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Inclusions

Overview — results and perspectives g,

Cpct quantum gp G A A, dim d ~ G ~ Oy, Cuntz algebra.

7 Fixed point algebra O* C Oy 7

- Nat. L
Result: Under some conditions, Bl R 2

if G1, Gy, “same representation theory”, then O ~ 0“2

Inclusions
Proofs

Stability

Key ingredient: Abstract C*-isom. (classification theory).

K-theory

Conclusion

Example: G = SU,4(2), q € (0,1) and g nat. rep. on C2.
0% = O indep. of g, inside O5.
Algebraic case (CPZ '00): recover g from O% C Oy

Change pt of view: fixed alg. O%, family inclusions O% — O,.

? Recover G from O% — Oy ?



Inclusions

Overview — objects involved C*ale

Two actions on Oy:
o a: G~ Oy induced from a: G ~ .
@ “Gauge action” v: U(1) ~ Oy induced from

Nat. rep. vq
’YZ(S'/) = ZS:/" Inclusions
Proofs
Oq s
Fixed point algebras O“ and F, respectively. g/ \) Conclusion
\) L/
FO&

“Meaning" of those algebras?

e 04 contains 47, its tensor products 7% and duals...
. and thus all endomorphisms #®k — 7%

o O%: keeps only intertwiners 7%k — 7%t
o F% =lim_, Morg (%!, #%), AF algebra.



Outline

Inclusions

0 Main results: quantum groups and Kirchberg algebras
@ Compact quantum groups
@ Conditions and statements of the results
@ Discussion of conditions

@ Examples: natural representations v of SUq(N)
© Distinguishing inclusions

@ Proofs of the properties
@ Stability result: proof
@ Crossed product by IN and computation of K-theory

© Conclusion

C*-alg.

Nat. rep. vg
Inclusions

Proofs
Stability
K-theory

Conclusion



Inclusions

Compact Quantum Groups (CQG): definition e

Informally, a CQG is a compact NC space with a group law.

Formally, unital C*-algebra A with coproduct A: A - A® A,
and certain properties. Denote G = (A, A), A= C(G).

@ Example: let g, real number with —1 < g <1, g #0,

Definition (Woronowicz — 1987) o

SUq(2): universal C*-algebra generated by the entries of U Conelusion

C a

with conditions U*U =1 = UU* and A(U) = U ® U.

e For g =1: A comm., recover SU(2), a and c functions.
@ Deformations SUq(N) of SU(N) exist for 0 < g < 1.



Inclusions

Compact quantum groups: representations C*-alg.

Notion of representation: «: 7€ — H R A...
. under some conditions.

For SUq4(2), the natural representation o = (1) acts on C2:

Oég(Sl) - 51 & a(g) + 52 ® C(g) Inclusions
g(S2) = =51 ® qc*(g) + S2 @ a*(g). Proofs

Stability

For g =1, a and ¢ are C-valued functions on SU(2). Ketheor

For G = (A, A), general CQG: condesen
@ Notions of unitary and irreducible rep. for G.
@ Direct sums and tensor products of unit. rep. of G.
@ Schur lemma applies.
@ Unit. rep. o decomposes in sum of finite dim. unit. irrep.

Nat. rep. vq

Example: the irreps of SU4(2) are (n) with n € N and
(K@ K)=(k—K))o(k—K|+2) @@ (k+ k).
Clebsch-Gordan relations: no difference with SU(2)!



Fusion semiring and R *-isomorphism b

Definition (R*-isomorphism, Banica — 1999)
Given a CQG G, denote R1(G) the fusion semiring of finite
dim. rep. of G, endowed with

@ the direct sum @,

@ the tensor product . roe
If R*(G1) and RT(G,) are isomorphic as semirings, e

Conclusion

then G and Gy are R -isomorphic (same fusion rules).

For representations, no differences between G; and Go!

Examples:
e SU(2) and SU4(2) are R " -isomorphic.
e More generally, SU(N) and SUq(N) are R*-isomorphic.



Fixed point algebras from CQG

Inclusions
C*-alg.

