Ultrapowers and relative commutants of operator algebras

Ilijas Farah
York University

Aberdeen NBFAS, June 2015

Nonprincipal ultrafilters on \mathbb{N}

A subset \mathcal{U} of the power-set of \mathbb{N} is an nonprincipal (or free, or uniform) ultrafilter on \mathbb{N} if

1. $x \in \mathcal{U}$ and $y \in \mathcal{U}$ implies $x \cap y \in \mathcal{U}$.
2. $x \in \mathcal{U}$ and $x \subseteq y$ implies $y \in \mathcal{U}$.
3. for every x, either $x \in \mathcal{U}$ or $\mathbb{N} \backslash x \in \mathcal{U}$.
4. all sets in \mathcal{U} are infinite.

Nonprincipal ultrafilters on \mathbb{N}

A subset \mathcal{U} of the power-set of \mathbb{N} is an nonprincipal (or free, or uniform) ultrafilter on \mathbb{N} if

1. $x \in \mathcal{U}$ and $y \in \mathcal{U}$ implies $x \cap y \in \mathcal{U}$.
2. $x \in \mathcal{U}$ and $x \subseteq y$ implies $y \in \mathcal{U}$.
3. for every x, either $x \in \mathcal{U}$ or $\mathbb{N} \backslash x \in \mathcal{U}$.
4. all sets in \mathcal{U} are infinite.

In short, $\mathcal{U} \in \beta \mathbb{N} \backslash \mathbb{N}$.

Nonprincipal ultrafilters on \mathbb{N}

A subset \mathcal{U} of the power-set of \mathbb{N} is an nonprincipal (or free, or uniform) ultrafilter on \mathbb{N} if

1. $x \in \mathcal{U}$ and $y \in \mathcal{U}$ implies $x \cap y \in \mathcal{U}$.
2. $x \in \mathcal{U}$ and $x \subseteq y$ implies $y \in \mathcal{U}$.
3. for every x, either $x \in \mathcal{U}$ or $\mathbb{N} \backslash x \in \mathcal{U}$.
4. all sets in \mathcal{U} are infinite.

In short, $\mathcal{U} \in \beta \mathbb{N} \backslash \mathbb{N}$.
We fix such \mathcal{U} throughout.

\mathcal{U}-limits

Assume x_{n}, for $n \in \mathbb{N}$, is a sequence in a compact Hausdorff space X. Then function $n \mapsto x_{n}$ extends to a unique continuous

$$
f: \beta \mathbb{N} \rightarrow X
$$

\mathcal{U}-limits

Assume x_{n}, for $n \in \mathbb{N}$, is a sequence in a compact Hausdorff space X. Then function $n \mapsto x_{n}$ extends to a unique continuous

$$
f: \beta \mathbb{N} \rightarrow X
$$

We define

$$
\lim _{n \rightarrow \mathcal{U}} x_{n}:=f(\mathcal{U}) .
$$

Ultrapower of a Banach space

Let Z_{n} be Banach spaces. Then

$$
\mathcal{c}_{\mathcal{U}}\left(\left(Z_{n}\right)\right):=\left\{\bar{z} \in \prod_{n} Z_{n}: \lim _{n \rightarrow \mathcal{U}}\left\|z_{n}\right\|=0\right\}
$$

is a closed subspace of $\prod_{n} Z_{n}$.

Ultrapower of a Banach space

Let Z_{n} be Banach spaces. Then

$$
\mathcal{G}_{\mathcal{U}}\left(\left(Z_{n}\right)\right):=\left\{\bar{z} \in \prod_{n} Z_{n}: \lim _{n \rightarrow \mathcal{U}}\left\|z_{n}\right\|=0\right\}
$$

is a closed subspace of $\prod_{n} Z_{n}$.
Quotient Banach space

$$
\prod_{\mathcal{U}} Z:=\prod_{n} Z_{n} / c_{\mathcal{U}}\left(\left(Z_{n}\right)\right)
$$

is the ultraproduct associated with \mathcal{U}.

