Decomposition rank and Jiang-Su stability

Aaron Tikuisis a.tikuisis@uni-muenster.de

University of Münster

Fields workshop on applications to operator algebras

・ 同 ト ・ ヨ ト ・ ヨ ト

Fact (Toms, '08)

There exist 2 non-isomorphic simple, separable, unital, nuclear C^* -algebras with the same *K*-theory and traces.

Conjecture

For a simple, separable, unital, nonelementary, nuclear C^* -algebra A, the following are equivalent:

- (i) A is \mathcal{Z} -stable;
- (ii) A has finite nuclear dimension;
- (iii) A has strict comparison of positive elements;
- (iv) *A* is an inductive limit of nice building blocks (2-NCCW complexes, direct sums of $M_n \otimes \mathcal{O}_m \otimes C(\mathbb{T})$).

Moreover, the algebras satisfying (i)-(iv) are classifiable.

Fact (Toms, '08)

There exist 2 non-isomorphic simple, separable, unital, nuclear C^* -algebras with the same *K*-theory and traces.

Conjecture

For a simple, separable, unital, nonelementary, nuclear C^* -algebra A, the following are equivalent:

- (i) A is \mathcal{Z} -stable;
- (ii) A has finite nuclear dimension;
- (iii) A has strict comparison of positive elements;
- (iv) *A* is an inductive limit of nice building blocks (2-NCCW complexes, direct sums of $M_n \otimes \mathcal{O}_m \otimes C(\mathbb{T})$).

Moreover, the algebras satisfying (i)-(iv) are classifiable.

Fact (Toms, '08)

There exist 2 non-isomorphic simple, separable, unital, nuclear C^* -algebras with the same *K*-theory and traces.

Conjecture

For a simple, separable, unital, nonelementary, nuclear C^* -algebra A, the following are equivalent:

- (i) A is \mathcal{Z} -stable;
- (ii) A has finite nuclear dimension;

(iii) A has strict comparison of positive elements;

(iv) *A* is an inductive limit of nice building blocks (2-NCCW complexes, direct sums of $M_n \otimes \mathcal{O}_m \otimes C(\mathbb{T})$).

Moreover, the algebras satisfying (i)-(iv) are classifiable.

Fact (Toms, '08)

There exist 2 non-isomorphic simple, separable, unital, nuclear C^* -algebras with the same *K*-theory and traces.

Conjecture

For a simple, separable, unital, nonelementary, nuclear C^* -algebra A, the following are equivalent:

- (i) A is \mathcal{Z} -stable;
- (ii) A has finite nuclear dimension;
- (iii) A has strict comparison of positive elements;
- (iv) *A* is an inductive limit of nice building blocks (2-NCCW complexes, direct sums of $M_n \otimes \mathcal{O}_m \otimes C(\mathbb{T})$).

Moreover, the algebras satisfying (i)-(iv) are classifiable.

Fact (Toms, '08)

There exist 2 non-isomorphic simple, separable, unital, nuclear C^* -algebras with the same *K*-theory and traces.

Conjecture

For a simple, separable, unital, nonelementary, nuclear C^* -algebra A, the following are equivalent:

- (i) A is \mathcal{Z} -stable;
- (ii) A has finite nuclear dimension;
- (iii) A has strict comparison of positive elements;
- (iv) *A* is an inductive limit of nice building blocks (2-NCCW complexes, direct sums of $M_n \otimes \mathcal{O}_m \otimes C(\mathbb{T})$).

Moreover, the algebras satisfying (i)-(iv) are classifiable.

Fact (Toms, '08)

There exist 2 non-isomorphic simple, separable, unital, nuclear C^* -algebras with the same *K*-theory and traces.

Conjecture

For a simple, separable, unital, nonelementary, nuclear C^* -algebra A, the following are equivalent:

- (i) A is \mathcal{Z} -stable;
- (ii) A has finite nuclear dimension;
- (iii) A has strict comparison of positive elements;
- (iv) *A* is an inductive limit of nice building blocks (2-NCCW complexes, direct sums of $M_n \otimes \mathcal{O}_m \otimes C(\mathbb{T})$).

Moreover, the algebras satisfying (i)-(iv) are classifiable.

Fact (Toms, '08)

There exist 2 non-isomorphic simple, separable, unital, nuclear C^* -algebras with the same *K*-theory and traces.