Theorem (Konishi, Nagisa & Watatani — 1992)
Given G, CQG and a unit. rep. a = (aj;) € My(A) on €,
d

Q(S,') = Z Sj @ aji
=1

induces a: Oy — Oy ® C(G), action on Oy.

v

Definition (fixed point algebra)

The fixed point algebra O of « is

0% ={T € Ogla(T) = T 1}.

@ The gauge action v on Oy restricts to O%.
e Consider the spectral subspaces (for ~y):

(0K ={T € O%: v,(T) = zKT} where k € Z.
@ For k=0, set F* := (0*)(®) - gauge inv. subalgebra.

Stability
K-theory

Conclusion



Classification theory

Definition : Kirchberg algebra

A Kirchberg algebra is a C*-algebra A which is
1. Purely Infinite (P1) 2. simple 3. nuclear 4. separable

First two properties: Ya# 0 € A, Ve > 0, Ju,v € As.t.
|luav — 1| < e.

Theorem (Kirchberg & Phillips — 1994, 2000)

Let A and B, be unital Kirchberg algebras in 4.
A ~ B as C*-algebras iff Abelian groups isomorphisms

ap: Ko(A) — Ko(B) a7 Kl(A) — Kl(B)
with ao([lA]) = [13] in Kp.

Proposition (Kirchberg, Phillips — 1994, 2000)

Given Kirchberg algebras A, B, every element of KK (A, B) lifts
to a #-hom. from A to B® K.

v

Inclusions
C*-alg.

Proofs
Stability
K-theory

Conclusion
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Inclusions

Conditions and stability result e

Given G, CQG, and «, unitary representation of G,
T, union of (classes of) irrep. contained in a®* for £ > 0.

(C1) If B €Ty, A8 € Ty s.t. B® [ contains trivial rep. ¢. Nat. rep. vq
Inclusions
(C2) There are integers N, kg s.t. oo
o a®V is contained in a®Ntk) and o

o Vk,¢ € N with 0 < k < kg, Morg(a®t, a®(+h) = {0}. e

Conclusion
Theorem (G. — 2014)
If o satisfies (C1) and (C2), then O% is Kirchberg, in .4 and

O only depends on G via RT(G).

Last property: for isom. ®: RT(G1) — RT(G,) CEEIED,
O and O®(®) are (abstractly) isomorphic as C*-algebras.

11



Free actions

Definition (Ellwood — 2000)
An action a: A - A® C(G) on a C*-alg. A'is free if

a(AAD1) =A® C(G).

Theorem (G. — 2014)

Assume that
e G is a semisimple cpct Lie group (or a Rt -def. thereof)
o ais (a RT-def. of) a faithful rep. of G

then the induced action a: Oy — Oy @ C(G) is free.

o Actually, suffices that 7, contains all irreps. of G.
e Equivalently (De Commer & Yamashita — 2013),
there is a Morita equivalence between O% and Oy x G.
@ Combining both theorems:
source of noncommutative principal bundles!

Inclusions
C*-alg.

Proofs
Stability
K-theory

Conclusion
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COﬂdItIOn (Cl) |nCcLu_sa||0gns

(C1) If B €Ty, 3B € Ty sit. B@ [ contains trivial rep. e.

Proposition
If R+(G) >~ R+(G) for Nat. rep. vq
@ some semisimple Lie group G or Inclusions

Proofs
Stability

@ some finite group G,

K-theory

then (C1) is satisfied for any irreducible rep. .

. Conclusion

Proof: in both cases, we prove that the trivial rep. € appears in
BL for some L.
@ Assume that G is a group in one of the above classes.

o if 3 is a representation of dim. d, consider § := /\d 5.
e for semisimple G, unique dim. 1 rep. thus § trivial;
o if G is finite, for K large enough, §¥ is trivial.

13



COﬂdItIOn (C2) |nCcLu_salrgns

(C2) There are integers N, ko s.t.
o a®N is contained in a®(NVtk) and
o Vk, 0 € N with 0 < k < kg, Morg(a®’, a®(+k)) = {0}.

