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Abstract. We construct a simple C∗-algebra with nuclear dimension
zero that is not isomorphic to its tensor product with the Jiang–Su alge-
bra Z, and a hyperfinite II1 factor not isomorphic to its tensor product
with the separable hyperfinite II1 factor R. The proofs use a weakening
of the Continuum Hypothesis.

Elliott’s program of classification of nuclear (a.k.a. amenable) C∗-algebras
recently underwent a transformative phase (see e.g., [5]). Following the
counterexamples of Rørdam and Toms to the original program, it was re-
alized that a regularity assumption stronger than nuclearity is necessary
for C∗-algebras to be classifiable by K-theoretic invariants. Conjecturally,
regularity properties of three different flavours are all equivalent and are,
modulo the UCT, sufficient for classification (restricting, say, to simple,
separable, nuclear C∗-algebras). We shall consider two of these regularity
assumptions on a C∗-algebra A. One of them asserts that A is Z-stable,
meaning that it is isomorphic to its tensor product with the Jiang-Su alge-
bra Z. Another postulates that A has finite nuclear dimension, this being a
strengthening of the Completely Positive Approximation Property (CPAP)
introduced by Winter and Zacharias in [18] (the CPAP is an equivalent
formulation of amenability for C∗-algebras, see [3, Chapter 2]). The Toms–
Winter conjecture states (among other things) that for separable, nuclear,
simple, non-type I C∗-algebras, having finite nuclear dimension is equivalent
to being Z-stable (see e.g., [17, 14]). The direct implication is a theorem of
Winter ([16]). We show that it badly fails if the separability assumption is
dropped.

Theorem 1. The Continuum Hypothesis implies that there exists a simple
nuclear C∗-algebra with nuclear dimension zero which is not Z-stable.

The paradigm of regularity properties for C∗-algebras parallels certain
older ideas in the study of von Neumann algebras. It has long been known
that amenability for von Neumann algebras is equivalent to hyperfiniteness,
and in the separable, non-type I case, it implies R-stability (the property of
being isomorphic to one’s tensor product with the unique separable hyper-
finite II1 factor R; von Neumann algebras with this property are commonly
called McDuff) (see [13, Chapters XIV and XVI]). It is also not a stretch

Dedicated to Stuart White on the occasion of his 33rd birthday.

1



2 ILIJAS FARAH, DAN HATHAWAY, TAKESHI KATSURA, AND AARON TIKUISIS

to find that amenability is equivalent to a von Neumann-theoretic analogue
of nuclear dimension zero [11, Lemma 1.2]. The construction used to prove
Theorem 1 adapts easily to the von Neumann case, allowing us to prove the
following.

Theorem 2. The Continuum Hypothesis implies that there exists a hyper-
finite II1 factor which is not R-stable.

We prove these theorems by constructing algebras whose central sequence
algebras are abelian. In fact, we strengthen the construction in two di-
rections, one in which the conclusion is strengthened (Theorems 1.2 and
1.5) and another in which weaker set-theoretic axioms are assumed (Theo-
rems 1.3 and 1.6). It seems unlikely that the conclusions of Theorems 1.3
and 1.6 — or even the stronger conclusions of Theorems 1.2 and 1.5 — are
independent from ZFC. The assumption of Theorems 1.3 and 1.6 is the car-
dinal equality b = c, where b denotes the bounding number — see §2, where
we also give two new characterizations of b.

A result similar to Theorem 1.5 was proven in [7, Proposition 3.7 (1)],
where a II1 factor M is constructed using ZFC alone, whose central sequence
algebra is trivial, but every separable II1 subfactor of M has property Γ (this
factor has density character ℵ1, with respect to the strong operator topol-
ogy). Unlike the example in Theorem 1.5 (which shares the aforementioned
properties), the von Neumann algebra in [7, Proposition 3.7 (1)] is not hy-
perfinite, due to the use of the free product construction. Likewise, a minor
modification of the construction in [7] gives a monotracial C∗-algebra whose
central sequence algebra is abelian, yet whose non-type I, separable subal-
gebras each have nonabelian central sequence algebras; but again, the free
product construction prevents this example from being nuclear, let alone
having nuclear dimension zero.