Conjecture

For a simple, separable, unital, nonelementary, nuclear C^* -algebra A, the following are equivalent:

- (i) A is \mathcal{Z} -stable;
- (ii) A has finite nuclear dimension;
- (iii) A has strict comparison of positive elements;
- (iv) *A* is an inductive limit of nice building blocks (2-NCCW complexes, direct sums of $M_n \otimes \mathcal{O}_m \otimes C(\mathbb{T})$).

Moreover, the algebras satisfying (i)-(iv) are classifiable.

Fact (Toms, '08)

There exist 2 non-isomorphic simple, separable, unital, nuclear C^* -algebras with the same *K*-theory and traces.

Conjecture

For a simple, separable, unital, nonelementary, nuclear C^* -algebra A, the following are equivalent:

- (i) A is \mathcal{Z} -stable;
- (ii) A has finite nuclear dimension;
- (iii) A has strict comparison of positive elements;
- (iv) *A* is an inductive limit of nice building blocks (2-NCCW complexes, direct sums of $M_n \otimes \mathcal{O}_m \otimes C(\mathbb{T})$).

Moreover, the algebras satisfying (i)-(iv) are classifiable.

Fact (Toms, '08)

There exist 2 non-isomorphic simple, separable, unital, nuclear C^* -algebras with the same *K*-theory and traces.

Conjecture

For a simple, separable, unital, nonelementary, nuclear C^* -algebra A, the following are equivalent:

- (i) A is Z-stable;
- (ii) A has finite nuclear dimension;
- (iii) A has strict comparison of positive elements;
- (iv) *A* is an inductive limit of nice building blocks (2-NCCW complexes, direct sums of $M_n \otimes \mathcal{O}_m \otimes C(\mathbb{T})$).

Moreover, the algebras satisfying (i)-(iv) are classifiable.

UHF algebras:

프 > * 프 >

UHF algebras:

⇒ < ⇒ >

UHF algebras:

⇒ < ⇒ >

UHF algebras:

프 🕨 🗆 프

UHF algebras:

 $M_{n^{\infty}}$ -stable algebras (of the form $A \otimes M_{n^{\infty}}$) are very regular: UHF adds uniformity.

Jiang-Su algebra:

$$M_{2^{\infty}} \stackrel{\bullet}{\longleftarrow} M_{2^{\infty}} \otimes M_{3^{\infty}} \stackrel{\bullet}{\longrightarrow} M_{3^{\infty}}$$

 ${\cal Z}$ is a simple inductive limit of ${\cal Z}_{2^\infty,3^\infty}$ (pictured), with unique trace.

Like a UHF algebra, satisfies $\mathcal{Z}\cong\mathcal{Z}\otimes\mathcal{Z}$ and \mathcal{Z} -stability adds uniformity.

 $K_*(\mathcal{Z}) = K_*(\mathbb{C})$, so \mathcal{Z} -stability is much less restrictive than UHF-stability.

ヘロト 人間 ト ヘヨト ヘヨト

Jiang-Su algebra:

$$M_{2^{\infty}} \stackrel{\bullet}{\longleftarrow} M_{2^{\infty}} \otimes M_{3^{\infty}} \stackrel{\bullet}{\longrightarrow} M_{3^{\infty}}$$

 ${\cal Z}$ is a simple inductive limit of ${\cal Z}_{2^\infty,3^\infty}$ (pictured), with unique trace.

Like a UHF algebra, satisfies $\mathcal{Z} \cong \mathcal{Z} \otimes \mathcal{Z}$ and \mathcal{Z} -stability adds uniformity.

 $K_*(\mathcal{Z}) = K_*(\mathbb{C})$, so \mathcal{Z} -stability is much less restrictive than UHF-stability.

ヘロト ヘアト ヘビト ヘビト

Jiang-Su algebra:

$$M_{2^{\infty}} \stackrel{\bullet}{\longleftarrow} M_{2^{\infty}} \otimes M_{3^{\infty}} \stackrel{\bullet}{\longrightarrow} M_{3^{\infty}}$$

 ${\cal Z}$ is a simple inductive limit of ${\cal Z}_{2^\infty,3^\infty}$ (pictured), with unique trace.