Alternative statement: Nat. rep. v
(C2') Yk e N\ {0}, if (Oo‘)(k) # {0}, then it contains an Inclizions)
isometry. Moreover, not all (Oa)(k) are trivial. Z“:fj
e Condition (C2) gives a “generating isometry” V. Cz;nclusion

e (C2) difficult to check, in general.

@ Examples:
e = @t, ¢ trivial representation  ~» kg = 1.
o For G=5SUy(d) anda=v ~ kg=d.

To prove that (C2) & (C2'):
@ Inclusion of 22, 7%k inside O°.
e Fourier coefficients maps my.: O% — (O“)¥) for k € Z:

mi(T) := /51 z Ky, (T)dz.

14



Inclusions

Natural representation v of SU(d): chain group e

Consider G = SU,4(d) and its natural rep. o = v on C¢.
e RT(G) =R"(SU(d)) and G = SU(d) semisimple,
so (C1) is satisfied.
o By def. of SU(d), v¥ = e @ t, hence a satisfies (C2).

@ For v, the property is less obvious...

Proofs
Stability
K-theory

N
Can we compare O% and 0% 7

Conclusion

Definition (Chain group, Baumgartel & Lled6é — 2004)

Chain group €(G): equivalence classes [t] of irreps

@ under t ~ t’ if there is a chain of irreps. 71,...,7, s.t.
both t and t’ appearin 7y @ --- @ 7,

e product structure [t][t'] = [t ® t'].
This actually defines a group structure on €(G).

Identity of €(G): given by trivial rep. e: [e] = 1¢(g).

16



Inclusions of fixed points: statement

Inclusions
C*-alg.

If R+(G1) ~ R+(G2), then Q:(Gl) ~ Q:(Gg)

Theorem (Baumgartel & Lled6 — 2004)

For compact (ordinary) groups G, €(G) is the character group
of the center Z(G). Explicit isomorphism:

[t]— t ] Z(G).

E.g. G=SU(d), get €(G) =7Z/dZ ("Grading of irreps”).

Proposition (G. — 2014)
Given a rep. «a of a CQG G,
@ For any M > 1, there is an injective map oM - 0,

@ If all irrep. in a have the same class [a] # e in €(G), for
the order M of [o] in €(G), 0" ~ O2,

4

Point 2 clearly applies to G = SUq(d) and « nat. rep. @D

Nat. rep. vg
Inclusions

Proofs
Stability
K-theory

Conclusion
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SUq(2) and a = (1): explicit identification i
Canonical endomorphism of Oa: p(T) = 51 TS; + S2TS5.
Theorem (Marciniak — 1998)

O% is the smallest C*-subalgebra of O, which contains

Vg = ﬁ(slsg — gS5,51) and is stable under p. :jus::s""
Proofs
Vg is the “generating isometry” and satisfies the relations: S
VeV =1 Vep(Vq) = — e 1. Conclusion
Thus, using p, the projections p, := p"(V4Vy) satisfy:
PnPm = PmPn PnPkPn = T Pn

where [n—m| > 1, [n—k|=1and 7= (q+q )2

(Temperley-Lieb relations).
Theorem (G. — 2014)

The K-theory of O% is Ko(O%) = 7Z, K1(O) = 0.

Moreover, [1pa]o = 1 therefore O% ~ O.
18




Inclusions

Natural representation aq of SU,(d): results e

From now on: G = SU,(d) and ag, natural rep. on C¢.

O and O% are (abstractly) isomorphic as C*-algebras. I

@ In other words, the construction O% doesn't “feel” the Proo
Stability

deformation parameter q. Ketheory

Conclusion

Explicit description using p, canonical endomorphism of Oy:

Theorem (Paolucci — 1997)
@ Embedding 6 of the braid group By in Oy;

o O contains the g-antisymmetric tensor V g;
@ (0% is the smallest C*-subalgebra of Oy s.t.

o 0(g), for any g € B, and V, are in O%;
o O% s stable under p (with p(T) := > 5;TS}).

19



Comparison algebraic — C*-algebraic

Inclusions
C*-alg.

Case G = SUq4(d) and ag, nat. rep.