This factor in Theorem 2 is clearly different from the ‘obvious’ hyperfinite
factor whose predual has character density ℵ1. The existence of ‘nonobvious’
hyperfinite II1 factors with nonseparable preduals was first proved by Widom
([15]), and in [9] it was proved that there are 2κ nonisomorphic hyperfinite II1
factors with predual of density character κ, for every uncountable cardinal κ.

In §1 we provide more information about the algebras we construct and
their central sequence algebras. In §2 we give two new reformulations of the
bounding number b, one in terms of convergent subseries of null sequences
and another in terms of convergence of a sequence of inner automorphisms
of a C∗-algebra. The proofs of main results are completed in §3, using
transfinite recursive construction, and in §4 we give concluding remarks.

Recall that density character of a topological space X is the minimal car-
dinality of a dense subset. Therefore X is separable iff its density character
is ℵ0 and it has cardinality c if and only if its density character is ≤ c. In
our case, X will either be a C∗-algebra equipped with the norm topology,
or a von Neumann algebra considered with the strong operator topology
(SOT). In fact, the density character of a von Neumann algebra M is the
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same whether measured with respect to the strong operator topology or any
other usual, non-norm, von Neumann algebra topology (eg. WOT, weak∗-
topology); it also coincides with the density character of the predual M∗
under its norm topology. All C∗-algebras are assumed to be unital. Back-
ground can be found e.g., in [1] (for C∗-algebras and von Neumann algebras)
and in [2] (for set theory).

Acknowledgments. The results of this paper were proven during the Sep-
tember 2012 Fields Institute Workshop on Applications to Operator Alge-
bras, November 2012 Oberwolfach Workshop on C∗-algebras, Dynamics and
Classification, and in November 2012 back at the Fields Institute. I.F. is
partially supported by NSERC, D.H. is supported by the Fields Institute,
and A.T. was supported by DFG (SFB 878).

1. Locally matricial algebras

Following [8] and [12], we say that a C∗-algebra A is

• approximately matricial (or AM ) if it has a directed family of full
matrix subalgebras with dense union.
• locally matricial (or LM ) if for any finite subset F of A and any
ε > 0, there exists a full matrix subalgebra M of A such that for
every a ∈ F we have dist(a,M) < ε.
• locally finite dimensional (or LF ) if for any finite subset F of A and

any ε > 0, there exists a finite dimensional subalgebra M of A such
that for every a ∈ F we have dist(a,M) < ε.

Nuclear dimension, as defined in [18], is a property that is preserved under
local approximation; it follows that each LF algebra has nuclear dimension
zero (in fact, the converse also holds [18]). LM algebras are not necessarily
AM ([8, Theorem 1.5]), although LM algebras are direct limits of separable
UHF algebras ([8, Lemma 2.12]) LM algebras are simple.

Recall that xn, for n ∈ N, is a central sequence of a C∗-algebra A if
‖[xn, a]‖ → 0 for all a ∈ A. The central sequence algebra of A is the subalge-
bra of `∞(A)/c0(A) consisting of all equivalence classes of (bounded) central
sequences.

Lemma 1.1. If a central sequence algebra of a unital algebra A is abelian
then A is not Z-stable.

Proof. If B and C are unital C∗-algebras then the central sequence algebra of
B⊗νC (where ⊗ν is any C∗-tensor product) clearly has the central sequence
algebra of C as a unital subalgebra. The conclusion now follows from the
fact that the central sequence algebra of Z has a subalgebra isomorphic
to Z. �

Every sequence of elements from the centre of a C∗-algebra is obviously
a central sequence. We call the central sequence of a C∗-algebra A trivial
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if it only consists of (equivalence classes of) such sequences (i.e. if it equals
(`∞(Z(A)) + c0(A))/c0(A)).

