n \in \mathbb{Z}_{+},
$$

such that $a \cdot V=V \cdot \alpha(a)$ and V is a contraction $(\|V\| \leq 1)$.

Remark

Inititated by Arveson (1967), formally defined by Peters (1984).

Theorem (Muhly-Solel 2006)

The scp $\mathscr{T}_{(A, \alpha)}^{+}$coincides with the nsa generated by

$$
V^{n} a \text {, with } a \in A, n \in \mathbb{Z}_{+}
$$

such that $a \cdot V=V \cdot \alpha(a)$ and V is an isometry $\left(V^{*} V=I\right)$.

II. Operator algebras over $\alpha: \mathbb{Z}_{+} \rightarrow \operatorname{End}(A)$

Cuntz-Pimsner $\mathscr{O}_{(A, \alpha)}$

(with involution)

Universal C^{*}-algebra generated by

$$
V^{n} a \text {, with } a \in A, n \in \mathbb{Z}_{+},
$$

such that $a \cdot V=V \cdot \alpha(a), V$ is an isometry $\left(V^{*} V=I\right)$, and

$$
a \cdot\left(I-V V^{*}\right)=0, \quad \text { for } \quad a \in \operatorname{ker} \alpha^{\perp}:=\{a \in A \mid a \cdot \operatorname{ker} \alpha=(0)\} .
$$

Remarks

1. Example of a C^{*}-correspondence.
2. Notice that $a=V \alpha(a) V^{*}$ for all $a \in \operatorname{ker} \alpha^{\perp}$.
3. $A \hookrightarrow \mathscr{O}(A, \alpha)$ (Katsura 2004).
4. When $\alpha \in \operatorname{Aut}(A)$ then $\operatorname{ker} \alpha^{\perp}=A$.Thus V is a unitary and $\mathscr{O}_{(A, \alpha)}$ is the C^{*}-crossed product $A \rtimes_{\alpha} \mathbb{Z}$.

II. Operator algebras over $\alpha: \mathbb{Z}_{+} \rightarrow \operatorname{End}(A)$

Question

Why such complexity?

Remark

1. Let a faithful $\rho: A \rightarrow \mathscr{B}(H)$ and an isometry V such that

$$
\rho(a) V=V \rho \alpha(a) .
$$

2. If $\rho\left(a_{0}\right)+\sum_{n>0} V_{n} \rho\left(a_{s}\right) V_{n}^{*}=0$ then $a_{0} \in \operatorname{ker} \alpha^{\perp}$ (Katsura 2004).
3. This happens because such equations magically transform into

$$
\rho\left(a_{0}\right)\left(I-V V^{*}\right)=0 .
$$

II. Two interpretations of dilation

(1) Identification of the C^{*}-envelope (Katsoulis-Kribs 2005)

The C^{*}-envelope of $\mathscr{T}_{(A, \alpha)}^{+}$is $\mathscr{O}_{(A, \alpha)}$.
(2) Connecting it to a natural C^{*}-object (K. 2011)

$$
\begin{aligned}
& \alpha: \mathbb{Z}_{+} \rightarrow \operatorname{End}(A) \longrightarrow \mathscr{O}_{(A, \alpha)} \\
& \text { dilation I } \\
& \gamma \\
& \text { strong }\{\text { Morita equivalent } \\
& \beta: \mathbb{Z} \rightarrow \operatorname{Aut}(B) \longrightarrow \mathscr{O}_{(B, \beta)} \simeq B \rtimes_{\beta} \mathbb{Z}
\end{aligned}
$$

II. Application: Ideal Structure

Theorem (K.-Katsoulis 2011)

$$
\begin{aligned}
& \begin{aligned}
& \alpha: \mathbb{Z}_{+} \rightarrow \operatorname{End}(A) \longrightarrow \mathscr{O}_{(A, \alpha)} \\
& \text { dilation } \\
& \text { | } \text { strong }
\end{aligned} \\
& \beta: \mathbb{Z} \rightarrow \operatorname{Aut}(B) \longrightarrow \mathscr{O}_{(B, \beta)} \simeq B \rtimes_{\beta} \mathbb{Z}
\end{aligned}
$$

Corollary (K. 2011)

Let $A=C(X)$. TFAE:

1. (A, α) is minimal and $\alpha^{n} \neq \alpha^{m}$ for all $n, m \in \mathbb{Z}_{+}$;
2. (B, β) is minimal and $\beta^{n} \neq$ id for all $n \in \mathbb{Z}$ (topol. free);
3. $B \rtimes_{\beta} \mathbb{Z}$ is simple;
4. $\mathscr{O}_{(\mathrm{A}, \alpha)}$ is simple (has no non-trivial two-sided closed ideals).