Like a UHF algebra, satisfies $\mathcal{Z}\cong\mathcal{Z}\otimes\mathcal{Z}$ and $\mathcal{Z}\text{-stability}$ adds uniformity.

 $K_*(\mathcal{Z}) = K_*(\mathbb{C})$, so \mathcal{Z} -stability is much less restrictive than UHF-stability.

ヘロン 人間 とくほ とくほ とう

э.

Jiang-Su algebra:

$$M_{2^{\infty}} \stackrel{\bullet}{\longleftarrow} M_{2^{\infty}} \otimes M_{3^{\infty}} \stackrel{\bullet}{\longrightarrow} M_{3^{\infty}}$$

 ${\cal Z}$ is a simple inductive limit of ${\cal Z}_{2^\infty,3^\infty}$ (pictured), with unique trace.

Like a UHF algebra, satisfies $\mathcal{Z}\cong\mathcal{Z}\otimes\mathcal{Z}$ and \mathcal{Z} -stability adds uniformity.

 $K_*(\mathcal{Z}) = K_*(\mathbb{C})$, so \mathcal{Z} -stability is much less restrictive than UHF-stability.

ヘロト ヘアト ヘビト ヘビト

э.

Covering dimension

dim $X \le n$ if and only if for every open cover \mathcal{U} of X, \exists a partition of unity $\{e_{\lambda}\}_{\lambda \in \Lambda} \subset C(X, \mathbb{C})$ of nonnegative functions s.t.

(i) $\{e_{\lambda}\}_{\lambda \in \Lambda}$ is (n + 1)-colourable, where functions $e_{\lambda_1}, e_{\lambda_2}$ of the same colour must be orthogonal, i.e. $e_{\lambda_1}e_{\lambda_2} = 0$; and

(ii) $\{ \sup e_{\lambda} \}_{\lambda \in \Lambda}$ is subordinate to \mathcal{U} .

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Covering dimension

dim $X \leq n$ if and only if for every open cover \mathcal{U} of X, \exists a partition of unity $\{e_{\lambda}\}_{\lambda \in \Lambda} \subset C(X, \mathbb{C})$ of nonnegative functions s.t.

(i) $\{e_{\lambda}\}_{\lambda \in \Lambda}$ is (n + 1)-colourable, where functions $e_{\lambda_1}, e_{\lambda_2}$ of the same colour must be orthogonal, i.e. $e_{\lambda_1} e_{\lambda_2} = 0$; and

(ii) $\{\operatorname{supp} \boldsymbol{e}_{\lambda}\}_{\lambda \in \Lambda}$ is subordinate to \mathcal{U} .

・ 同 ト ・ ヨ ト ・ ヨ ト

Covering dimension

dim $X \leq n$ if and only if for every open cover \mathcal{U} of X, \exists a partition of unity $\{e_{\lambda}\}_{\lambda \in \Lambda} \subset C(X, \mathbb{C})$ of nonnegative functions s.t.

(i) $\{e_{\lambda}\}_{\lambda \in \Lambda}$ is (n + 1)-colourable, where functions $e_{\lambda_1}, e_{\lambda_2}$ of the same colour must be orthogonal, i.e. $e_{\lambda_1}e_{\lambda_2} = 0$; and

(ii) {supp e_{λ} } $_{\lambda \in \Lambda}$ is subordinate to \mathcal{U} .

・ 同 ト ・ ヨ ト ・ ヨ ト ・

Covering dimension

dim $X \leq n$ if and only if for every open cover \mathcal{U} of X, \exists a partition of unity $\{e_{\lambda}\}_{\lambda \in \Lambda} \subset C(X, \mathbb{C})$ of nonnegative functions s.t.

- (i) $\{e_{\lambda}\}_{\lambda \in \Lambda}$ is (n + 1)-colourable, where functions $e_{\lambda_1}, e_{\lambda_2}$ of the same colour must be orthogonal, i.e. $e_{\lambda_1}e_{\lambda_2} = 0$; and
- (ii) $\{ \sup e_{\lambda} \}_{\lambda \in \Lambda}$ is subordinate to \mathcal{U} .

・聞き ・ヨト ・ヨト

Covering dimension

dim $X \leq n$ if and only if for every open cover \mathcal{U} of X, \exists a partition of unity $\{e_{\lambda}\}_{\lambda \in \Lambda} \subset C(X, \mathbb{C})$ of nonnegative functions s.t.