Theorem 1.2. The Continuum Hypothesis implies that there exists an AM
algebra all of whose central sequences are trivial.

By Lemma 1.1, Theorem 1 will follow once Theorem 1.2 is proved in §3.
Strengthening Theorem 1 in another direction we show that an assump-

tion weaker than both the Continuum Hypothesis and Martin’s Axiom suf-
fices. We write c = 2ℵ0 and b for the bounding number (see §2 for defini-
tions).

Theorem 1.3. If b = c then there exists a LM algebra whose central se-
quence algebra is abelian.

By Lemma 1.1 and Theorem 1.2 (once the latter is proved) the conclusion
of Theorem 1 also follows from b = c.

A sequence, xn for n ∈ N, in a von Neumann algebra M is said to be
central if [xn, a]→ 0 in the strong operator topology, for every a ∈M . The
central sequence algebra of M is the subalgebra of

`∞(A)/{(xn)|SOT− limxn = 0}
consisting of equivalence classes of central sequences. A trivial central se-
quence is one in the same equivalence class as a sequence from Z(M). Proven
in the same manner, we have the following analogue of Lemma 1.1.

Lemma 1.4. If the central sequence algebra of a von Neumann algebra M
is abelian then M is not R-stable.

We will make great use of the fact that, when M has a faithful trace τ ,
then the strong operator topology coincides with the topology induced by
the norm ‖ · ‖2, given by

‖x‖2 := τ(x∗x)1/2;

indeed, adapting our main construction from the C∗-setting to the von Neu-
mann setting will primarily consist in using ‖ · ‖2 in place of ‖ · ‖. Here are
the von Neumann versions of Theorems 1.2 and 1.3.

Theorem 1.5. The Continuum Hypothesis implies that there exists a hy-
perfinite II1 factor all of whose central sequences are trivial.

Theorem 1.6. If b = c then there exists a hyperfinite II1 factor whose
central sequence algebra is abelian, and in particular, which is not R-stable.

2. New characterizations of the bounding number

In the present section we provide alternative characterizations of the
bounding number, b. Readers interested only in the proofs of Theorems 1.2
and 1.5 can skip ahead to §3, modulo the facts that b1 defined below is un-
countable (this is not hard to show directly, or alternatively, using b2 ≤ b1
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and the uncountability of b2). Given two functions f, g : N → N, we say
that f eventually dominates g if f(n) ≥ g(n) for all but finitely many n ∈ N.

Recall that the bounding number, which we denote by b, is the minimal
cardinality κ such that there exist functions f ξ : N→ N for ξ < κ, such that
for every g : N→ N, there exists some f ξ which isn’t eventually dominated
by g.

Let b1 be the minimal cardinal κ such that there exists a unital C∗-algebra
A of density character κ and a central sequence of unitaries un, for n ∈ N,
such that the following holds. For every subsequence un(i), for i ∈ N, with

vk := un(1)un(2) . . . un(k),

we have that the sequence of inner automorphisms Ad vk, for k ∈ N, does
not converge pointwise on A.

Let b1(LF) be the minimal κ with the above property where we addition-
ally require that A is LF.

Let b2 be the minimal cardinal κ such that there are sequences rξn, for
n ∈ N and ξ < κ, satisfying

(1) rξn ∈ (0,∞) for all ξ and n,

(2) limn r
ξ
n = 0 for all ξ, and

(3) there is no infinite increasing sequence n(i), for i ∈ N, of natural

numbers such that
∑

i r
ξ
n(i) <∞ for all ξ.

It is well-known that Martin’s Axiom for σ-centered posets implies b = c
(see e.g., [10]).

Readers familiar with the generalized Galois–Tukey connections will have
no trouble in recasting the above definitions in this framework and observing
that each part of Lemma 2.2 asserts the existence of a morphism in the
terminology of [2, §4].

Proposition 2.1. We have b = b1 = b1(LF) = b2.