III. Program on semigroup actions

Question 1

$$
\begin{aligned}
& \alpha: P \rightarrow \operatorname{End}(A) \longrightarrow C^{*} \text {-envelope of a scp } \\
& \text { I } \\
& \text { dilation I } \\
& \text { r } \\
& \beta: G \rightarrow \operatorname{Aut}(B) \longrightarrow C^{*} \text {-crossed product }
\end{aligned}
$$

Question 2

Is the C*-envelope a Cuntz-type C*-algebra? Can we describe it by *-algebraic relations?

Applications 3

Relate the intrinsic properties of $\alpha: P \rightarrow \operatorname{End}(A)$ to C^{*}-properties of the obtained object.

III. Program on semigroup actions

Davidson-Fuller-K. (2014)

1. We confirm this when P is $\mathbb{Z}_{+}^{n}, \mathbb{F}_{n}^{+}$, a spanning cone, an Ore sgrp.
2. For $P=\mathbb{Z}_{+}^{n}$ we coin the Cuntz-Nica-Pimsner algebra.
3. We study the Cuntz-Nica-Pimsner algebras in terms of ideal structure.
K. (2014)
4. We study the Nica-Pimsner algebras in terms of nuclearity, exactness, KMS states.

III. Operator algebras over $\alpha: \mathbb{Z}_{+}^{n} \rightarrow \operatorname{End}(A)$

Notation

We write $\mathbf{i}=(0, \ldots, 0,1,0, \ldots, 0)$ for all $i=1, \ldots, n$.
Thus $\alpha: \mathbb{Z}_{+}^{n} \rightarrow \operatorname{End}(A)$ is defined by n commuting $\alpha_{i} \in \operatorname{End}(A)$.

Requirements

1. n contractions V_{i} such that $a \cdot V_{i}=V_{i} \cdot \alpha_{i}(a)$.
2. The V_{i} commute.

Is this enough?

The aim is to reach a crossed product. For $A=\mathbb{C}$ we would like to dilate the $V_{\mathbf{i}}$ to unitaries. Parrott's counterexample shows that this cannot be done for general n.
3. We focus on doubly commuting V_{i}, i.e. $V_{\mathrm{i}} V_{\mathrm{j}}^{*}=V_{\mathrm{j}}^{*} V_{\mathrm{i}}$ for $i \neq j$.

III. Operator algebras over $\alpha: \mathbb{Z}_{+}^{n} \rightarrow \operatorname{End}(A)$

The Nica-covariant semicrossed product $A \times{ }_{\alpha}^{n c} \mathbb{Z}_{+}^{n} \quad$ (no involution)

Universal nonselafdjoint operator algebra generated by

$$
V_{s} a, \text { with } a \in A, s \in \mathbb{Z}_{+}^{n},
$$

for n doubly commuting contractions V_{i} with $a \cdot V_{i}=V_{i} \cdot \alpha_{i}(a)$.

Remark

A embeds in $A \times{ }_{\alpha}^{\mathrm{nc}} \mathbb{Z}_{+}^{n}$.

Example

For $A \subseteq H$ let $K=H \otimes \ell^{2}\left(\mathbb{Z}_{+}^{n}\right)$ and define

$$
S_{i}\left(\xi \otimes e_{s}\right)=\xi \otimes e_{i+s} \text { and } \pi(a)\left(\xi \otimes e_{s}\right)=\alpha_{s}(a) \xi \otimes e_{s}
$$

for all $s \in \mathbb{Z}_{+}^{n}$ and $\xi \in H$. Then π is a faithful representation of A.

III. Operator algebras over $\alpha: \mathbb{Z}_{+}^{n} \rightarrow \operatorname{End}(A)$

Question

Why do we call it Nica covariant?

Theorem (Davidson-Fuller-K. 2014)
The $N c-s c p A \times{ }_{\alpha}^{n c} \mathbb{Z}_{+}^{n}$ coincides with the nsa generated by doubly commuting isometries V_{i} and A such that $a \cdot V_{i}=V_{i} \cdot \alpha_{i}(a)$.

