Actions of compact quantum groups and inclusions of C^* -algebras

Olivier GABRIEL

University of Glasgow

Aberdeen - 28 November 2014

Inclusions C^* -alg.

0.G.

Main results CQG Results: statement Conditions

Nat. rep. ν_q

Inclusions

Proofs Stability

K-theory

Overview - results and perspectives

Cpct quantum gp $\mathbb{G} \stackrel{\alpha}{\frown} \mathscr{H}$, dim $d \rightsquigarrow \mathbb{G} \frown \mathcal{O}_d$, Cuntz algebra.

? Fixed point algebra $\mathcal{O}^{\alpha} \subseteq \mathcal{O}_d$?

Result: Under some conditions,

if $\mathbb{G}_1, \mathbb{G}_2$, "same representation theory", then $\mathcal{O}^{\alpha_1} \simeq \mathcal{O}^{\alpha_2}$ Key ingredient: Abstract C^* -isom. (classification theory).

Example:
$$\mathbb{G} = SU_q(2)$$
, $q \in (0, 1)$ and α_q nat. rep. on \mathbb{C}^2 .
 $\mathcal{O}^{\alpha_q} = \mathcal{O}_{\infty}$ indep. of q , inside \mathcal{O}_2

Algebraic case (CPZ '00): recover q from $\mathcal{O}^{\alpha_q} \subseteq \mathcal{O}_d$

Change pt of view: fixed alg. \mathcal{O}^{α} , family inclusions $\mathcal{O}^{\alpha} \hookrightarrow \mathcal{O}_d$.

? Recover \mathbb{G} from $\mathcal{O}^{\alpha} \hookrightarrow \mathcal{O}_d$?

Inclusions C^* -alg.

O.G.

Main results CQG Results: statement Conditions

Nat. rep. ν_q

Inclusions

Proofs Stability *K*-theory

Overview – objects involved

Two actions on \mathcal{O}_d :

- $\underline{\alpha}$: $\mathbb{G} \curvearrowright \mathcal{O}_d$ induced from α : $\mathbb{G} \curvearrowright \mathcal{H}$.
- "Gauge action" γ : $U(1) \frown O_d$ induced from

$$\gamma_z(S_j)=zS_j.$$

Fixed point algebras \mathcal{O}^{α} and \mathcal{F} , respectively.

"Meaning" of those algebras?

- \mathcal{O}_d contains \mathscr{H} , its tensor products $\mathscr{H}^{\otimes k}$ and duals... ... and thus all endomorphisms $\mathscr{H}^{\otimes k} \to \mathscr{H}^{\otimes \ell}$!
- \mathcal{O}^{α} : keeps only intertwiners $\mathscr{H}^{\otimes k} \to \mathscr{H}^{\otimes \ell}$.
- $\mathcal{F}^{\alpha} = \lim_{\to} \operatorname{Mor}_{\mathbb{G}}(\mathscr{H}^{\otimes \ell}, \mathscr{H}^{\otimes \ell})$. AF algebra.

O.G.

Main results Conditions

Nat. rep. ν_a

Inclusions

Proofs Stability

K-theory

Outline

Main results: quantum groups and Kirchberg algebras

- Compact quantum groups
- Conditions and statements of the results
- Discussion of conditions
- 2 Examples: natural representations ν_q of $SU_q(N)$
- 3 Distinguishing inclusions
- Proofs of the properties
 - Stability result: proof
 - Crossed product by $\mathbb N$ and computation of K-theory

5 Conclusion

Main results CQG Results: statement Conditions

Nat. rep. ν_q

Inclusions

Proofs Stability

K-theory

Compact Quantum Groups (CQG): definition

Informally, a CQG is a compact NC space with a group law.

Formally, unital C^* -algebra A with coproduct $\Delta : A \to A \otimes A$, and certain properties. Denote $\mathbb{G} = (A, \Delta)$, $A = C(\mathbb{G})$.

• Example: let q, real number with $-1 \leqslant q \leqslant 1$, $q \neq 0$,

Definition (Woronowicz – 1987)

 $SU_q(2)$: universal C^{*}-algebra generated by the entries of U

$$U = \begin{pmatrix} a & -qc^* \\ c & a^* \end{pmatrix}$$

with conditions $U^*U = 1 = UU^*$ and $\Delta(U) = U \otimes U$.

- For q = 1: A comm., recover SU(2), a and c functions.
- Deformations $SU_q(N)$ of SU(N) exist for $0 < q \leq 1$.

Inclusions C^* -alg.

0.G.

Main results CQG Results: statement Conditions Nat. rep. ν_{α}

Inclusions

Proofs Stability *K*-theory

Compact quantum groups: representations

For $SU_q(2)$, the natural representation $\alpha = (1)$ acts on \mathbb{C}^2 :

$$lpha_g(S_1) = S_1 \otimes a(g) + S_2 \otimes c(g)$$

 $lpha_g(S_2) = -S_1 \otimes qc^*(g) + S_2 \otimes a^*(g).$

For q = 1, a and c are \mathbb{C} -valued functions on SU(2).

For $\mathbb{G} = (A, \Delta)$, general CQG:

- Notions of *unitary* and *irreducible* rep. for G.
- Direct sums and tensor products of unit. rep. of G.
- Schur lemma applies.
- Unit. rep. α decomposes in sum of finite dim. unit. irrep.

Example: the irreps of $SU_q(2)$ are (n) with $n \in \mathbb{N}$ and

$$(k)\otimes (k')=(|k-k'|)\oplus (|k-k'|+2)\oplus \cdots\oplus (k+k').$$

Clebsch-Gordan relations: no difference with SU(2)!

Inclusions C^* -alg.

0.G.

Main results CQG Results: statement Conditions Nat. rep. ν_{α}

Inclusions

Proofs

Stability K-theory

Definition (\mathcal{R}^+ -isomorphism, Banica – 1999)

Given a CQG \mathbb{G} , denote $\mathcal{R}^+(\mathbb{G})$ the fusion semiring of finite dim. rep. of $\mathbb{G},$ endowed with

- the direct sum \oplus ,
- the tensor product \otimes .

If $\mathcal{R}^+(\mathbb{G}_1)$ and $\mathcal{R}^+(\mathbb{G}_2)$ are isomorphic as semirings,

then \mathbb{G}_1 and \mathbb{G}_2 are \mathcal{R}^+ -isomorphic (same *fusion rules*).

For representations, no differences between \mathbb{G}_1 and $\mathbb{G}_2!$

Examples:

- SU(2) and $SU_q(2)$ are \mathcal{R}^+ -isomorphic.
- More generally, SU(N) and $SU_q(N)$ are \mathcal{R}^+ -isomorphic.

Inclusion: C^* -alg.

0.G.