The proof that b = b2 uses the following lemma, which relates null se-
quences to functions N→ N.

Lemma 2.2.

(1) If rn ∈ (0,∞), for n ∈ N, is a null sequence, then there exists a
function f : N → N such that for any g : N → N, if g eventually
dominates f then

∑∞
i=1 rg(i) <∞.

(2) If f : N → N is a function then there exists a null sequence rn ∈
(0,∞), for n ∈ N, such that for any g : N → N, if

∑∞
i=1 rg(i) < ∞

then g eventually dominates f .

Proof. (1) Let f be any function such that

(∀i)(∀n ≥ f(i))[rn ≤
1

2i
],

(which exists because limn rn = 0). If g : N → N eventually dominates f ,
then eventually rg(i) < 2−i and so

∑∞
i=1 rg(i) <∞.
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(2) Let rn be any sequence of positive real numbers converging to 0 sat-
isfying

(∀i)(∀n ≤ f(i))[rn ≥
1

i
].

Aiming to prove the contrapositive, suppose that g : N→ N does not even-
tually dominate f . Let B ⊆ N be the set of all i for which f(i) > g(i). Next,
“thin out” B as follows: let bj be an increasing sequence of distinct elements
of B such that for each j, over half of the elements of Im(g) before g(bj+1)
are not before g(bj). Then,

∞∑
i=0

rg(i) =
∑
i<b0

rg(i) +
∑

b0≤i<b1

rg(i) +
∑

b1≤i<b2

rg(i) + . . .

≥
∑
i<b0

1

b0
+

∑
b0≤i<b1

1

b1
+

∑
b1≤i<b2

1

b2
+ . . .

≥ (b0)
1

b0
+ (

1

2
b1)

1

b1
+ (

1

2
b2)

1

b2
+ . . .

= 1 +
1

2
+

1

2
+ . . .

=∞,
as required. �

Proof that b = b2. b ≤ b2: Let κ < b be arbitrary. Let rξn be sequences of

positive reals, for n ∈ N and ξ < κ. Assume that limn r
ξ
n = 0 for each ξ < κ.

For each ξ < κ, let fξ : N→ N be as in Lemma 2.2 (1). Since κ < b, there is
some g : N→ N that eventually dominates each fξ, and therefore by Lemma

2.2 (1),
∑

i r
ξ
g(i) <∞ for each ξ < κ.

The proof that b2 ≤ b is exactly the same, but this time using Lemma
2.2 (2) instead of (1). �

To prove the remaining part of Proposition 2.1 (namely, that b1 = b1(LF) =
b2), we need the following lemmas.

Lemma 2.3. Let (rn)∞n=1 be a null sequence of real numbers. Then
∑∞

n=1 rn
converges in R if and only if (

∑N
n=1 rn mod 1)∞N=1 converges in R/Z.

Proof. The forward implication is trivial. Suppose, on the other hand, that
(
∑N

n=1 rn mod 1)∞N=1 converges in R/Z. Let N0 be such that |rn| < 1/2 for
n ≥ N0. If N0 is sufficiently large, then for all N ≥ N0,∑N

n=N0
rn ∈ (−ε, ε) + Z.

If ε < 1/2 then, between these facts, it follows that∑N
n=N0

rn ∈ (−ε, ε).

This shows that the partial sums form a Cauchy sequence, so that
∑∞

n=1 rn
converges in R. �
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The following simple fact will be used both here and in Section 3, to
‘decentralize’ elements or sequences.

Lemma 2.4. If A is a C∗-algebra and α : A→ A is an endomorphism, then
α+ : A→M2(A) defined by

α+(a) =

(
a 0
0 α(a)

)
is a ∗-homomorphism. Moreover, for any a ∈ A,

‖[α+(a), v]‖ = ‖a− α+(a)‖,

where

(1) v :=

(
0A 1A
1A 0A

)
.