Remark

Doubly commuting isometries form a representation of \mathbb{Z}_{+}^{n} in the sense of Nica.

Corollary

Then $\mathrm{C}_{\mathrm{env}}^{*}\left(A \times{ }_{\alpha}^{n c} \mathbb{Z}_{+}^{n}\right) \simeq \overline{\operatorname{span}}\left\{V_{s} a V_{t}^{*}: a \in \mathscr{A}\right.$ and $\left.s, t \in \mathbb{Z}_{+}^{n}\right\}$.

III. Reductions

The plan

Dilate a system $\alpha: \mathbb{Z}_{+}^{n} \rightarrow \operatorname{End}(A)$ to a group action $\beta: \mathbb{Z}^{n} \rightarrow \operatorname{Aut}(B)$.

Injective case: $\operatorname{ker} \alpha_{i}=(0)$ for all $i=1, \ldots, n$.
We can then construct the direct limit $\beta_{\mathbf{i}} \in \operatorname{Aut}(B)$ s.t.
where $A_{s}=A$ for all $s \in \mathbb{Z}_{+}^{2}$.
Then $\mathrm{C}_{\text {env }}^{*}\left(A \times_{\alpha}^{\mathrm{nc}} \mathbb{Z}_{+}^{n}\right) \simeq B \rtimes_{\beta} \mathbb{Z}^{n}$ (Corollary Davidson-Fuller-K. 2014).

III. Reductions

The (revised) plan

Dilate a system $\alpha: \mathbb{Z}_{+}^{n} \rightarrow \operatorname{End}(A)$ where $\operatorname{ker} \alpha_{i} \neq(0)$ to a system $\beta: \mathbb{Z}_{+}^{n} \rightarrow \operatorname{End}(B)$ such that $\operatorname{ker} \beta_{\mathbf{i}}=(0)$.

The $n=1$ case (K. 2011)
For $I=\operatorname{ker} \alpha^{\perp}$ let $B=A \oplus c_{0}(A / I)$ and $\beta\left(a,\left(x_{n}\right)\right)=\left(\alpha(a), a+I,\left(x_{n}\right)\right)$.

$$
\bigodot_{A}^{\alpha} \xrightarrow{q_{l}} A / I \xrightarrow{\mathrm{id}} A / I \xrightarrow{\mathrm{id}} \ldots
$$

The $n=2$ case
Let $\alpha_{1}, \alpha_{2} \in \operatorname{End}(A)$ such that $\alpha_{1} \alpha_{2}=\alpha_{2} \alpha_{1}$. We want two injective commuting β_{1}, β_{2} on some $B \supseteq A$ that dilate α_{1}, α_{2}.

III. Non-injective case

A first attempt

Let $I_{(1,1)}:=\left(\operatorname{ker} \alpha_{1} \cdot \operatorname{ker} \alpha_{2}\right)^{\perp}, I_{1}:=\cap_{n} \alpha_{2}^{-n}\left(I_{(1,1)}\right), I_{2}:=\cap_{n} \alpha_{1}^{-n}\left(I_{(1,1)}\right)$.
Let β_{1} be the solid arrows and β_{2} the broken arrows:

with $\dot{\alpha}_{1} q_{2}=q_{1} \alpha_{2}$ and $\dot{q}_{1} q_{1}=q_{(1,1)}$ (plus the symmetrical ones).
Then β is injective and generalises the $n=1$ case.
However this construction is bound to fail!

III. Non-injective case

How did we end up with $I_{(1,1)}=\left(\operatorname{ker} \alpha_{1} \cdot \operatorname{ker} \alpha_{2}\right)^{\perp}$?

1. Let a faithful $\rho: A \rightarrow \mathscr{B}(H)$ and doubly commuting isometries V_{i} such that

$$
\rho(a) V_{\mathbf{i}}=V_{\mathbf{i}} \rho \alpha_{\mathbf{i}}(a)
$$

2. Because of a gauge action, we will have to deal with equations

$$
\rho\left(a_{0}\right)+\sum_{s>0} V_{s} \rho\left(a_{s}\right) V_{s}^{*}=0 .
$$

3. This magically transforms into

$$
\rho\left(a_{0}\right)\left(I-V_{1} V_{1}^{*}\right)\left(I-V_{2} V_{2}^{*}\right)=0
$$

4. From this we get that $a_{0} \perp \operatorname{ker} \alpha_{1}, \operatorname{ker} \alpha_{2}$.

III. Non-injective case

Why isn't $I_{(1,1)}=\left(\operatorname{ker} \alpha_{1} \cdot \operatorname{ker} \alpha_{2}\right)^{\perp}$ enough?