In the algebraic setting:
Theorem (Carey, Paolucci & Zhang — 2000)

If o7, *-Hopf algebra with generators uj; and Tj; = (ujj)* and

° Ojlg C Oy possesses an action a: ijlg — (’)Z/g ® o
d d

o(S) =) S u; o(S5) =D 5 @ uj,
=t =t

o the algebra 0% is generated by V, and 0(g) for g € B
then &7 is SUq(d).

@ In other words, we can recover g in the algebraic setting...
@ ... but for C*-algebras, O% "doesn’t feel” the gq.

Inclusions

Proofs
Stability
K-theory

Conclusion

21



Inclusions

Inclusions and recovery of CQG g,

Case G = SUq4(d) and aq, nat. rep. Why such difference?
o Carey, Paolucci & Zhang consider the full inclusion...

@ ... we consider only the fixed point algebra O. s s
New problem: classify inclusions Oy, < O5! Nat. rep. vq
e KK-theory not helping: KK(Ooo, O2) =0 (UCT). :cluZons
@ For irreducible representations, ity

V*p(V) € (SN AN o#* thus it is a scalar. | "

Conclusion
For SU4(2), V*p(V) = —(q + g~ 1)1 recovers gq.
But if we consider free orthogonal quantum groups?

@ Alternative approach: use von Neumann setting!

Theorem (Enock & Nest — 1996)

If Mo C My is a depth 2 irreducible inclusion of factors with a
conditional expectation [E from M; to My
then there is a CQG G and an action o of G s.t. My = M{*.

Idea: find sufficient cond. on O% — Oy to apply theorem. =



From C*-algebras to factors — gauge actions

Inclusions
C*-alg.

Theorem

Fix an R-action 7 on a C*-algebra A. Given 3 € R, let KMSg
be the set of -KMS states at value S,

w is extremal in KMSg iff w is a factor state.

e KMS-states satisfy 7-invariance: w(7:(a)) = a.
e We consider gauge actions ~» charact. by trace on A
e For Oy4, F UHF alg. d*° thus unique trace.

Weak closure of Oy for GNS(¢): factor.

Proposition (G.)
For G = SU4(2) and a = v, given § # 1,

there is at most one KMSg state w.

Consequence:

from the inclusion Oy, — O, we get a subfactor system.

Nat. rep. vq
Inclusions

Proofs
Stability
K-theory

Conclusion
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Inclusions

Towards the proof: fixed point algebras it

Two actions on Oy:
o a: G~ Oy induced from a: G ~ .
@ “Gauge action” v: U(1) ~ Oy induced from

Nat. rep. vq
’YZ(S'/) = ZS:/" Inclusions
Proofs
Oq s
Fixed point algebras O“ and F, respectively. g/ \) Conclusion
\) L/
FO&

“Meaning" of those algebras?

e 04 contains 47, its tensor products 7% and duals...
. and thus all endomorphisms #®k — 7%

o O%: keeps only intertwiners 7%k — 7%t
o F% =lim_, Morg (%!, #%), AF algebra.

25



Inclusions

Stability result: parts of the proof C*ale

Theorem (G. — 2014)
If « satisfies (C1) and (C2), then O% is Kirchberg, in .4" and

O only depends on G via R*(G). Nat. rep. vq
Inclusions
Parts of the proof: R
© Prove that O“ is Pl and simple. Argument: s

Identify O% with a crossed product 7 x IN and | cConclusion

Theorem (Dykema & Rgrdam — 1998)
Given A # C and o injective endomorphism of A, if
(i) Va>0,3bc A 3L>0s.t. bab* =cb(1) and

(i) @™ is outer for all m € N

then A x, N is Pl and simple.

@ Compute the K-theory of O%. Argument:

0% ~ F* % N and Pimsner-Voiculescu exact sequence. s



Inclusions

Purely infinite and simple algebra it

Conditions of previous theorem (Dykema & Rgrdam — 1998) in
our case:

Nat. rep. vq
(i) VT >0, 3z€ F*, 3L > 0s.t. zTz* = ok(1). Inclusions
(i) @™ is outer for all m € N. Proofs
are
Steps to prove that O is Pl and simple: Conclusion

@ Consider the crossed product F* x, N
for o defined by o(T) := VTV*, V “generating isom.”