- (i) $\{e_{\lambda}\}_{\lambda \in \Lambda}$ is (n + 1)-colourable, where functions $e_{\lambda_1}, e_{\lambda_2}$ of the same colour must be orthogonal, i.e. $e_{\lambda_1}e_{\lambda_2} = 0$; and
- (ii) $\{ \sup e_{\lambda} \}_{\lambda \in \Lambda}$ is subordinate to \mathcal{U} .

Aaron Tikuisis Decomposition rank and Jiang-Su stability

(B) → (A) B →

Decomposition rank (Kirchberg-Winter '04) A C^* -alg. A has decomposition rank $\leq n$ if

Order 0 means orthogonality preserving, $ab = 0 \Rightarrow \phi(a)\phi(b) = 0.$

Think: (controlled) noncommutative span, (n + 1) colours.

ヘロト ヘワト ヘビト ヘビト

Decomposition rank (Kirchberg-Winter '04) A C^* -alg. A has decomposition rank $\leq n$ if

Order 0 means orthogonality preserving, $ab = 0 \Rightarrow \phi(a)\phi(b) = 0.$

Think: (controlled) noncommutative span, (n + 1) colours.

Decomposition rank (Kirchberg-Winter '04) A C^* -alg. A has decomposition rank $\leq n$ if

Order 0 means orthogonality preserving, $ab = 0 \Rightarrow \phi(a)\phi(b) = 0.$

Decomposition rank (Kirchberg-Winter '04) A C^* -alg. A has decomposition rank $\leq n$ if

Order 0 means orthogonality preserving, $ab = 0 \Rightarrow \phi(a)\phi(b) = 0.$

Decomposition rank (Kirchberg-Winter '04) A C^* -alg. A has decomposition rank $\leq n$ if

Order 0 means orthogonality preserving, $ab = 0 \Rightarrow \phi(a)\phi(b) = 0.$

Decomposition rank (Kirchberg-Winter '04) A C^* -alg. A has decomposition rank $\leq n$ if

Order 0 means orthogonality preserving, $ab = 0 \Rightarrow \phi(a)\phi(b) = 0.$

Nuclear dimension (Winter-Zacharias '10) A C^* -alg. A has decomposition rank $\leq n$ if

Nuclear dimension is defined by a slight tweaking of the definition of decomposition rank.

While $dr(A) < \infty$ implies A is quasidiagonal, $dim_{nuc}(\mathcal{O}_n) = 1$ (for $n < \infty$) for example.

Nuclear dimension (Winter-Zacharias '10)

A C^* -alg. A has decomposition rank nuclear dimension $\leq n$ if

Nuclear dimension is defined by a slight tweaking of the definition of decomposition rank.

While dr (A) $< \infty$ implies A is quasidiagonal, dim_{nuc}(O_n) = 1 (for $n < \infty$) for example.

Nuclear dimension (Winter-Zacharias '10)

A C^* -alg. A has decomposition rank nuclear dimension $\leq n$ if

Nuclear dimension is defined by a slight tweaking of the definition of decomposition rank.

While dr (*A*) < ∞ implies *A* is quasidiagonal, dim_{*nuc*}(\mathcal{O}_n) = 1 (for $n < \infty$) for example.

strict comparison

special inductive limit structure

(日本) (日本) (日本)

ъ

Aaron Tikuisis Decomposition rank and Jiang-Su stability

strict comparison

special inductive limit structure

・ 同 ト ・ ヨ ト ・ ヨ ト

ъ

strict comparison

special inductive limit structure

・ロト ・四ト ・ヨト・

→ E > < E >

★ Ξ → ★ Ξ →

< 🗇 🕨

ヨトメヨト

э

★ Ξ → ★ Ξ →

э

A test question for \mathcal{Z} -stable \Rightarrow finite nuclear dimension, without classification:

Question

What is the nuclear dimension of $C(X, Z) = C(X) \otimes Z$?

On the one hand: Since $\dim_{nuc} C(X, M_n) = \dim X$, may expect $\dim_{nuc} C(X, M_{n^{\infty}}) = \dim X \implies \dim_{nuc} C(X, Z) = \dim X).$

On the other hand: The simple case (classification) suggests $\dim_{nuc} C(X, Z)$ is universally bounded.