Proof. Obvious. �

Lemma 2.5. Let (rn) be a null sequence of real numbers. Then there exist
unitaries v, un, for n ∈ N, in the CAR algebra such that (un) is a central
sequence and, for any increasing sequence (n(i)) of natural numbers,∑

i rn(i)

converges in R if and only if

Ad(un(1) . . . un(k))(v)

converges. Moreover, the CAR algebra contains subalgebras An ∼= M2 such
that un ∈ An and [un, Am] = 0 if m 6= n.

Proof. Let A = M⊗∞2 and let α be the automorphism of A given by applying

Ad

(
0 1
1 0

)
to each tensor factor M2. Then B = M2(A) is isomorphic to the CAR
algebra, and we shall make use of the morphism α+ : A → B given by
Lemma 2.4.

Define v as in (1). For each n, set

u′n := 1
⊗(n−1)
M2

⊗
(

1 0
0 e2πirn

)
⊗ 1⊗∞

M2 ∈ A,

and

un = α+(u′n).

Evidently, (u′n) is central in A, and an easy computation shows that (un)
approximately commutes with v, and therefore, with every element of B.
That is to say, (un) is a central sequence.

Now, given an increasing sequence (n(i)) of natural numbers, we compute

Ad(un(1) . . . un(i)(v) = exp(2πi
∑i

j=1 rn(j))v,
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and therefore, the sequence (Ad(un(1) . . . un(i)(v)) converges if and only if
the sequence

(exp(2πi
∑i

j=1 rn(j)))

converges in T, which by Lemma 2.3, occurs if and only if
∑∞

i=1 rn(i) con-
verges in R.

Finally, we set An := α+(1
⊗(n−1)
M2

⊗M2 ⊗ 1⊗∞
M2 ). �

Proof of Proposition 2.1. We shall now prove that b1 = b1(LF) = b2.
b2 ≤ b1: Let A be a unital C∗-algebra of density character κ < b2 and let

vn, for n ∈ N, be a central sequence of unitaries in A. Let aξ, for ξ < κ, be
a dense subset of A and let

rξn = ‖[vn, aξ]‖.

Since (vn) is a central sequence, we have limn r
ξ
n = 0 for all ξ. We can

therefore choose an increasing sequence of natural numbers n(i), for i ∈ N,

so that
∑

i r
ξ
n(i) <∞ for all ξ.

Let wk = vn(1)vn(2) . . . vn(k). For k < m and all ξ we have

‖(Adwk)aξ − (Adwm)aξ‖ = ‖Adwk(aξ −Ad(vn(k+1) . . . vn(m))(aξ))‖
= ‖[aξ, vn(k+1) . . . vn(m)]‖

≤
m−1∑
j=k

‖(Adwj)aξ − (Adwj+1)aξ‖

≤
m−1∑
j=k

(rξn(j) + 2−j‖aξ‖),

and therefore (Adwk)aξ, for k ∈ N, is a Cauchy sequence. Since the au-
tomorphisms (Adwk) are isometries which pointwise converge on a dense
subset of A, they pointwise converge to an endomorphism. Since A was
arbitrary we have proved that κ < b2 implies κ < b1, and therefore b1 ≥ b2.

b1(LF) ≥ b1: this is trivial.

b2 ≥ b1(LF): Let κ < b2, and let rξn ∈ (0,∞), for n ∈ N, be a null

sequence, for each ξ < κ. For each ξ < κ, let A(ξ) be a copy of the CAR
algebra and let

v(ξ), u(ξ)n ∈ A(ξ)

be unitaries, for n ∈ N, as given by Lemma 2.5. Also, let A
(ξ)
n ⊂ A(ξ), for

n ∈ N, be the subalgebras given by the same lemma.
Set B =

∏
ξ<κA

(ξ), and define

un := (u(ξ)n )ξ<κ ∈ A

for each natural number n and

v̂(j) := (δijv
(ξ))i∈I ∈ A.
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Set

Bn :=
∏
i∈I A

(ξ)
n

for each natural number n, and set

A′ := C∗
(⋃

n∈NBn ∪
⊕

i∈I A
(ξ)
)

;

We easily see that A′ is LF and contains each un and each v(ξ), and that (un)
is a central sequence in A′. By a downward Löwenheim-Skolem argument,
there exists an LF subalgebra A of A′ with density character κ and which
contains each v(ξ) and each un.