@ Check hypothesis (i).
© Check hypothesis (ii).
Q@ Prove that 0% ~ F* x, N.

27



Inclusions

Checking (i): projections in Ff e

(C1) If BeT,, 3B € Ty sit. B @ [ contains trivial rep. e.

Proposition

Let P € F*! be a nonzero proj., AL > 0, Ju € (0*)() sit. Nat. rep. vq
U*PU =1 U*U = 1. Inclusions
Proofs
o P a-inv. ~ Hilb. sp. P#" =: # C #" stable under af. i

Decompose induced representation in 7. Conclusion
WLOG, % equipped with 8 € 7,.

e From (C1), 3¢ € N s.t. f® af acting on & @ 9
possess an invariant vector u.
@ Since u e ¥ ® #9 C #'H9, satisfies Pu= u. It is

G-invariant thus u € O%.
@ Up to normalisation, u*u =1 and hence

u*Pu= (Pu)*Pu=u'u=1.

Extension to any a > 0: alg. approx. and finite dim. alg. F®*.
28



Inclusions

Checking (ii): outer automorphism e

Def. @ is gen. from o on F<, limit of the inductive system

o o

FoLFr L Fe L. 5 Fa

Under condition (C2),

Proofs

for all m € N\ {0}, the automorphism ™ is outer. s
® 0: F* — F%extends to o: F — F by o(T) :=VTV*, Conclusion

@ There is a commutative diagram:
Fo g F< g Fé 9 ... «

l@l \LSDZ ltp3 i
F—2sfF2>F2-... N
e If ™ is inner on F, it must act trivially on Ko(F).

@ This leads to a contradiction when extended to F, where
we can rely on the unique trace on the UHF algebra F.

<l

29



Inclusions

K-theory and fusion semiring e

Proposition
We can identify O% with the crossed product F* x, N and
using a Pimsner-Voiculescu-like sequence, e

Inclusions

we can recover K,(O%) from K, (F?). oroote

Stability

Computation of K, (O%): e
o F%, AF-algebra: lim_, F¢ = lim_, Morg (%, #%Y). e
o Describe K.(F®*) via intertwiner interpretation.
o Continuity of K, gives: K.(F%) = lim_, K,(F*5).
Description involves Z[7,] [ﬂ constructed from R*(G).

@ From PV sequence, obtain:

Ko(O%) = coker(ld —o,)  Ki(O%) = ker(ld o),

30



Conclusion

Inclusions
C*-alg.

Our results:
@ from a representation a of a compact quantum group G...
e ...yield Kirchberg algebra O% depending only on R*(G).
@ The action of G on O% is free.

Perspectives: translate in factor setting and recover G.

Inclusions

Proofs
Stability
K-theory

Conclusion
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This is the end...

Inclusions
C*-alg.

Thank you for your attention!

References:

[ 0. G.
Fixed points of compact quantum groups actions
on Cuntz algebras
Ann. H. Poincaré 15 (2014) 5, pp 1013-1036

Inclusions

Proofs
Stability
K-theory

Conclusion
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C*-alg.

Inclusions

Proofs
Stability
K-theory

Conclusion
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Example of Bratteli diagrams: SUq(2) and a = (1)

Example of identification using Bratteli diagrams:
@ Tensor products: (0) ® (1) = (1) and
for k>0, (k)@ (1)=(k—1)® (k+1).
o H «~ (1) and 2 s (1)2 = (0) @ (2).
o Then, ((0) & (2) ® (1) = (1) & (1) & (3) = 2.(1) & (3).
@ More generally: simple edges and addition of dimensions.

level (0) (1) (2) (3) (4

(=0 !
AN
(=1 ol
PN
¢ =2 .1 .1
RN
N LN

35



Inclusions

Bratteli diagram e

Bratteli diagram of even lines (tensorisation by
(1) = (0) @ (2)): only has even representations.

level (0) (2) (4) (6) (8)

=0 ol
AN
=2 ol ol
LS
V=4 o2 o3 ol
¢><¢i><W\
/=06 o ° o° ol
b N
/=8 ol o8 g0 g7 g1

@ Diagram yields the direct limit explicitly.
@ The action of [E] on Kp(F®) can be easily interpreted in

this diagram.
36



Inclusions

K-theory and localisation e

Localisation ring RE:
o formal ring on irreps with coefficients in Z,
@ product given by fusion rules.
In the inductive limit:
o at level ¢, only irreps appearing in of,
@ inductive limit: at each step multiply by a.