・ロト ・ 理 ト ・ ヨ ト ・

ъ

A test question for \mathcal{Z} -stable \Rightarrow finite nuclear dimension, without classification:

Question

What is the nuclear dimension of $C(X, Z) = C(X) \otimes Z$?

On the one hand: Since $\dim_{nuc} C(X, M_n) = \dim X$, may expect $\dim_{nuc} C(X, M_{n^{\infty}}) = \dim X \implies \dim_{nuc} C(X, \mathcal{Z}) = \dim X).$

On the other hand: The simple case (classification) suggests $\dim_{nuc} C(X, Z)$ is universally bounded.

・ロト ・ 理 ト ・ ヨ ト ・

A test question for \mathcal{Z} -stable \Rightarrow finite nuclear dimension, without classification:

Question

What is the nuclear dimension of $C(X, Z) = C(X) \otimes Z$?

On the one hand: Since $\dim_{nuc} C(X, M_n) = \dim X$, may expect $\dim_{nuc} C(X, M_{n^{\infty}}) = \dim X (\Rightarrow \dim_{nuc} C(X, \mathcal{Z}) = \dim X).$

On the other hand:

The simple case (classification) suggests $\dim_{nuc} C(X, Z)$ is universally bounded.

・ロト ・ 理 ト ・ ヨ ト ・

A test question for \mathcal{Z} -stable \Rightarrow finite nuclear dimension, without classification:

Question

What is the nuclear dimension of $C(X, Z) = C(X) \otimes Z$?

Answer:

Theorem (T-Winter)

```
\dim_{nuc} C(X, Z) \le 2. (Even if \dim(X) = 10^{10^{10}}.)
```

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

A test question for \mathcal{Z} -stable \Rightarrow finite nuclear dimension, without classification:

Question

What is the nuclear dimension of $C(X, Z) = C(X) \otimes Z$?

Answer:

Theorem (T-Winter)

 $\dim_{nuc} C(X, \mathcal{Z}) \leq 2.$ (Even if dim $(X) = 10^{10^{10}}$.)

ヘロン 人間 とくほ とくほ とう

A test question for \mathcal{Z} -stable \Rightarrow finite nuclear dimension, without classification:

Question

What is the nuclear dimension of $C(X, Z) = C(X) \otimes Z$?

Answer:

Theorem (T-Winter)

 $\dim_{nuc} C(X, Z) \le 2$. (Even if $\dim(X) = 10^{10^{10}}$.)

ヘロン 人間 とくほ とくほ とう

э.

Theorem (T-Winter)

 $\dim_{nuc} C(X, \mathcal{Z}) \leq 2.$

In fact, dr $C(X, \mathbb{Z}) \leq 2$.

Corollary

Every \mathcal{Z} -stable *AH* algebra *A* satisfies dr *A* \leq 2.

Aaron Tikuisis Decomposition rank and Jiang-Su stability

ヘロン ヘアン ヘビン ヘビン

Theorem (T-Winter)

 $\dim_{nuc} C(X, \mathcal{Z}) \leq 2.$

In fact, dr $C(X, \mathcal{Z}) \leq 2$.

Corollary

Every \mathcal{Z} -stable *AH* algebra *A* satisfies dr *A* \leq 2.

Aaron Tikuisis Decomposition rank and Jiang-Su stability

ヘロン ヘアン ヘビン ヘビン

Theorem (T-Winter)

 $\dim_{nuc} C(X, \mathcal{Z}) \leq 2.$

In fact, dr $C(X, \mathcal{Z}) \leq 2$.

Corollary

Every \mathcal{Z} -stable *AH* algebra *A* satisfies dr $A \leq 2$.

Aaron Tikuisis Decomposition rank and Jiang-Su stability

ヘロト 人間 とくほとくほとう

Some key ideas in the proof:

"Tracially" approximate, orthogonal partition of unity in $C(X, M_{n^{\infty}})_{\infty}$.

Fill the (tracially small) holes with an embedding of $C_0(Z, \mathcal{O}_2)$, Embedding exists by quasidiagonality of $C_0((0, 1], \mathcal{O}_2)$ (Voiculescu, '91).

Kirchberg-Rørdam ('05): $\dim_{nuc} C_0(Z, \mathcal{O}_2) \leq 3$.