Main results CQG Results: statement Conditions

Nat. rep. ν_q

Inclusions

Proofs Stability *K*-theory

Fixed point algebras from CQG

Theorem (Konishi, Nagisa & Watatani – 1992) Given \mathbb{G} , CQG and a unit. rep. $\alpha = (\alpha_{ji}) \in M_d(A)$ on \mathbb{C}^d , $\underline{\alpha}(S_i) = \sum_{j=1}^d S_j \otimes \alpha_{ji}$

induces $\underline{\alpha} \colon \mathcal{O}_d \to \mathcal{O}_d \otimes \mathcal{C}(\mathbb{G})$, action on \mathcal{O}_d .

Definition (fixed point algebra)

The fixed point algebra \mathcal{O}^{α} of $\underline{\alpha}$ is

$$\mathcal{O}^{lpha} = \Big\{ T \in \mathcal{O}_d \Big| \underline{lpha}(T) = T \otimes 1 \Big\}.$$

- The gauge action γ on \mathcal{O}_d restricts to \mathcal{O}^{α} .
- Consider the spectral subspaces (for γ): (O^α)^(k) = {T ∈ O^α : γ_z(T) = z^kT} where k ∈ Z.
 For k = 0, set F^α := (O^α)⁽⁰⁾ - gauge inv. subalgebra.

C -alg

CQG Results: statement Conditions Nat. rep. ν_a

Main results

Inclusions

Proofs Stability K-theory

Classification theory

Definition : Kirchberg algebra

A Kirchberg algebra is a C^* -algebra A which is

1. Purely Infinite (PI) 2. simple 3. nuclear 4. separable

First two properties: $\forall a \neq 0 \in A, \forall \varepsilon > 0, \exists u, v \in A \text{ s.t.}$ $\|uav - 1\| \leq \varepsilon.$

Theorem (Kirchberg & Phillips – 1994, 2000)

Let A and B, be unital Kirchberg algebras in \mathcal{N} . A \simeq B as C*-algebras iff Abelian groups isomorphisms

 $\alpha_0 \colon K_0(A) \to K_0(B) \qquad \qquad \alpha_1 \colon K_1(A) \to K_1(B)$

with $\alpha_0([1_A]) = [1_B]$ in K_0 .

Proposition (Kirchberg, Phillips – 1994, 2000)

Given Kirchberg algebras A, B, every element of KK(A, B) lifts to a *-hom. from A to $B \otimes \mathbb{K}$.

O.G. Main results

Conditions Nat. rep. ν_a

Inclusions

Proofs Stability K-theory

Conclusion

Def. UCT

Conditions and stability result

Given G, CQG, and α , unitary representation of G, \mathcal{T}_{α} , union of (classes of) irrep. contained in $\alpha^{\otimes \ell}$ for $\ell \ge 0$.

(C1) If $\beta \in \mathcal{T}_{\alpha}$, $\exists \beta' \in \mathcal{T}_{\alpha}$ s.t. $\beta \otimes \beta'$ contains trivial rep. ε . (C2) There are integers N, k_0 s.t. • $\alpha^{\otimes N}$ is contained in $\alpha^{\otimes (N+k_0)}$ and • $\forall k, \ell \in \mathbb{N}$ with $0 < k < k_0$, $Mor_{\mathbb{G}}(\alpha^{\otimes \ell}, \alpha^{\otimes (\ell+k)}) = \{0\}$. Theorem (G. - 2014)

If α satisfies (C1) and (C2), then \mathcal{O}^{α} is Kirchberg, in \mathscr{N} and

 \mathcal{O}^{α} only depends on \mathbb{G} via $\mathcal{R}^+(\mathbb{G})$.

Last property: for isom. $\Phi \colon \mathcal{R}^+(\mathbb{G}_1) \to \mathcal{R}^+(\mathbb{G}_2)$ (Reminder),

 \mathcal{O}^{α} and $\mathcal{O}^{\Phi(\alpha)}$ are (abstractly) isomorphic as C^* -algebras.

Main results CQG Results: statement Conditions

Nat. rep. ν_q

Inclusions

Proofs Stability K-theory

Free actions

Definition (Ellwood – 2000)

An action $\underline{\alpha} \colon A \to A \otimes C(\mathbb{G})$ on a C^* -alg. A is free if

 $\overline{\underline{\alpha}(A)(A\otimes 1)} = A\otimes C(\mathbb{G}).$

Theorem (G. - 2014)

Assume that

- \mathbb{G} is a semisimple cpct Lie group (or a \mathcal{R}^+ -def. thereof)
- α is (a \mathcal{R}^+ -def. of) a faithful rep. of \mathbb{G}

then the induced action $\underline{\alpha} \colon \mathcal{O}_d \to \mathcal{O}_d \otimes C(\mathbb{G})$ is free.

- Actually, suffices that \mathcal{T}_{α} contains all irreps. of \mathbb{G} .
- Equivalently (De Commer & Yamashita 2013), there is a Morita equivalence between O^α and O_d ⋊ G.
- Combining both theorems:

source of noncommutative principal bundles!

Inclusions C^* -alg.

O.G.

Main results CQG Results: statement Conditions Nat. rep. ν_{α}

......

Inclusions

Proofs Stability K-theory

Condition (C1)

(C1) If $\beta \in \mathcal{T}_{\alpha}$, $\exists \beta' \in \mathcal{T}_{\alpha}$ s.t. $\beta \otimes \beta'$ contains trivial rep. ε .

Proposition

If $\mathcal{R}^+(\mathbb{G})\simeq \mathcal{R}^+(G)$ for

- some semisimple Lie group G or
- some finite group G,

then (C1) is satisfied for any irreducible rep. α .

Proof: in both cases, we prove that the trivial rep. ε appears in β^L for some L.

- \bullet Assume that $\mathbb G$ is a group in one of the above classes.
- if β is a representation of dim. d, consider $\delta := \bigwedge^d \beta$.
 - $\bullet\,$ for semisimple $\mathbb{G},$ unique dim. 1 rep. thus δ trivial;
 - if \mathbb{G} is finite, for K large enough, δ^{K} is trivial.

0.G.

Main results CQG Results: statement Conditions

Nat. rep. ν_q

Inclusions

Proofs Stability K-theory

Condition (C2)

(C2) There are integers N, k_0 s.t.

- $\alpha^{\otimes N}$ is contained in $\alpha^{\otimes (N+k_0)}$ and
- $\forall k, \ell \in \mathbb{N}$ with $0 < k < k_0$, $Mor_{\mathbb{G}}(\alpha^{\otimes \ell}, \alpha^{\otimes (\ell+k)}) = \{0\}$.

Alternative statement:

(C2')
$$\forall k \in \mathbb{N} \setminus \{0\}$$
, if $(\mathcal{O}^{\alpha})^{(k)} \neq \{0\}$, then it contains an isometry. Moreover, not all $(\mathcal{O}^{\alpha})^{(k)}$ are trivial.

- Condition (C2) gives a "generating isometry" \mathbb{V} .
- (C2) difficult to check, in general.

• Examples:

- $\alpha = \varepsilon \oplus t$, ε trivial representation $\rightsquigarrow k_0 = 1$.
- For $\mathbb{G} = SU_q(d)$ and $\alpha = \nu \quad \rightsquigarrow k_0 = d$.