Leads to localisation by «.

Example: case of SU4(2) and o = (1).
@ Typical elements in level ¢:

30(0)+32(2)+ —i—ag(f) a1(1)+a3(3)+ —i—ag(ﬂ)
(1) (1)
depending on the parity of /.

@ Pushing to level £+ 1, we multiply top and bottom by (1).
[ < Back ]

37



Inclusions

K-theory and localisation — continued e

@ To perform actual computations, we use the identification
of R and Z[t] under correspondences:

(0) e 1 (1) o t (2) e t2—1

since (1)? = (2) @ (0).
@ All elements of level £ can be written %t— where
P(t) is a polynomial
e of same parity as t¢,
o the degree of P is less than /.

The K-theory of F“ consists of all such fractions.

—

To compute K.(O%) in this context, we use:

(1-1/¢?)

Ko(F®) Ko(F©) Ko(O%)
Ki(0%) 0 g

38



End of the computation and results ra

From the previous explicit expressions, we prove:
e o =Id—[E]: Ko(F*) — Ko(F?) is injective,
@ cokero ~ Z.

Thus, in our special case:

Proposition
If A= SUq(2) and av = (1), the K-theory of O“ is

Ko(0®) = 7 Ki(0%) =0,

and O¢ is Kirchberg, unital and in 4.
Moreover, [1pa]o =1 € Z ~ Ko(O?), hence O% ~ Ox.

39



Apply the procedure to G = SUg(2), d = 3 and a = (2).
Only even representations occur:

level

© (2 @& (© (6 (10

ol

AN

/¢\
><¢><¢\
><¢><¢><¢\
><$><¢><.¢><¢\

40



Inclusions

Bratteli diagrams: an example e

Let fy, f1, f>,... be the Fibonacci series given by fo = =1
and fp = fp_1 + fy_o for £ > 2.

Put Ay = Mg (C) @ M,_,(C) and let p;: A — Ap41 given by:

r((53)

Consider the AF algebra A = lim_, Ay. Its Bratteli diagram:

(=1 ol ol
1<
=2 o ofl
I
/=3 ofs o2
1<
! =4 oft of3

41



Bratteli diagrams e

Using the equality F* = M, (C), the direct system lim_, F* is
e — Mdl((D) — Mdl+1(®) — Mdl+2(®) —

with morphisms T — T ® ldge ~ diag(T, T,..., T).
—_————

d times

Thus the Bratteli diagram is...
.. which is characteristic of the type d*° UHF algebra.

For general AF algebras, a suitable equivalence relation on
Bratteli diagrams can be defined:

Theorem (Bratteli, 1972)

Bratteli diagrams are equivalents
if and only if the AF algebras are isomorphic.

42



Inclusions

Universal property of Oy it

If B is a C*-algebra and b; € B satisfies
d

b} bj = & > b =1
j=1

then there is a *-homomorphisme ¢: Oy — B defined by
©(S)) = b.

43



Inclusions

AF algebra: proof e

@ Take T € F. Using the universal property of Oy O F,
there is an “algebraic” Ty s.t.

IT— Tol| <e.

o It suffices then to find T which is
e in F (gauge-invariant),
e algebraic,
e ccloseto T.

o If we take T = Egi(Tp) then

o T} is gauge-invariant and algebraic by construction,
e it is e-close to T because

IT = Esi(To)ll = [Es:(T = To)| < [T = Tol < &

hence the result.