Now, suppose that (n(i)) is an increasing sequence of natural numbers
such that

Ad(un(1) . . . un(k))

converges in the point-norm topology. Then in particular,

Ad(un(i) . . . un(k))(v
(ξ))

converges for each ξ < κ, which by Lemma 2.5, means that
∑∞

i=1 r
ξ
n(i) <∞.

The proof is complete. �

Remark 2.6. The proof that b1 ≤ b2 (= b) can be adapted (by using ‖ · ‖2
in place of ‖ · ‖) to show that, if M is a von Neumann algebra with a faithful
trace and with density character < b, and un, for n ∈ N, is a central sequence
from M , then there exists a subsequence un(i), for i ∈ N, such that

Adun(1) . . . un(k)

converges (in the point-strong operator topology). However, the proof of the
converse does not adapt, since when the construction used to show b2 ≤
b1(LF ) is adapted to the von Neumann setting, the resulting von Neumann
algebra does not have a faithful trace.

3. Proofs of the main theorems

Lemma 3.1. Let A be an LM algebra, and for each i = 1, . . . , N , let x
(i)
n ,

for n ∈ N, be a central sequence. Then there exists an increasing sequence

n(k) ∈ N, for k ∈ N, and y
(i)
k such that:

(1) for each i, ‖y(i)k − x
(i)
n(k)‖ → 0 as k →∞; and

(2) for each i, i′, k, k′ ∈ N, if k 6= k′ then y
(i)
k and y

(i′)
k′

∗-commute.

Proof. Since A is LM, there exists a separable LM subalgebra B which con-

tains each x
(i)
n . By perturbing the sequences x

(i)
n (by an error that vanishes

at ∞), we have without loss of generality that

B = Mm1 ⊗Mm2 ⊗ . . . ,

and x
(i)
n ∈Mm1 ⊗ · · · ⊗Mmn for each i and n.
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Let εn > 0 be any null sequence. Set n(1) = 1. Using compactness of the
unit ball of a matrix algebra, we may iteratively choose n(k) such that

(2) ‖[x(i)n(k), a]‖ ≤ εn‖a‖

for all a ∈Mn(1) ⊗ · · · ⊗Mn(k−1). Letting Ek denote the conditional expec-
tation from Mn(k) to M ′n(k−1) ∩Mn(k), set

y
(i)
k := Ek(x

(i)
n(k)).

Then, it follows from (2) (and by writing the conditional expectation as an
average over the unitary group of Mn(k−1)) that

‖y(i)k − x
(i)
n(k)‖ ≤ εn,

as required. �

We say that a central sequence is hypercentral if it commutes with ev-
ery other central sequence (i.e., if it is a representing sequence of a central
element of the central sequence algebra). (Although the terminology origi-
nated in theory of II1 factors and our C∗-algebras have a unique trace, we
emphasize that only the operator norm is being used here.)

Lemma 3.2. Assume A is an LM algebra of density character < b. If xn,
for n ∈ N, is a central sequence which is not hypercentral then there exists
an endomorphism α of A such that lim infn ‖xn − α(xn)‖ > 0.

Proof. Let un, for n ∈ N, be a central sequence such that for some ε > 0 we
have ‖[xn, un]‖ > ε > 0 for all n. We may assume each un is a unitary since
every element in a C∗-algebra is a linear combination of four unitaries.

By Lemma 3.1, by passing to a subsequence, there exist sequences yn and
vn, for n ∈ N, such that

‖yn − xn‖, ‖vn − un‖ → 0

as n→∞, and [vn, vm] ∗-commutes with vm, ym for n 6= m.
Since un is unitary, by functional calculus, we may arrange that vn is too.