・ロト ・ 理 ト ・ ヨ ト ・

Some key ideas in the proof:

"Tracially" approximate, orthogonal partition of unity in $C(X, M_{n^{\infty}})_{\infty}$.

Fill the (tracially small) holes with an embedding of $C_0(Z, \mathcal{O}_2)$,

Embedding exists by quasidiagonality of $C_0((0, 1], \mathcal{O}_2)$ (Voiculescu, '91).

Kirchberg-Rørdam ('05): $\dim_{nuc} C_0(Z, \mathcal{O}_2) \leq 3$.

ヘロト ヘアト ヘビト ヘビト

Some key ideas in the proof:

"Tracially" approximate, orthogonal partition of unity in $C(X, M_{n^{\infty}})_{\infty}$.

Fill the (tracially small) holes with an embedding of $C_0(Z, \mathcal{O}_2)$,

Embedding exists by quasidiagonality of $C_0((0, 1], \mathcal{O}_2)$ (Voiculescu, '91).

Kirchberg-Rørdam ('05): $\dim_{nuc} C_0(Z, \mathcal{O}_2) \leq 3$.

イロト 不得 とくほと くほとう

Some key ideas in the proof:

"Tracially" approximate, orthogonal partition of unity in $C(X, M_{n^{\infty}})_{\infty}$.

Fill the (tracially small) holes with an embedding of $C_0(Z, \mathcal{O}_2)$,

Embedding exists by quasidiagonality of $C_0((0, 1], \mathcal{O}_2)$ (Voiculescu, '91).

Kirchberg-Rørdam ('05): $\dim_{nuc} C_0(Z, \mathcal{O}_2) \leq 3$.

ヘロン 人間 とくほ とくほ とう

э.

Some key ideas in the proof:

"Tracially" approximate, orthogonal partition of unity in $C(X, M_{n^{\infty}})_{\infty}$.

Fill the (tracially small) holes with an embedding of $C_0(Z, \mathcal{O}_2)$,

Embedding exists by quasidiagonality of $C_0((0, 1], \mathcal{O}_2)$ (Voiculescu, '91).

Kirchberg-Rørdam ('05): $\dim_{nuc} C_0(Z, \mathcal{O}_2) \leq 3$.

ヘロン 人間 とくほ とくほ とう

э.

Is $\dim_{nuc}(A \otimes \mathcal{Z}) < \infty$ for every nuclear *C**-algebra *A*? Equivalently, is $\dim_{nuc}(A \otimes \mathcal{Z})$ universally bounded for such *A*?

Question

Can we approximate C(X) inside $C(X, M_n)$ in a 2-dimensional way (3 colours)? At least, $< \dim X$ dimensions? Or is it necessary to put C(X) into $C(X, M_{n^{\infty}})$?

・ロ・ ・ 四・ ・ ヨ・ ・ ヨ・

Is $\dim_{nuc}(A \otimes \mathcal{Z}) < \infty$ for every nuclear C^* -algebra A? Equivalently, is $\dim_{nuc}(A \otimes \mathcal{Z})$ universally bounded for such A?

Question

Can we approximate C(X) inside $C(X, M_n)$ in a 2-dimensional way (3 colours)? At least, < dim X dimensions? Or is it necessary to put C(X) into $C(X, M_n \infty)$?

ヘロト ヘアト ヘビト ヘビト

Is $\dim_{nuc}(A \otimes \mathcal{Z}) < \infty$ for every nuclear C^* -algebra A? Equivalently, is $\dim_{nuc}(A \otimes \mathcal{Z})$ universally bounded for such A?

Question

Can we approximate C(X) inside $C(X, M_n)$ in a 2-dimensional way (3 colours)? At least, $< \dim X$ dimensions? Or is it necessary to put C(X) into $C(X, M_n \infty)$?

イロト イポト イヨト イヨト

Is $\dim_{nuc}(A \otimes \mathcal{Z}) < \infty$ for every nuclear C^* -algebra A? Equivalently, is $\dim_{nuc}(A \otimes \mathcal{Z})$ universally bounded for such A?

Question

Can we approximate C(X) inside $C(X, M_n)$ in a 2-dimensional way (3 colours)? At least, $< \dim X$ dimensions? Or is it necessary to put C(X) into $C(X, M_{n^{\infty}})$?

・ 同 ト ・ ヨ ト ・ ヨ ト