44



Direct limit for F“: proof ra

There is a conditional expectation Eg: Oy — O% associated
to the action « defined by:

Eg(T) = (ld®h)a(T),

where h: A — C is the Haar measure on A = C*(G).
Take now T € F¢,

@ since F is AF, there is an algebraic Tp in F s.t.
IT = Toll <&
e consequently, Eg(Tp) € F* is algebraic and e-close to T:
IT = Ea(To)ll = [Ea(T = To)l| < [IT = Toll <&

45



Inclusions

Multiplicity of map: proof it

Definition (multiplicity of map)
The multiplicity of 1: My (C) — M;(C) is defined by

Tr(yp(e))/ Tr(e) € N

where e is a nonzero projection in My (C).

@ All elementary projection e; € M, corresponds to a
projection Py, € F°..
@ ...whose range K; C W ART
e stable under o and
o equipped with a type (t) irreducible representation.
o The range of Px, by the inclusion F* — Ft+1
corresponds to projection Py, ® Id € B(s#+1)...
o ..whose range is K; - 7 C s+ (which we decompose).

6



Inclusions

Action of [E]: proof e

The scalar product on M ® E is

Eondeon)s=m & n)s

Proving that (& ® 7;) is a frame: simple (but lengthy!)
computation.

In our case,
@ e can be chosen in F (no matrices),
@ a possible frame ¢ = e € F<,

and then

(e@V" e@V*)ra =V(e-e) V' =VeV™.

47



Inclusions

Cuntz algebra O e

The Cuntz algebra O is the universal C*-algebra generated
by infinitely many S1,...,S,,... with relations

o for all i,j, S}S; = dj
e forany r e N,

.
>SS <L
i=1

Relevance of Cuntz algebras Oy and Ox:

Theorem (Kirchberg)
o A® Oy ~ O, iff A simple, separable, unitary and nuclear.

o Let A be a simple, separable and nuclear C*-algebra.

A® O =~ Aiff Ais purely infinite.

48



Co-restriction: complete argument

Prove that p: Ogu — Oy
Sio+i1d+~~~+iM_1dM71 = SiOSil T SiMfl

. M
corestricts to 0% — O%:

@ It suffices to consider the case of algebraic T € O¢ s.t.
’)/t(T) _ ei27rnt T.

@ Then we can then find k large enough s.t.
T € A0t ()"

where G = %M is equipped with oM.
o T isin O« iff it intertwins ()% " with ()~

This is realised iff T seen as operator from #Mk+n) to Mk
is an intertwiner.

Inclusion:
C*-alg.

S
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Hilbert bimodule «sa incsions

We have a decomposition of algebraic elements:
T =3 T,V + To+ > (V)T, (Decomp)
n>0 n<0

Thus O is generated by F* and V*, separable.
To show: O%, Cuntz-Pimsner algebra, nuclear and in 4.

E = V*F% is a bimodule over F*:
@ clearly, in O, E - F* =V*F% and
o forall T € F¢ TV*a=V*VTV*ac E because
V*V =1, 1,(V) = 22V, 7,(T) = T and 7,(a) = a.
Similarly, we have left- and right-F“-valued scalar products:

Fe(Vix, V) = Vxy* V. (V'x, V¥y) ra = x*VV*y.

Conclusion: E is Hilbert bimodule over F¢.
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Action of [E] s

Correspondence between proj. f.g. modules and Kp-classes:
@ all proj. f.g. module Mg admits a frame §;:

> &(&, e =ldy
o if & is a frame for Mp then
e = (ej) = ((&,&j)B) € Mp(B), associated projector.
Case of E = V*F*: V* is a framel!
Tensorisation:
o if (&);, (nk)k frames of M and E, then
(& ® nk)jk frame of M ®p E.
Therefore: (ej) ® [E] ~ (Ve;V*). azd
If e of level ¢ corresponds to (k) then
VeV* of level £+ 2 corresponds to (k) ® (0) = (k).

[E] pushes down two levels without changing class!
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/ Inclusions
y < Back C*-alg.

Nuclear Cuntz-Pimsner algebras in .

We know that E = V*F“ is a Hilbert bimodule. As
Fa (VI V") =V*V =1,
the right module E is proj. f.g. and IC(Era) = F©.