(Note that modifying vn using functional calculus does not change the fact
that it ∗-commutes with vm, ym for n 6= m.)

By using that the density character of A is less than b = b1 (by Proposi-
tion 2.1), we can go to a subsequence of vm (again denoted vm) such that the
automorphisms αn :=

∏n
j=1 Ad vj converge pointwise to an endomorphism,

and so we may set
α := lim

k
αk.

Then α(yn) = Ad vn ◦ yn, and therefore,

lim inf
n
‖xn − α(xn)‖ = lim inf

n
‖yn − α(yn)‖

= lim inf
n
‖[yn, vn]‖

= lim inf
n
‖[xn, un]‖ > 0,
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as required. �

Note that by assuming that the algebra A is separable, the assumption
in the previous lemma, that xn is not hypercentral, comes for free.

Proposition 3.3. Let A be a separable LM algebra. Then every hypercentral
sequence is trivial.

Proof. Let xn, for n ∈ N, be a nontrivial central sequence. By passing to a
subsequence, we may assume for some ε > 0, we have d(xn, Z(A)) > ε for
all n. Using the proof of Lemma 3.1 (and by passing again to a subsequence
and perturbing), we may assume that A = Mm1 ⊗Mm2 ⊗ . . . such that

xn ∈ 1m1 ⊗ · · · ⊗ 1mn−1 ⊗Mmn .

Since xn has distance at least ε from the centre of A, there must exist

yn ∈ 1m1 ⊗ · · · ⊗ 1mn−1 ⊗Mmn

such that ‖[xn, yn]‖ ≥ ε. Evidently, yn for n ∈ N, forms a central sequence,
and it does not asymptotically commute with the given sequence, as re-
quired. �

Proof of Theorem 1.3. We need to construct A so that all central sequences
of A are hypercentral. Fix a surjection χ : c → c2 such that if χ(ξ) = (η, ζ)
then η ≤ ξ and moreover for every fixed pair (η, ζ) ∈ c2 the set {ξ : χ(ξ) =
(η, ζ)} is cofinal in c. This is possible because every infinite cardinal κ is
equinumerous with κ2.

We construct A as a transfinite direct limit of LM algebras Aξ, for ξ < γ
for some ordinal γ ≤ c. Each Aξ will be of density character ≤ c, and

therefore the set (Aξ)1
N of all sequences in the unit ball (Aξ)1 of Aξ will

have cardinality c. For each ξ we fix an enumeration (~x(ξ, η) : η < c) of
(Aξ)1

N as soon as this algebra is defined.
We now describe the recursive construction of a directed system of LM-

algebras Aξ, βξη : Aξ → Aη for ξ < η.
Let A0 = M2∞ . If δ is a limit ordinal and Aξ, for ξ < δ are defined, we

let Aδ = limξ Aξ, the inductive limit of Aξ.
Now assume Aξ is defined and we construct Aξ+1. If all central sequences

in Aξ are hypercentral, we stop our recursive construction and let A = Aξ.
Otherwise, write χ(ξ) = (η, ζ). Since η ≤ ξ the algebra Aη was already

defined we can consider the sequence ~x(η, ζ) in Aη. Let xj , for j ∈ N, be
the βη,ξ-image of this sequence in Aξ.

If this is not a central sequence, or if it is a hypercentral sequence, let
Aξ+1 = Aξ (actually we can do almost anything here).

Now assume this sequence is central, but not hypercentral. Use Lemma 3.2
to find α ∈ Aut(Aξ) and ε > 0 such that ‖xj − α(xj)‖ > ε for infin-
itely many j. Then let Aξ+1 = M2(Aξ) and apply Lemma 2.4 to find a
*-homomorphism βξ : Aξ → Aξ+1 such that α(xj), for j ∈ N, is not a central
sequence in Aξ+1.
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This describes the recursive construction of transfinite directed system of
LM algebras of length c. If the construction does not stop at any stage ξ,
let A = limξ Aξ.