To prove that (C2) \Leftrightarrow (C2'):

- Inclusion of \mathscr{H} , $\mathscr{H}^{\otimes k}$ inside \mathcal{O}^{α} .
- Fourier coefficients maps m_k: O^α → (O^α)^(k) for k ∈ Z:

$$m_k(T) := \int_{S^1} z^{-k} \gamma_z(T) dz.$$

Inclusions C^* -alg.

0.G.

Main results CQG Results: statement Conditions

Nat. rep. ν_q

Inclusions

Proofs Stability

K-theory

Natural representation ν of SU(d): chain group

Consider $\mathbb{G} = SU_q(d)$ and its natural rep. $\alpha = \nu$ on \mathbb{C}^d . • $\mathcal{R}^+(\mathbb{G}) = \mathcal{R}^+(SU(d))$ and G = SU(d) semisimple, so (C1) is satisfied.

- By def. of SU(d), $\nu^d = \varepsilon \oplus t$, hence α^d satisfies (C2).
- For ν , the property is less obvious...

Can we compare \mathcal{O}^{α} and $\mathcal{O}^{\alpha^{N}}$?

Definition (Chain group, Baumgärtel & Lledó – 2004)

Chain group $\mathfrak{C}(\mathbb{G})$: equivalence classes [t] of irreps

- under $t \sim t'$ if there is a chain of irreps. τ_1, \ldots, τ_n s.t. both t and t' appear in $\tau_1 \otimes \cdots \otimes \tau_n$,
- product structure $[t][t'] = [t \otimes t']$.

This actually defines a group structure on $\mathfrak{C}(\mathbb{G})$.

Identity of $\mathfrak{C}(\mathbb{G})$: given by trivial rep. ε : $[\varepsilon] = 1_{\mathfrak{C}(\mathbb{G})}$.

Inclusions C^* -alg.

0.G.

Main results CQG Results: statement Conditions

Nat. rep. ν_q

Inclusions

Proofs Stability K-theory

Inclusions of fixed points: statement

If
$$\mathcal{R}^+(\mathbb{G}_1)\simeq \mathcal{R}^+(\mathbb{G}_2)$$
, then $\mathfrak{C}(\mathbb{G}_1)\simeq \mathfrak{C}(\mathbb{G}_2)$.

Theorem (Baumgärtel & Lledó – 2004)

For compact (ordinary) groups G, $\mathfrak{C}(G)$ is the character group of the center Z(G). Explicit isomorphism:

 $[t]\mapsto t\restriction Z(G).$

E.g. G = SU(d), get $\mathfrak{C}(G) = \mathbb{Z}/d\mathbb{Z}$ ("Grading of irreps").

Proposition (G. – 2014)

Given a rep. α of a CQG \mathbb{G} ,

• For any $M \ge 1$, there is an injective map $\mathcal{O}^{\alpha^M} \to \mathcal{O}^{\alpha}$.

If all irrep. in α have the same class [α] ≠ e in 𝔅(𝔅), for the order M of [α] in 𝔅(𝔅), 𝒪^{α^M} ≃ 𝒪^α.

Point 2 clearly applies to $\mathbb{G} = SU_q(d)$ and α nat. rep.

Inclusions C^* -alg.

0.G.

Main results CQG Results: statement Conditions

Nat. rep. ν_q

Inclusions

Proofs Stability *K*-theory

$SU_q(2)$ and $\alpha = (1)$: explicit identification

Canonical endomorphism of
$$\mathcal{O}_2$$
: $\rho(T) = S_1 T S_1^* + S_2 T S_2^*$.

Theorem (Marciniak – 1998)

 \mathcal{O}^{α} is the smallest C^* -subalgebra of \mathcal{O}_2 which contains $\mathbb{V}_q := \frac{1}{\sqrt{1+q^2}}(S_1S_2 - qS_2S_1)$ and is stable under ρ .

 \mathbb{V}_q is the "generating isometry" and satisfies the relations: $\mathbb{V}_q^* \mathbb{V}_q = 1$ $\mathbb{V}_q^* \rho(\mathbb{V}_q) = -\frac{1}{q+q^{-1}}1.$

Thus, using ρ , the projections $p_n := \rho^n(\mathbb{V}_q \mathbb{V}_q^*)$ satisfy:

 $p_n p_m = p_m p_n \qquad \qquad p_n p_k p_n = \tau p_n$

where |n - m| > 1, |n - k| = 1 and $\tau = (q + q^{-1})^{-2}$ (Temperley-Lieb relations).

Theorem (G. – 2014)

The K-theory of \mathcal{O}^{α} is $K_0(\mathcal{O}^{\alpha}) = \mathbb{Z}$, $K_1(\mathcal{O}^{\alpha}) = 0$. Moreover, $[1_{\mathcal{O}^{\alpha}}]_0 = 1$ therefore $\mathcal{O}^{\alpha} \simeq \mathcal{O}_{\infty}$. Inclusion: C^* -alg.

0.G.

Main results CQG Results: statement Conditions

Nat. rep. ν_q

Inclusions

Proofs Stability K-theory

Natural representation α_q of $SU_q(d)$: results

From now on: $\mathbb{G} = SU_q(d)$ and α_q , natural rep. on \mathbb{C}^d .

Corollary

 \mathcal{O}^{α_1} and \mathcal{O}^{α_q} are (abstractly) isomorphic as C^* -algebras.

• In other words, the construction \mathcal{O}^{α} doesn't "feel" the deformation parameter q.

Explicit description using ρ , canonical endomorphism of \mathcal{O}_d :

Theorem (Paolucci - 1997)

- Embedding θ of the braid group B_{∞} in \mathcal{O}_d ;
- \mathcal{O}^{α} contains the *q*-antisymmetric tensor \mathbb{V}_q ;
- \mathcal{O}^{α} is the smallest C^* -subalgebra of \mathcal{O}_d s.t.
 - $\theta(g)$, for any $g \in B_{\infty}$, and \mathbb{V}_q are in \mathcal{O}^{α} ;
 - \mathcal{O}^{α} is stable under ρ (with $\rho(T) := \sum S_j TS_j^*$).

Inclusions C^* -alg.

O.G.

Main results CQG Results: statement Conditions

Nat. rep. ν_q

Inclusions

Proofs Stability *K*-theory

Conclusion

Details

Comparison algebraic – C^* -algebraic

Case
$$\mathbb{G} = SU_q(d)$$
 and α_q , nat. rep.