Ultrapower of a Banach space

Let Z_{n} be Banach spaces. Then

$$
\mathcal{G}_{\mathcal{U}}\left(\left(Z_{n}\right)\right):=\left\{\bar{z} \in \prod_{n} Z_{n}: \lim _{n \rightarrow \mathcal{U}}\left\|z_{n}\right\|=0\right\}
$$

is a closed subspace of $\prod_{n} Z_{n}$.
Quotient Banach space

$$
\prod_{\mathcal{U}} Z:=\prod_{n} Z_{n} / c_{\mathcal{U}}\left(\left(Z_{n}\right)\right)
$$

is the ultraproduct associated with \mathcal{U}.
I will concentrate on the ultrapowers,

$$
Z^{\mathcal{U}}:=\prod_{\mathcal{U}} Z
$$

Example $\left(\ell^{2}\right)^{\mathcal{U}} \cong$

Example

 $\left(\ell^{2}\right)^{\mathcal{U}} \cong \ell^{2}\left(2^{\aleph_{0}}\right)$.
Example

$\left(\ell^{2}\right)^{\mathcal{U}} \cong \ell^{2}\left(2^{\aleph_{0}}\right)$.

Example

Every ultrapower of an infinte-dimensional Banach space contains an isometric copy of $\ell^{2}\left(2^{\aleph_{0}}\right)$.

Proposition

The following are equivalent for all Z and p.

1. ℓ^{p} is finitely represented in Z.
2. ℓ^{p} is isometric to a subspace of Z^{U}.

Proposition

The following are equivalent for all Z and p.

1. ℓ^{p} is finitely represented in Z.
2. ℓ^{p} is isometric to a subspace of Z^{U}.

Proof that $(1) \Rightarrow(2)$.
Fix $f_{n}: \ell^{p}(n) \rightarrow Z$ such that

$$
\left(1-\frac{1}{n}\right)\|z\| \leq\|f(z)\| \leq\left(1+\frac{1}{n}\right)\|z\|
$$

Proposition

The following are equivalent for all Z and p.

1. ℓ^{p} is finitely represented in Z.
2. ℓ^{p} is isometric to a subspace of Z^{U}.

Proof that $(1) \Rightarrow(2)$.
Fix $f_{n}: \ell^{p}(n) \rightarrow Z$ such that

$$
\left(1-\frac{1}{n}\right)\|z\| \leq\|f(z)\| \leq\left(1+\frac{1}{n}\right)\|z\|
$$

Define $f: \ell^{p}(\mathbb{N}) \rightarrow Z^{\mathcal{U}}$ via

$$
f(z)=\left(f_{n}(z)\right) / \mathcal{U}
$$

Proposition

The following are equivalent for all Z and p.

1. ℓ^{p} is finitely represented in Z.
2. ℓ^{p} is isometric to a subspace of Z^{U}.

Proof that $(1) \Rightarrow(2)$.
Fix $f_{n}: \ell^{p}(n) \rightarrow Z$ such that

$$
\left(1-\frac{1}{n}\right)\|z\| \leq\|f(z)\| \leq\left(1+\frac{1}{n}\right)\|z\|
$$

Define $f: \ell^{\rho}(\mathbb{N}) \rightarrow Z^{\mathcal{U}}$ via

$$
f(z)=\left(f_{n}(z)\right) / \mathcal{U}
$$

Exercise
(2) implies $\ell^{\rho}\left(2^{\aleph_{0}}\right)$ embeds into Z^{U} isometrically.

Ultrapowers of C*-algebras

Let A be a C*-algebra. Let

$$
\mathcal{C}_{\mathcal{U}}(A)=\left\{\bar{a} \in \ell^{\infty}(A): \lim _{n \rightarrow \mathcal{U}}\left\|a_{n}\right\|=0\right\}
$$

and

$$
A^{\mathcal{U}}:=\ell^{\infty}(A) / c_{\mathcal{U}}(A) .
$$

Proposition (Choi-F.-Ozawa)

Let Γ be a countable amenable group and let A be a unital C^{*}-algebra. Then every bounded homomorphism $\Phi: \Gamma \rightarrow \mathrm{GL}\left(A^{\mathcal{U}}\right)$ is unitarizable.