We claim that all central sequences of A are hypercentral. For simplicity
of notation assume that each Aξ is a unital subalgebra of A (this is not a
problem since all connecting maps had trivial kernels) so that each βξη is
equal to the identity on Aξ. Assume otherwise and let xj , for j ∈ N, be
a central, non-hypercentral, sequence. Also fix a central sequence yj , for
j ∈ N, such that [xj , yj ] 6→ 0.

Since the cofinality of c is uncountable, these sequences are included in
Aη for some η < c. The first one was enumerated as ~x(η, ζ) for some ζ < c.
Since χ is a surjection, there is ξ such that χ(ξ) = (η, ζ). We also have
ξ ≥ η by the choice of χ. By the construction, Aξ+1 was defined so that
(the image of) xj , for j ∈ N, is not a central sequence. This contradiction
completes the proof. �

Proof of Theorem 1.2. The proof is essentially identical to the proof of The-
orem 1.3. The only difference is that, since c = ℵ1, all algebras Aξ for ξ < c
are separable and we can therefore use Proposition 3.3 and Lemma 3.2 to
assure that the central sequence algebra of the limit is trivial. The con-
structed algebra is an LM algebra of density character ℵ1 and is therefore
AM by [8, Theorem 1.5]. �

Proof of Theorems 1.6 and 1.5. We can see that the analogue of Lemma 3.1
for hyperfinite II1 factors holds, by applying the lemma to a dense LM C∗-
subalgebra. Using this and Remark 2.6 in the proof of Lemma 3.2 allows us
to adapt that lemma to the von Neumann case, showing that if M is a von
Neumann algebra of density character < b and (xn) is a (SOT-)central se-
quence which is not (SOT-)hypercentral, then there exists an endomorphism
α of M such that

lim inf
n
‖xn − α(xn)‖2 > 0.

The analogue of Proposition 3.3 for R holds, by using an appropriate dense
LM C∗-subalgebra. Finally, using these von Neumann-theoretic adaptations
(and the strong operator topology in place of the norm topology), the proofs
of Theorems 1.3 and 1.2 become proofs of Theorems 1.6 and 1.5 respectively.

�

4. Concluding remarks

The following is a well-known result about separable C∗-algebras (see
e.g., [17]).

Theorem 4.1. Let A be a unital, separable C∗-algebra. The following are
equivalent.

(1) A is Z-stable;
(2) Z embeds into the central sequence algebra of A.
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(3) for any finite subsets F ,G of A,Z respectively, and any ε > 0, there
exists an (G, ε)-approximately multiplicative ∗-linear unital map φ :
Z → A such that

‖[φ(x), y]‖ < ε

for all x ∈ G and y ∈ F ;

In the nonseparable case, (1) ⇒ (2) ⇒ (3), and Theorem 1.3 shows that
(3) 6⇒ (2). Note that, by a downward Löwenheim-Skolem argument, (3)
remains equivalent to “local Z-stability” in the following sense:

(1’) For every separable set X ⊆ A, there exists a Z-stable subalgebra
B ⊆ A which contains X.

Whether (2) ⇒ (1) holds remain unclear.

Question 4.2. Is there a (nonseparable) non-Z-stable C∗-algebra A such
that Z embeds into its central sequence algebra?

Question 4.3. Can the conclusions of Theorem 1.3, Theorem 1.2 and The-
orem 1.5 be proved in ZFC?

An approach to these two questions alternative to transfinite recursion
would be to show that such an algebra could be directly defined using com-
binatorics of the uncountable and some of the constructions from [8] or [6].

It is not clear whether the conclusion of Theorem 1.3 is genuinely weaker
than the conclusion of Theorem 1.2, since we don’t know whether there
exists a simple C*-algebra whose central sequence algebra is abelian and
nontrivial. Martino Lupini pointed out that such an algebra cannot be
separable unless the simplicity assumption is dropped. On the other hand,
it is well-known that there exists a II1 factor with a separable predual whose
central sequence algebra is abelian and nontrivial ([4]).
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