In the algebraic setting:

Theorem (Carey, Paolucci & Zhang – 2000) If \mathscr{A} , *-Hopf algebra with generators u_{ij} and $\overline{u_{ij}} = (u_{ij})^*$ and • $\mathcal{O}_d^{alg} \subseteq \mathcal{O}_d$ possesses an action $\underline{\alpha} : \mathcal{O}_d^{alg} \to \mathcal{O}_d^{alg} \otimes \mathscr{A}$:

$$\underline{\alpha}(S_i) = \sum_{j=1}^d S_j \otimes u_{ji} \qquad \underline{\alpha}(S_i^*) = \sum_{j=1}^d S_j^* \otimes \overline{u_{ji}},$$

• the algebra $\mathcal{O}^{\alpha,alg}$ is generated by \mathbb{V}_q and $\theta(g)$ for $g \in B_{\infty}$ then \mathscr{A} is $SU_q(d)$.

- In other words, we can recover q in the algebraic setting...
- ... but for C^* -algebras, \mathcal{O}^{α} "doesn't feel" the q.

O.G. Main results

Conditions

Proofs

Stability K-theory

Nat. rep. ν_q

Inclusions and recovery of CQG

Case $\mathbb{G} = SU_q(d)$ and α_q , nat. rep. Why such difference?

- Carey, Paolucci & Zhang consider the full inclusion...
- ... we consider only the fixed point algebra \mathcal{O}^{α} .

New problem: classify inclusions $\mathcal{O}_{\infty} \hookrightarrow \mathcal{O}_2!$

- *KK*-theory not helping: $KK(\mathcal{O}_{\infty}, \mathcal{O}_2) = 0$ (UCT).
- For irreducible representations,

 $\mathbb{V}^*
ho(\mathbb{V})\in (\mathscr{H}^*)^N\mathscr{H}^{N+1}\mathscr{H}^*$ thus it is a scalar.

For $SU_q(2)$, $\mathbb{V}^*
ho(\mathbb{V})=-(q+q^{-1})^{-1}1$ recovers q.

But if we consider free orthogonal quantum groups?

• Alternative approach: use von Neumann setting!

Theorem (Enock & Nest – 1996)

If $M_0 \subseteq M_1$ is a depth 2 irreducible inclusion of factors with a conditional expectation \mathbb{E} from M_1 to M_0

then there is a CQG \mathbb{G} and an action α of \mathbb{G} s.t. $M_0 = M_1^{\alpha}$.

Idea: find sufficient cond. on $\mathcal{O}^{\alpha} \hookrightarrow \mathcal{O}_d$ to apply theorem.

Inclusions C^* -alg.

O.G.

Main results CQG Results: statement Conditions

Nat. rep. ν_q

Inclusions

Proofs Stability K-theory

From C^* -algebras to factors – gauge actions

Theorem

Fix an \mathbb{R} -action τ on a C^* -algebra A. Given $\beta \in \mathbb{R}$, let KMS_{β} be the set of τ -KMS states at value β ,

 ω is extremal in KMS $_{\beta}$ iff ω is a factor state.

- KMS-states satisfy τ -invariance: $\omega(\tau_t(a)) = a$.
- We consider gauge actions \rightsquigarrow charact. by trace on $A^{(0)}$!
- For \mathcal{O}_d , \mathcal{F} UHF alg. d^{∞} thus unique trace. Weak closure of \mathcal{O}_d for $GNS(\phi)$: factor.

Proposition (G.)

For
$$\mathbb{G} = SU_q(2)$$
 and $\alpha = \nu$, given $\beta \neq 1$,
there is at most one KMS _{β} state ω .

Consequence:

from the inclusion $\mathcal{O}_{\infty} \hookrightarrow \mathcal{O}_2$, we get a subfactor system.

Inclusions C^* -alg.

0.G.

Main results CQG Results: statement Conditions

Nat. rep. ν_q

Inclusions

Proofs Stability *K*-theory

Towards the proof: fixed point algebras

Two actions on \mathcal{O}_d :

- $\underline{\alpha}$: $\mathbb{G} \curvearrowright \mathcal{O}_d$ induced from α : $\mathbb{G} \curvearrowright \mathscr{H}$.
- "Gauge action" $\gamma \colon \mathit{U}(1) \curvearrowright \mathcal{O}_d$ induced from

$$\gamma_z(S_j)=zS_j.$$

Fixed point algebras \mathcal{O}^{α} and $\mathcal{F},$ respectively.

"Meaning" of those algebras?

- \mathcal{O}_d contains \mathscr{H} , its tensor products $\mathscr{H}^{\otimes k}$ and duals... ... and thus all endomorphisms $\mathscr{H}^{\otimes k} \to \mathscr{H}^{\otimes \ell}!$
- \mathcal{O}^{α} : keeps only intertwiners $\mathscr{H}^{\otimes k} \to \mathscr{H}^{\otimes \ell}$.
- $\mathcal{F}^{\alpha} = \lim_{\to} \mathsf{Mor}_{\mathbb{G}}(\mathscr{H}^{\otimes \ell}, \mathscr{H}^{\otimes \ell})$, AF algebra.

C^{*}-alg O.G.

Main results CQG Results: statement Conditions

Nat. rep. ν_q

Inclusions

Proofs Stability

K-theory

Theorem (G. - 2014)

If α satisfies (C1) and (C2), then \mathcal{O}^{α} is Kirchberg, in \mathscr{N} and

 \mathcal{O}^{α} only depends on \mathbb{G} via $\mathcal{R}^+(\mathbb{G})$.

Parts of the proof:

• Prove that \mathcal{O}^{α} is PI and simple. Argument: Identify \mathcal{O}^{α} with a crossed product $\mathcal{F}^{\alpha} \rtimes \mathbb{N}$ and

Theorem (Dykema & Rørdam – 1998)

Given $A \neq \mathbb{C}$ and σ injective endomorphism of A, if

(i)
$$\forall a > 0$$
 , $\exists b \in A$, $\exists L > 0$ s.t. $bab^* = \sigma^L(1)$ and

(ii)
$$\overline{\sigma}^m$$
 is outer for all $m \in \mathbb{N}$

then $A \rtimes_{\sigma} \mathbb{N}$ is PI and simple.

 Inclusions C^* -alg.

0.G.

Main results CQG Results: statement Conditions

Nat. rep. ν_q

Inclusions

Proofs Stability *K*-theory

Conditions of previous theorem (Dykema & Rørdam – 1998) in our case:

(i) $\forall T > 0$, $\exists z \in \mathcal{F}^{\alpha}$, $\exists L > 0$ s.t. $zTz^* = \sigma^L(1)$.

(ii) $\overline{\sigma}^m$ is outer for all $m \in \mathbb{N}$.

Steps to prove that \mathcal{O}^{α} is PI and simple:

- Onsider the crossed product *F^α* ⋊_σ N for σ defined by σ(*T*) := V*T*V*, V "generating isom."
- Output Provide the set of the
- Oheck hypothesis (ii).
- **9** Prove that $\mathcal{O}^{\alpha} \simeq \mathcal{F}^{\alpha} \rtimes_{\sigma} \mathbb{N}$.

Inclusions C^* -alg.

O.G.