0% is a Cuntz-Pimsner algebra, with core F* and module E. I

Proposition (Katsura, 2004) J

A Cuntz-Pimsner algebra is nuclear as soon as its core is.

Since F“ is AF thus nuclear, OF is nuclear.
Toeplitz extension of Of denoted 0 - C — g — O* = 0
where C and JF are KK-equivalent to ¢, AF thus in /.
Proposition

O% is a unital Kirchberg algebra in 4.
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¢(G) is a group incsions

@ ~ is an equivalence relation.
Writing t for contragredient of t, if t ~ u and u ~ v, with
LUETIR®T® - Q@Tpand U,V EVL® -+ @ Up,
then

LVETIR - QT RTM R QT RUL X+ @ U

sinceecu@uande ctRQuand u e ® - Q 7y,
TETMR - QTh,UEVLI R+ QUpm.

Q [t][t'] := [t ® t'] defines a group structure.
e ® is associative, therefore the product is too.
o [g] is clearly the unit: [t][e] = [¢][t] = [t].
o [t] =[t] !sincec € t®t, [t][t] = [e].
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Definition of the UCT class Inclusions

C*-alg.

Bootstrap class or Universal Coefficient Theorem (UCT) class:
smallest class .4 of separable nuclear C*-algebras s.t.
Q Ceu;
@ .V is closed under inductive limit;
Q@ if0—J— A— A/J— 0is an exact sequence, and two
C*-algebras J, A or A/J are in ¥, then so is the third;
Q@ .V is closed under KK-equivalence.

v
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Inclusions

Braid groups and g-antisymmetric tensor V, g,

Definition (braid groups)

The finite braid groups B,, are

) bibjy1bi = bjy1bibj+1
B, = <b,,/—1,...,n' bibj — biby, |i — j| > 2

The infinite braid group By is the direct limit lim_, B,

The embedding of B, is obtained via intertwining (t1) ® (t2)
with (t2) ® (t1).

The g-antisymmetric tensor Vg is

@ a G-invariant nonzero vector in V?N,

@ st Vg, gzl S, totally antisymmetric rank N tensor.
For G = SU4(N), a = Vg4, V4 corresponds to our V.
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Inclusions

Definition of the x-Hopf algebra structure g,

Definitions of co-multiplication Ag:

A(uy) Z Uik & Ugj A(wy) = Z k @ U

k
Definition co-unit ¢ and antipode g of «7:
eo(uj) = e(Tj) = 6 V(uy) = Tji.

Furthermore, the involution % is compatible with the coaction
a: xoa = o (x® *).
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Inclusions of fixed points: proof e

e Easy to construct a map p: Ogu — Oy just set

5i0+l'1d+"'+l-M,1dM71 = SiOSil RN

iM—1
where all iy, i1,...,im—1 arein {0,1,..., M —1}.
@ This map is naturally injective.
Ogu—— Oy
OOLM > o

Aim: prove p (co-)restricts to an isomorphism oM 5 o,
@ Corestricting to 0" 5 0% true in general, uses
interpretation as intertwinner. Proves point 1. as
@ Surjectivity: uses the chain group condition.
If T € % (%) is a nonzero intertwiner, then (same
class) [a]* = [a]® and thus ko — k1 is a multiple of M.
Hence we can lift it to an element of 0" [ < Back ]
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Inclusions

Compact quantum group: definition it

A compact quantum group (A, A) is

@ a unital C*-algebra A,

e with a C*-algebra morphism A: A — A ®min A
such that

o (ld®A)o A =(A®Id)o A (coassociativity),

o A(A)(1®A) and A(A)(A® 1) are dense in A® A.

Theorem (Woronowicz — 1998)
If (A,A) CQG and A comm., there is a compact group G s.t.

A~ C(G) and A(f)(g, h) = f(gh).

@ Thus, we recover all compact groups...
e ... and more, like the CQG SUq(2).
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Representations of CQG e

Let (A, A) be a compact quantum group,

Definition

A matrix w = (w;;) € Mg(C) ® A is a unitary representation of
(A, A) if

@ w is unitary as element of My(C) ® A,

o forall i,j, A(wy) = >4 wik ® wy;.
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