However we will also have equations of the form

$$
\rho\left(a_{0}\right)+\sum_{n>0} V_{(n, 0)} \rho\left(a_{n}\right) V_{(n, 0)}^{*}=0
$$

which magically transform into

$$
\rho\left(a_{0}\right)\left(I-V_{1} V_{1}^{*}\right)=0 .
$$

From this we get that $a_{0} \perp \operatorname{ker} \alpha_{1}$.
From this we also get that $\alpha_{(0, n)}\left(a_{0}\right) \perp \operatorname{ker} \alpha_{1}$ for all $n>0$.
This happens because $\rho \alpha_{2}(a)=V_{2}^{*} \rho(a) V_{2}$.
So we need the ideal $I_{1}=\cap_{n} \alpha_{2}^{-n}\left(\operatorname{ker} \alpha_{1}^{\perp}\right)$ instead of $\cap_{n} \alpha_{2}^{-n}(I)$.
And of course its symmetrical l_{2}.

III. Non-injective case

Correct tail

$$
I_{(1,1)}=\left(\operatorname{ker} \alpha_{1} \cdot \operatorname{ker} \alpha_{2}\right)^{\perp} \quad I_{1}=\cap_{n} \alpha_{2}^{-n}\left(\operatorname{ker} \alpha_{1}^{\perp}\right) \quad I_{2}=\cap_{n} \alpha_{1}^{-n}\left(\operatorname{ker} \alpha_{2}^{\perp}\right)
$$

Then define β_{1} and β_{2} by

with $\dot{\alpha}_{1} q_{2}=q_{1} \alpha_{2}$ and $\dot{q}_{2} q_{1}=q_{(1,1)}$ (plus the symmetrical ones).
Then β_{1} and β_{2} generalise the $n=1$ case.
It is not immediate but they are commuting and injective.

III. General construction

For $\underline{x}=\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{Z}_{+}^{n}$, define

$$
\operatorname{supp}(\underline{x})=\left\{\mathbf{i}: x_{i} \neq 0\right\} \text { and } \underline{x}^{\perp}=\left\{\underline{y} \in \mathbb{Z}_{+}^{n}: \operatorname{supp}(\underline{y}) \cap \operatorname{supp}(\underline{x})=\emptyset\right\}
$$

and let the ideals

$$
I_{\underline{x}}=\bigcap_{\underline{y} \in \underline{x}^{\perp}} \alpha_{\underline{y}}^{-1}\left(\left(\bigcap_{\mathbf{i} \in \operatorname{supp}(\underline{x})} \operatorname{ker} \alpha_{\mathbf{i}}\right)^{\perp}\right) .
$$

Let $B_{\underline{x}}=A / I_{\underline{x}}$ and on the C^{*}-algebra

$$
B=\sum_{\underline{x} \in \mathbb{Z}_{+}^{\oplus}} B_{\underline{x}}
$$

define the $*$-endomorphisms

$$
\beta_{\mathbf{i}}\left(q_{\underline{\underline{x}}}(a) \otimes e_{\underline{\underline{x}}}\right)= \begin{cases}q_{\underline{x}} \alpha_{\mathbf{i}}(a) \otimes e_{\underline{x}}+q_{\underline{x}+\mathbf{i}}(a) \otimes e_{\underline{x}+\mathbf{i}} & \text { for } \mathbf{i} \in \underline{x}^{\perp}, \\ q_{\underline{x}}(a) \otimes e_{\underline{x}}+\mathbf{i} & \text { for } \mathbf{i} \in \operatorname{supp}(\underline{x})\end{cases}
$$

Then the $\beta_{\mathbf{i}}$ commute and are injective (this is not trivial).

III. C*-envelope

Theorem (Davidson-Fuller-K. 2014)

Let $\alpha: \mathbb{Z}_{+}^{n} \rightarrow \operatorname{End}(A)$ be a semigroup action and define the Nc scp $A \times{ }_{\alpha}^{\mathrm{nc}} \mathbb{Z}_{+}^{n}$. Apply the constructions:

1. dilate α to an injective system by adding a tail;
2. use the direct limit to extend it to $\beta: \mathbb{Z}^{n} \rightarrow \operatorname{Aut}(B)$.