Main results CQG Results: statement Conditions Nat. rep. ν_a

Inclusions

Proofs Stability

K-theory

Checking (i): projections in $\mathcal{F}^{\alpha,\ell}$

(C1) If $\beta \in \mathcal{T}_{\alpha}$, $\exists \beta' \in \mathcal{T}_{\alpha}$ s.t. $\beta \otimes \beta'$ contains trivial rep. ε . Proposition

Let $P \in \mathcal{F}^{\alpha,\ell}$ be a nonzero proj., $\exists L > 0$, $\exists u \in (\mathcal{O}^{\alpha})^{(L)}$ s.t. $u^*Pu = 1$ $u^*u = 1$.

- $P \alpha$ -inv. \rightsquigarrow Hilb. sp. $P\mathscr{H}^{\ell} =: \mathscr{K} \subseteq \mathscr{H}^{\ell}$ stable under α^{ℓ} .
- Decompose induced representation in \mathcal{T}_{α} . WLOG, \mathscr{K} equipped with $\beta \in \mathcal{T}_{\alpha}$.
- From (C1), ∃q ∈ N s.t. β ⊗ α^q acting on ℋ ⊗ ℋ^q possess an invariant vector u.
- Since $u \in \mathcal{K} \otimes \mathcal{H}^q \subseteq \mathcal{H}^{\ell+q}$, satisfies Pu = u. It is G-invariant thus $u \in \mathcal{O}^{\alpha}$.
- Up to normalisation, $u^*u = 1$ and hence

$$u^* P u = (P u)^* P u = u^* u = 1.$$

Extension to any a > 0: alg. approx. and finite dim. alg. $\mathcal{F}^{\alpha,\ell}$.

Inclusions C^* -alg.

O.G.

Main results CQG Results: statement Conditions

Nat. rep. ν_q

Inclusions

Proofs Stability K-theory

Checking (ii): outer automorphism

Def. $\overline{\sigma}$ is gen. from σ on $\overline{\mathcal{F}^{\alpha}}$, limit of the inductive system $\mathcal{F}^{\alpha} \xrightarrow{\sigma} \mathcal{F}^{\alpha} \xrightarrow{\sigma} \mathcal{F}^{\alpha} \xrightarrow{\sigma} \cdots \to \overline{\mathcal{F}^{\alpha}}$

Lemma

Under condition (C2),

for all $m \in \mathbb{N} \setminus \{0\}$, the automorphism $\overline{\sigma}^m$ is outer.

- $\sigma : \mathcal{F}^{\alpha} \to \mathcal{F}^{\alpha}$ extends to $\sigma : \mathcal{F} \to \mathcal{F}$ by $\sigma(\mathcal{T}) := \mathbb{V}\mathcal{T}\mathbb{V}^{*}$.
- There is a commutative diagram:

• If $\overline{\sigma}^m$ is inner on $\overline{\mathcal{F}^{\alpha}}$, it must act trivially on $\mathcal{K}_0(\overline{\mathcal{F}^{\alpha}})$.

• This leads to a contradiction when extended to $\overline{\mathcal{F}}$, where we can rely on the unique trace on the UHF algebra \mathcal{F} .

Inclusions C^* -alg.

0.G.

Main results CQG Results: statement Conditions

Nat. rep. ν_q

Inclusions

Proofs Stability K-theory

Proposition

We can identify \mathcal{O}^{α} with the crossed product $\mathcal{F}^{\alpha} \rtimes_{\sigma} \mathbb{N}$ and using a Pimsner-Voiculescu-like sequence,

we can recover $K_*(\mathcal{O}^{\alpha})$ from $K_*(\mathcal{F}^{\alpha})$.

Computation of $K_*(\mathcal{O}^{\alpha})$:

- \mathcal{F}^{α} , AF-algebra: $\lim_{\to} \mathcal{F}^{\alpha,\ell} = \lim_{\to} \operatorname{Mor}_{\mathbb{G}}(\mathscr{H}^{\otimes \ell}, \mathscr{H}^{\otimes \ell}).$
- Describe $K_*(\mathcal{F}^{\alpha,\ell})$ via intertwiner interpretation.
- Continuity of K_{*} gives: K_{*}(F^α) = lim_→ K_{*}(F^{α,ℓ}).
 Description involves Z[T_α] [1/α], constructed from R⁺(G).
- From PV sequence, obtain:

$$\mathcal{K}_0(\mathcal{O}^{lpha}) = \operatorname{coker}(\operatorname{Id} - \sigma_*) \quad \mathcal{K}_1(\mathcal{O}^{lpha}) = \ker(\operatorname{Id} - \sigma_*),$$

Inclusions C^* -alg.

0.G.

Main results CQG Results: statement Conditions Nat. rep. ν_{α}

Inclusions

Proofs Stability K-theory

Our results:

- from a representation α of a compact quantum group $\mathbb{G}...$
- ... yield Kirchberg algebra \mathcal{O}^{α} depending only on $\mathcal{R}^+(\mathbb{G})$.
- The action of \mathbb{G} on \mathcal{O}^{α} is free.

Perspectives: translate in factor setting and recover $\mathbb{G}.$

Inclusions C^* -alg.

0.G.

Main results CQG Results: statement Conditions

Nat. rep. ν_q

Inclusions

Proofs Stability

K-theory

0.G.

Main results CQG Results: statement Conditions

Nat. rep. ν_q

Inclusions

Proofs

Stability K-theory

Conclusion

Thank you for your attention!

References:

O. G. Fixed points of compact quantum groups actions on Cuntz algebras Ann. H. Poincaré 15 (2014) 5, pp 1013-1036

0.G. Main results CQG Results: statement Conditions Nat. rep. ν_q Inclusions Proofs Stability K-theory Conclusion . . .

Example of Bratteli diagrams: $SU_q(2)$ and $\alpha = (1)$

Example of identification using Bratteli diagrams:

• Tensor products: $(0) \otimes (1) = (1)$ and for k > 0, $(k) \otimes (1) = (k - 1) \oplus (k + 1)$.

•
$$\mathscr{H} \iff (1)$$
 and $\mathscr{H}^2 \iff (1)^2 = (0) \oplus (2)^2$

- Then, $((0) \oplus (2)) \otimes (1) = (1) \oplus (1) \oplus (3) = 2.(1) \oplus (3).$
- More generally: simple edges and addition of dimensions.

level (0) (1) (2) (3) (4)

0.G.

Bratteli diagram

Bratteli diagram of even lines (tensorisation by $(1)^2 = (0) \oplus (2)$): only has even representations.

level (0) (2) (4) (6) (8)

- Diagram yields the direct limit explicitly.
- The action of [E] on K₀(F^α) can be easily interpreted in this diagram.

Inclusions C^* -alg.

K-theory and localisation

Localisation ring $\mathcal{R}^+_{\mathbb{G}}$:

 \bullet formal ring on irreps with coefficients in $\mathbb Z,$

• product given by fusion rules.

In the inductive limit:

- at level ℓ , only irreps appearing in $\alpha^\ell,$
- inductive limit: at each step multiply by α .

Leads to localisation by α .

Example: case of $SU_q(2)$ and $\alpha = (1)$.

• Typical elements in level ℓ :

$$\frac{a_0(0) + a_2(2) + \dots + a_\ell(\ell)}{(1)^\ell} \quad \frac{a_1(1) + a_3(3) + \dots + a_\ell(\ell)}{(1)^\ell}$$

depending on the parity of ℓ .

• Pushing to level $\ell + 1$, we multiply top and bottom by (1).

 C^* -alg.

37

K-theory and localisation - continued

 To perform actual computations, we use the identification of R⁺_C and Z[t] under correspondences:

$$(0) \longleftrightarrow 1 \qquad (1) \Longleftrightarrow t \qquad (2) \longleftrightarrow t^2 - 1$$

since $(1)^2 = (2) \oplus (0)$.

• All elements of level ℓ can be written $\frac{P(t)}{t^{\ell}}$ where P(t) is a polynomial

- of same parity as t^{ℓ} ,
- the degree of P is less than ℓ .

The K-theory of \mathcal{F}^{α} consists of all such fractions.

To compute $K_*(\mathcal{O}^{\alpha})$ in this context, we use:

$$\begin{array}{c} \mathcal{K}_{0}(\mathcal{F}^{\alpha}) \xrightarrow{\cdot (1-1/t^{2})} \succ \mathcal{K}_{0}(\mathcal{F}^{\alpha}) \xrightarrow{} \mathcal{K}_{0}(\mathcal{O}^{\alpha}) \\ \uparrow & \downarrow \\ \mathcal{K}_{1}(\mathcal{O}^{\alpha}) \xleftarrow{} 0 & 0. \end{array}$$

C^{*}-alg.

From the previous explicit expressions, we prove:

- $\sigma = \mathsf{Id} [E] \colon \mathcal{K}_0(\mathcal{F}^\alpha) \to \mathcal{K}_0(\mathcal{F}^\alpha)$ is injective,
- coker $\sigma \simeq \mathbb{Z}$.

Thus, in our special case:

Proposition

If $A = SU_q(2)$ and lpha = (1), the K-theory of \mathcal{O}^{lpha} is

$$K_0(\mathcal{O}^{lpha})=\mathbb{Z} \qquad \qquad K_1(\mathcal{O}^{lpha})=0,$$

and \mathcal{O}^{α} is Kirchberg, unital and in \mathscr{N} . Moreover, $[1_{\mathcal{O}^{\alpha}}]_0 = 1 \in \mathbb{Z} \simeq K_0(\mathcal{O}^{\alpha})$, hence $\mathcal{O}^{\alpha} \simeq \mathcal{O}_{\infty}$.

Back

Inclusions C^* -alg.

0.G.

Bratteli diagrams: example of $SU_q(2)$ and $\alpha = (2)$

0.G.

Apply the procedure to $\mathbb{G} = SU_q(2)$, d = 3 and $\alpha = (2)$. Only even representations occur:

Bratteli diagrams: an example

Let f_0, f_1, f_2, \ldots be the Fibonacci series given by $f_0 = f_1 = 1$ and $f_\ell = f_{\ell-1} + f_{\ell-2}$ for $\ell \ge 2$.

Put $A_{\ell} = M_{f_{\ell}}(\mathbb{C}) \oplus M_{f_{\ell-1}}(\mathbb{C})$ and let $\varphi_{\ell} \colon A_{\ell} \to A_{\ell+1}$ given by:

$$(x,y)\mapsto \left(\begin{pmatrix} x & 0 \\ 0 & y \end{pmatrix}, x \right)$$

Consider the AF algebra $A = \lim_{\to} A_{\ell}$. Its Bratteli diagram:

Inclusions C*-alg. O.G.

Bratteli diagrams

Using the equality $\mathcal{F}^\ell = M_{d^\ell}(\mathbb{C})$, the direct system $\lim_{ o} \mathcal{F}^\ell$ is

$$\cdots \to M_{d^{\ell}}(\mathbb{C}) \to M_{d^{\ell+1}}(\mathbb{C}) \to M_{d^{\ell+2}}(\mathbb{C}) \to \cdots$$

with morphisms $T \mapsto T \otimes Id_{\mathbb{C}^d} \simeq diag(\underbrace{T, T, \ldots, T}_{d \text{ times}}).$

Thus the Bratteli diagram is...

... which is characteristic of the type d^{∞} UHF algebra.

For general AF algebras, a suitable equivalence relation on Bratteli diagrams can be defined:

Theorem (Bratteli, 1972)

Bratteli diagrams are equivalents if and only if the AF algebras are isomorphic.

Inclusions C*-alg. O.G.

$$b_i^* b_j = \delta_{ij} \qquad \qquad \sum_{j=1}^d b_j b_j^* = 1$$

then there is a *-homomorphisme $\varphi \colon \mathcal{O}_d \to B$ defined by

$$\varphi(S_j)=b_j.$$

Cuntz algebras

Inclusions C^* -alg.

0.G.

AF algebra: proof

• Take $T \in \mathcal{F}$. Using the universal property of $\mathcal{O}_d \supseteq \mathcal{F}$, there is an "algebraic" T_0 s.t.

$$\|T-T_0\|\leqslant \varepsilon.$$

- It suffices then to find T'_0 which is
 - in \mathcal{F} (gauge-invariant),
 - algebraic,
 - ε-close to T.
- If we take $T_0' = \mathbb{E}_{S^1}(T_0)$ then
 - T'_0 is gauge-invariant and algebraic by construction,
 - it is ε -close to T because

$$\|T - \mathbb{E}_{S^1}(T_0)\| = \|\mathbb{E}_{S^1}(T - T_0)\| \leq \|T - T_0\| \leq \varepsilon$$

hence the result.

Inclusions C^* -alg.

There is a conditional expectation $\mathbb{E}_{\mathbb{G}}: \mathcal{O}_d \to \mathcal{O}^{\alpha}$ associated to the action α defined by:

 $\mathbb{E}_{\mathbb{G}}(T) = (\mathsf{Id} \otimes h) \alpha(T),$

where $h: A \to \mathbb{C}$ is the Haar measure on $A = C^*(\mathbb{G})$. Take now $T \in \mathcal{F}^{\alpha}$,

• since \mathcal{F} is AF, there is an algebraic \mathcal{T}_0 in \mathcal{F} s.t.

 $\|T - T_0\| \leq \varepsilon;$

• consequently, $\mathbb{E}_{\mathbb{G}}(T_0) \in \mathcal{F}^{\alpha}$ is algebraic and ε -close to T:

$$\|T - \mathbb{E}_A(T_0)\| = \|\mathbb{E}_A(T - T_0)\| \leq \|T - T_0\| \leq \varepsilon.$$

Definition (multiplicity of map)

The *multiplicity* of $\psi \colon M_k(\mathbb{C}) \to M_l(\mathbb{C})$ is defined by

```
\operatorname{Tr}(\psi(e))/\operatorname{Tr}(e) \in \mathbb{N}
```

where *e* is a nonzero projection in $M_k(\mathbb{C})$.