Then the C^{*}-envelope of $A \times{ }_{\alpha}^{\mathrm{nc}} \mathbb{Z}_{+}^{n}$ is strong Morita equivalent to $B \rtimes_{\beta} \mathbb{Z}^{n}$.

Remarks

1. The C^{*}-envelope is defined by a co-universal property.
2. This was one of the challenging points in the proof.

What about the structure of the C*-envelope?

Can we identify the C^{*}-envelope by C^{*}-algebraic relations?

III. Towards a Cuntz algebra

Recall

For $n=2$ we arrived to the equalities

$$
\begin{aligned}
& \text { 1. } a\left(I-V_{1} V_{1}^{*}\right)=0 ; \\
& \text { 2. } a\left(I-V_{2} V_{2}^{*}\right)=0 ; \\
& \text { 3. } a\left(I-V_{1} V_{1}^{*}\right)\left(I-V_{2} V_{2}^{*}\right)=0 \text {; }
\end{aligned}
$$

subject to a. Then we used the solutions/ideals to produce the tail. This appears to be more than an innocent coincidence!

The Cuntz-Nica-Pimsner algebra for $n=2$ case

It is the universal C*-algebra such that: (a) V_{i} are doubly commuting isometries; (b) a $V_{i}=V_{i} \alpha_{\mathrm{i}}(a)$; and (c) we have
c. $1 a\left(I-V_{1} V_{1}^{*}\right)=0$ for all $a \in \cap_{n} \alpha_{2}^{-n}\left(\operatorname{ker} \alpha_{1}^{\perp}\right)$;
c. $2 a\left(I-V_{2} V_{2}^{*}\right)=0$ for all $a \in \cap_{n} \alpha_{1}^{-n}\left(\operatorname{ker} \alpha_{2}^{\perp}\right)$;
c. $3 a\left(I-V_{1} V_{1}^{*}\right)\left(I-V_{2} V_{2}^{*}\right)=0$ for all $a \in\left(\operatorname{ker} \alpha_{1} \cdot \operatorname{ker} \alpha_{2}\right)^{\perp}$.

III. The Cuntz-Nica-Pimsner algebra

Definition (Davidson-Fuller-K. 2014)

The Cuntz-Nica-Pimsner algebra $\mathscr{N} \mathscr{O}(A, \alpha)$ of $\alpha: \mathbb{Z}_{+}^{n} \rightarrow \operatorname{End}(A)$ is the universal C^{*}-algebra generated by A and V_{i} so that:

1. V_{i} are commuting isometries;
2. $a V_{i}=V_{i} \alpha_{i}(a)$; and
3. $a \cdot \prod_{i \in \operatorname{supp}(\underline{x})}\left(I-V_{\mathbf{i}} V_{\mathbf{i}}^{*}\right)=0$ for $a \in \bigcap_{\underline{y} \in \underline{x}^{\perp}} \alpha_{\underline{y}}^{-1}\left(\left(\bigcap_{\mathbf{i} \in \operatorname{supp}(\underline{x})} \operatorname{ker} \alpha_{\mathbf{i}}\right)^{\perp}\right)$.

Corollary (Davidson-Fuller-K. 2014)

1. The C^{*}-envelope of $A \times{ }_{\alpha}^{\mathrm{nc}} \mathbb{Z}_{+}^{n}$ is $\mathscr{N} \mathscr{O}(A, \alpha)$.
2. For $\alpha: \mathbb{Z}_{+}^{n} \rightarrow \operatorname{End}(A)$ there exists a dilation $\beta: \mathbb{Z}^{n} \rightarrow \operatorname{Aut}(B)$ such that $\mathscr{N} \mathscr{O}(A, \alpha) \stackrel{\mathrm{sMe}}{\sim} B \rtimes_{\beta} \mathbb{Z}^{n}$.