All elementary projection e_t ∈ M_{nt} corresponds to a projection P_{Kt} ∈ F^ℓ...

• ...whose range
$$\mathcal{K}_t \subseteq \mathscr{H}^\ell$$
 is

- ullet stable under lpha and
- equipped with a type (t) irreducible representation.
- The range of $P_{\mathcal{K}_t}$ by the inclusion $\mathcal{F}^{\ell} \hookrightarrow \mathcal{F}^{\ell+1}$ corresponds to projection $P_{\mathcal{K}_t} \otimes \operatorname{Id} \in B(\mathscr{H}^{\ell+1})...$
- ...whose range is $\mathcal{K}_t \cdot \mathscr{H} \subseteq \mathscr{H}^{\ell+1}$ (which we decompose).

Inclusions C^* -alg.

Action of [E]: proof

The scalar product on $M \otimes E$ is

$$\langle \xi \otimes \eta, \xi' \otimes \eta' \rangle_{B} = \langle \eta, \langle \xi, \xi' \rangle_{B} \cdot \eta' \rangle_{B}$$

Proving that $(\xi_i \otimes \eta_j)$ is a frame: simple (but lengthy!) computation.

In our case,

- e can be chosen in \mathcal{F}^{α} (no matrices),
- a possible frame $\xi = e \in \mathcal{F}^{lpha}$,

and then

$$\langle e\otimes \mathbb{V}^*, e\otimes \mathbb{V}^*
angle_{\mathcal{F}^lpha} = \mathbb{V}(e\cdot e)\cdot \mathbb{V}^* = \mathbb{V}e\mathbb{V}^*.$$

Inclusions C^* -alg.

Cuntz algebra \mathcal{O}_∞

The Cuntz algebra \mathcal{O}_{∞} is the universal C^* -algebra generated by infinitely many S_1, \ldots, S_n, \ldots with relations

• for all
$$i, j, S_i^* S_j = \delta_{ij}$$

• for any $r \in \mathbb{N}$,

$$\sum_{i=1}^r S_i S_i^* \leqslant 1.$$

Relevance of Cuntz algebras \mathcal{O}_2 and \mathcal{O}_∞ :

Theorem (Kirchberg)

- $A \otimes \mathcal{O}_2 \simeq \mathcal{O}_2$ iff A simple, separable, unitary and nuclear.
- Let A be a simple, separable and nuclear C^* -algebra.

 $A \otimes \mathcal{O}_{\infty} \simeq A$ iff A is purely infinite.

Inclusions

Co-restriction: complete argument

Prove that $\mu \colon \mathcal{O}_{d^M} \to \mathcal{O}_d$

$$S_{i_0+i_1d+\cdots+i_{M-1}d^{M-1}}\mapsto S_{i_0}S_{i_1}\cdots S_{i_{M-1}}$$

corestricts to $\mathcal{O}^{\alpha^M} \to \mathcal{O}^{\alpha}$:

- It suffices to consider the case of algebraic T ∈ O^α s.t. γ_t(T) = e^{i2πnt}T.
- Then we can then find k large enough s.t.

 $T \in \mathscr{H}^{k+n}_M(\mathscr{H}^*_M)^k$

where $\mathscr{H}_M = \mathscr{H}^{\otimes M}$ is equipped with α^M .

• T is in \mathcal{O}^{α^M} iff it intertwins $(\mathscr{H}_M)^{k+n}$ with $(\mathscr{H}_M)^k$.

This is realised iff T seen as operator from $\mathscr{H}^{M(k+n)}$ to \mathscr{H}^{Mk} is an intertwiner.

Inclusions C^* -alg.

Hilbert bimodule

We have a decomposition of algebraic elements:

$$T' = \sum_{n>0} T_n \mathbb{V}^n + T_0 + \sum_{n<0} (\mathbb{V}^*)^{|n|} T_n$$
 (Decomp)

Thus \mathcal{O}^{α} is generated by \mathcal{F}^{α} and \mathbb{V}^* , separable.

To show: \mathcal{O}^{α} , Cuntz-Pimsner algebra, nuclear and in \mathcal{N} .

 $E = \mathbb{V}^* \mathcal{F}^{\alpha}$ is a bimodule over \mathcal{F}^{α} :

• clearly, in
$$\mathcal{O}^{lpha}_{d}$$
, $E \cdot \mathcal{F}^{lpha} = \mathbb{V}^* \mathcal{F}^{lpha}$ and

• for all
$$T \in \mathcal{F}^{\alpha}$$
, $T \mathbb{V}^* a = \mathbb{V}^* \mathbb{V} T \mathbb{V}^* a \in E$ because
 $\mathbb{V}^* \mathbb{V} = 1$, $\gamma_z(\mathbb{V}) = z^2 \mathbb{V}$, $\gamma_z(T) = T$ and $\gamma_z(a) = a$

Similarly, we have left- and right- \mathcal{F}^{α} -valued scalar products:

$$_{\mathcal{F}^{\alpha}}\langle \mathbb{V}^*x, \mathbb{V}^*y \rangle = \mathbb{V}^*xy^*\mathbb{V} \qquad \langle \mathbb{V}^*x, \mathbb{V}^*y \rangle_{\mathcal{F}^{\alpha}} = x^*\mathbb{V}\mathbb{V}^*y.$$

Conclusion: *E* is Hilbert bimodule over \mathcal{F}^{α} .

Action of [*E*]

Correspondence between proj. f.g. modules and K_0 -classes: • all proj. f.g. module M_B admits a *frame* ξ_j :

$$\sum \xi_j \langle \xi_j, \cdot \rangle_B = \mathsf{Id}_M$$

 if ξ_j is a frame for M_B then
 e = (e_{ij}) = (⟨ξ_i, ξ_j⟩_B) ∈ M_n(B), associated projector.

 Case of E = V^{*}F^α: V^{*} is a frame!

Tensorisation:

• if
$$(\xi_j)_j$$
, $(\eta_k)_k$ frames of M and E , then
 $(\xi_j \otimes \eta_k)_{j,k}$ frame of $M \otimes_B E$

Therefore: $(e_{ij}) \otimes [E] \simeq (\mathbb{V} e_{ij} \mathbb{V}^*).$

If e of level ℓ corresponds to (k) then

 $\mathbb{V}e\mathbb{V}^*$ of level $\ell + 2$ corresponds to $(k) \otimes (0) = (k)$.

[E] pushes down two levels without changing class!

Inclusions C^{*}-alg. O.G.

Nuclear Cuntz-Pimsner algebras in \mathscr{N} $\ensuremath{\cdot}\xspace{-1.5ex}{\operatorname{Back}}$

We know that $E = \mathbb{V}^* \mathcal{F}^{\alpha}$ is a Hilbert bimodule. As

$$_{\mathcal{F}^{\alpha}}\langle \mathbb{V}^*, \mathbb{V}^* \rangle = \mathbb{V}^* \mathbb{V} = 1,$$

the *right* module *E* is proj. f.g. and $\mathcal{K}(E_{\mathcal{F}^{\alpha}}) = \mathcal{F}^{\alpha}$.

Corollary

 \mathcal{O}^{α} is a Cuntz-Pimsner algebra, with core \mathcal{F}^{α} and module E.

Proposition (Katsura, 2004)

A Cuntz-Pimsner algebra is nuclear as soon as its core is.

Since \mathcal{F}^{α} is AF thus nuclear, \mathcal{O}^{α}_{d} is nuclear.

Toeplitz extension of \mathcal{O}_d^{α} denoted $0 \to C \to \mathscr{T}_E \to \mathcal{O}^{\alpha} \to 0$ where C and \mathscr{T}_E are KK-equivalent to \mathcal{F}^{α} , AF thus in \mathscr{N} .

Proposition

 \mathcal{O}^{α} is a unital Kirchberg algebra in \mathcal{N} . $\mathbf{\mathcal{N}}$

Inclusions C^{*}-alg. O.G.

$\mathfrak{C}(\mathbb{G})$ is a group

• ~ is an equivalence relation. Writing \overline{t} for contragredient of t, if $t \sim u$ and $u \sim v$, with $t, u \in \tau_1 \otimes \tau_2 \otimes \cdots \otimes \tau_n$ and $u, v \in v_1 \otimes \cdots \otimes v_m$, then

$$t, v \in \tau_1 \otimes \cdots \otimes \tau_n \otimes \overline{\tau_1 \otimes \cdots \otimes \tau_n} \otimes v_1 \otimes \cdots \otimes v_m$$

since $\varepsilon \in u \otimes \overline{u}$ and $\varepsilon \in \overline{u} \otimes u$ and $u \in \tau_1 \otimes \cdots \otimes \tau_n$, $\overline{u} \in \overline{\tau_1 \otimes \cdots \otimes \tau_n}, u \in v_1 \otimes \cdots \otimes v_m$.

2 $[t][t'] := [t \otimes t']$ defines a group structure.

- $\bullet~\otimes$ is associative, therefore the product is too.
- $[\varepsilon]$ is clearly the unit: $[t][\varepsilon] = [\varepsilon][t] = [t]$.
- $[\overline{t}] = [t]^{-1}$ since $\varepsilon \in t \otimes \overline{t}$, $[t][\overline{t}] = [\varepsilon]$.

O.G.

Definition

Bootstrap class or Universal Coefficient Theorem (UCT) class: smallest class \mathcal{N} of separable nuclear C^{*}-algebras s.t.

- **2** \mathcal{N} is closed under inductive limit;
- **③** if 0 → J → A → A/J → 0 is an exact sequence, and two C^* -algebras J, A or A/J are in \mathcal{N} , then so is the third;
- \mathcal{N} is closed under *KK*-equivalence.

Inclusions

O G

Definition (braid groups)

The finite braid groups B_n are

$$B_{n} := \left\langle b_{i}, i = 1, \dots, n \right| \begin{array}{c} b_{i}b_{i+1}b_{i} = b_{i+1}b_{i}b_{i+1} \\ b_{i}b_{j} = b_{j}b_{i}, |i-j| \ge 2 \end{array} \right\rangle$$

The *infinite braid group* B_{∞} is the direct limit $\lim_{\to} B_n$

The embedding of B_{∞} is obtained *via* intertwining $(t_1) \otimes (t_2)$ with $(t_2) \otimes (t_1)$.

The *q*-antisymmetric tensor \mathbb{V}_q is

• a \mathbb{G} -invariant nonzero vector in $\mathbb{V}_q^{\otimes N}$,

• s.t. $\mathbb{V}_q \xrightarrow{q \to 1} \mathbb{S}$, totally antisymmetric rank N tensor. For $\mathbb{G} = SU_q(N)$, $\alpha = \mathbb{V}_q$, \mathbb{V}_q corresponds to our \mathbb{V} .

Definitions of co-multiplication Δ_0 :

$$\Delta(u_{ij}) = \sum_{k} u_{ik} \otimes u_{kj} \qquad \Delta(\overline{u_{ij}}) = \sum_{k} \overline{u_{ik}} \otimes \overline{u_{kj}}.$$

Definition co-unit ε_0 and antipode γ_0 of \mathscr{A} :

$$\varepsilon_0(u_{ij}) = \varepsilon(\overline{u_{ij}}) = \delta_{ij} \qquad \gamma(u_{ij}) = \overline{u_{ji}}.$$

Furthermore, the involution * is compatible with the coaction α : $* \circ \alpha = \alpha \circ (* \otimes *)$.

Back

Inclusions of fixed points: proof

• Easy to construct a map $\mu \colon \mathcal{O}_{d^M} \to \mathcal{O}_d$: just set

$$S_{i_0+i_1d+\cdots+i_{M-1}d^{M-1}}\mapsto S_{i_0}S_{i_1}\cdots S_{i_{M-1}}$$

where all $i_0, i_1, ..., i_{M-1}$ are in $\{0, 1, ..., M-1\}$.

• This map is naturally injective.

Aim: prove μ (co-)restricts to an isomorphism $\mathcal{O}^{\alpha^M} \to \mathcal{O}^{\alpha}$.

- Corestricting to O^{α^M} → O^α: true in general, uses interpretation as intertwinner. Proves point 1.
- Surjectivity: uses the chain group condition. If T ∈ ℋ^{k₀}(ℋ*)^{k₁} is a nonzero intertwiner, then (same class) [α]^{k₀} = [α]^{k₁} and thus k₀ − k₁ is a multiple of M. Hence we can lift it to an element of O^{αM}.

Inclusions C^* -alg.

0.G.

More

Compact quantum group: definition

Definition

- A compact quantum group (A, Δ) is
 - a unital C*-algebra A,
 - with a C^* -algebra morphism $\Delta \colon A \to A \otimes_{\min} A$

such that

- $(\mathsf{Id} \otimes \Delta) \circ \Delta = (\Delta \otimes \mathsf{Id}) \circ \Delta$ (coassociativity),
- $\Delta(A)(1 \otimes A)$ and $\Delta(A)(A \otimes 1)$ are dense in $A \otimes A$.

Theorem (Woronowicz – 1998) If (A, Δ) CQG and A comm., there is a compact group G s.t. $A \simeq C(G)$ and $\Delta(f)(g, h) = f(gh)$.

- Thus, we recover all compact groups...
- ... and more, like the CQG $SU_q(2)$.

Inclusions C^* -alg.

0.G.

Let (A, Δ) be a compact quantum group,

Definition

A matrix $w = (w_{ij}) \in M_d(\mathbb{C}) \otimes A$ is a unitary representation of (A, Δ) if

• w is unitary as element of $M_d(\mathbb{C})\otimes A$,

• for all
$$i, j, \Delta(w_{ij}) = \sum_k w_{ik} \otimes w_{kj}$$
.

▲ Back