III. Simplicity

Theorem (Davidson-Fuller-K. 2014)

Corollary (Corollary Davidson-Fuller-K. 2014)

Let $A=C(X)$ and let $\phi_{s}: X \rightarrow X$ related to $\alpha_{s}: X \rightarrow X$. TFAE:

1. (A, α) is minimal and $\left\{x \in X \mid \phi_{s}(x) \neq \phi_{r}(x)\right\}^{\circ}=\emptyset$ for all $s, r \in \mathbb{Z}_{+}^{n}$ (top. free);
2. (B, β) is minimal and topologically free;
3. $B \rtimes_{\beta} \mathbb{Z}$ is simple;
4. $\mathscr{N} \mathscr{O}_{(A, \alpha)}$ is simple.

III. Exactness/Nuclearity

Cuntz-Pimsner $\mathscr{O}_{(A, \alpha)}$

(with involution)

Universal C^{*}-algebra generated by

$$
V^{n} a \text {, with } a \in A, n \in \mathbb{Z}_{+},
$$

such that $a \cdot V=V \cdot \alpha(a), V$ is an isometry $\left(V^{*} V=I\right)$, and

$$
a \cdot\left(I-V V^{*}\right)=0, \quad \text { for } a \in \operatorname{ker} \alpha^{\perp}:=\{a \in A \mid a \cdot \operatorname{ker} \alpha=(0)\}
$$

Theorem (Katsura 2004)

1. $\mathscr{O}(A, \alpha)$ is exact if and only if A is exact.
2. $\mathscr{O}(A, \alpha)$ is nuclear if and only if: (a) $A / \operatorname{ker} \alpha^{\perp}$ is nuclear; and (b) the embedding ker $\alpha^{\perp} \hookrightarrow \mathrm{C}^{*}\left(V_{n} a V_{n}^{*} \mid a \in A, n \in \mathbb{N}\right)$ is nuclear.
3. If A is nuclear then $\mathscr{O}(A, \alpha)$ is nuclear. The converse is not true.

III. Exactness/Nuclearity

Theorem (K. 2014)

$\mathscr{N} \mathscr{O}(A, \alpha)$ is exact if and only if A is exact.

Theorem (K. 2014)

Let $\beta: \mathbb{Z}^{n} \rightarrow \operatorname{Aut}(B)$ be the automorphic dilation of $\alpha: \mathbb{Z}_{+}^{n} \rightarrow \operatorname{End}(A)$. TFAE:

1. the embeddings $A, A / I_{s} \hookrightarrow B$ are nuclear for all $s \in \mathbb{Z}_{+}^{n}$;
2. B is nuclear;
3. $B \rtimes_{\beta} \mathbb{Z}^{n}$ is nuclear;
4. $\mathscr{N} \mathscr{O}(A, \alpha)$ is nuclear.

Proposition (K. 2014)

If A is nuclear or if $A \hookrightarrow \mathrm{C}^{*}\left(V_{n 1} a V_{n 1}^{*} \mid a \in A, n \in \mathbb{Z}_{+}\right)$is nuclear then $\mathscr{N} \mathscr{O}(A, \alpha)$ is nuclear. The converse is not true.

IV. Remarks

Remarks on $\mathscr{N} \mathscr{T}(A, \alpha)$ (K. 2014)

1. There is a second variant, the Toeplitz-Nica-Pimsner algebra.
2. For this we get A is nuclear (resp. exact) if and only if $\mathscr{N} \mathscr{T}(A, \alpha)$ is nuclear (resp. exact).

KMS states (K. 2014)

3. The gauge action implements an action of \mathbb{R} on the Nica-Pimsner algebras. We are able to identify all KMS states at finite temperature: for any $T<\infty$ there is exactly one $\mathrm{KMS}_{1 / T}$ state.
4. For $T=\infty$ the KMS states are the tracial states and there is no bijection (there might be more than one).

IV. Remarks

Remarks on simplicity

5. Recently there was a major progress in simplicity of C*-crossed product (reduced) by Kalantar-Kennedy 2014. They show that it is equivalent to topological freeness of the group action on a boundary.
6. With Ken and Adam we are working towards formulating this property for semigroups and showing its stability under the automorphic dilation.

Remarks on product systems

7. Both $\mathscr{N} \mathscr{T}(A, \alpha)$ and $\mathscr{N} \mathscr{O}(A, \alpha)$ are examples of C^{*}-algebras associated to product systems.
8. A gauge invariance uniqueness theorem for general

Toeplitz-Nica-Pimsner algebras is easy to obtain by our methods.
9. We believe that the same is true for the Cuntz-Nica-Pimsner algebras.

Thank You