Proposition (Choi-F.-Ozawa)

Let Γ be a countable amenable group and let A be a unital C^{*}-algebra. Then every bounded homomorphism $\Phi: \Gamma \rightarrow \mathrm{GL}\left(A^{\mathcal{U}}\right)$ is unitarizable.
Proof. If $x \in A^{\mathcal{U}}$ satisfies

$$
\begin{align*}
\|\Phi\|^{-2} & \leq x \leq\|\Phi\|^{2} \tag{1}\\
\left\|\Phi(g) x \Phi(g)^{*}-x\right\| & =0, \text { for all } g \in \Gamma \tag{2}
\end{align*}
$$

Proposition (Choi-F.-Ozawa)

Let Γ be a countable amenable group and let A be a unital C^{*}-algebra. Then every bounded homomorphism $\Phi: \Gamma \rightarrow \mathrm{GL}\left(A^{\mathcal{U}}\right)$ is unitarizable.
Proof. If $x \in A^{\mathcal{U}}$ satisfies

$$
\begin{align*}
\|\Phi\|^{-2} & \leq x \leq\|\Phi\|^{2} \tag{1}\\
\left\|\Phi(g) x \Phi(g)^{*}-x\right\| & =0, \text { for all } g \in \Gamma \tag{2}
\end{align*}
$$

then

$$
g \mapsto x^{1 / 2} \Phi(g) x^{-1 / 2}
$$

is a homomorphism from Γ into $U\left(A^{\mathcal{U}}\right)$.

Unitarizing $\Phi: \Gamma \rightarrow A^{\mathcal{U}}$, continued

For a finite $F \subseteq \Gamma$ let

$$
a_{F}:=\frac{1}{|F|} \sum_{f \in F} \Phi(f) \Phi(f)^{*}
$$

Unitarizing $\Phi: \Gamma \rightarrow A^{\mathcal{U}}$, continued

For a finite $F \subseteq \Gamma$ let

$$
a_{F}:=\frac{1}{|F|} \sum_{f \in F} \Phi(f) \Phi(f)^{*}
$$

Then for $g \in \Gamma$ we have

$$
\Phi(g) a_{F} \Phi(g)^{*}=a_{g F}
$$

Unitarizing $\Phi: \Gamma \rightarrow A^{\mathcal{U}}$, continued

For a finite $F \subseteq \Gamma$ let

$$
a_{F}:=\frac{1}{|F|} \sum_{f \in F} \Phi(f) \Phi(f)^{*}
$$

Then for $g \in \Gamma$ we have

$$
\Phi(g) a_{F} \Phi(g)^{*}=a_{g F}
$$

If $F(n)$, for $n \in \mathbb{N}$, is a Følner sequence then

$$
\begin{equation*}
\|\Phi\|^{-2} \leq a_{F(n)} \leq\|\Phi\|^{2} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\lim _{n}\left\|\Phi(g) a_{F(n)} \Phi(g)^{*}-a_{F(n)}\right\|=0, \text { for all } g \in \Gamma \tag{4}
\end{equation*}
$$

Unitarizing $\Phi: \Gamma \rightarrow A^{\mathcal{U}}$, continued

For a finite $F \subseteq \Gamma$ let

$$
a_{F}:=\frac{1}{|F|} \sum_{f \in F} \Phi(f) \Phi(f)^{*}
$$

Then for $g \in \Gamma$ we have

$$
\Phi(g) a_{F} \Phi(g)^{*}=a_{g F}
$$

If $F(n)$, for $n \in \mathbb{N}$, is a Følner sequence then

$$
\begin{align*}
\|\Phi\|^{-2} & \leq a_{F(n)} \leq\|\Phi\|^{2} \tag{3}\\
\lim _{n}\left\|\Phi(g) a_{F(n)} \Phi(g)^{*}-a_{F(n)}\right\| & =0, \text { for all } g \in \Gamma \tag{4}
\end{align*}
$$

hence every finite subset of the system (1), (2) is approximately satisfied by $a_{F(n)}$ for some n.

Unitarizing $\Phi: \Gamma \rightarrow A^{\mathcal{U}}$, continued

For a finite $F \subseteq \Gamma$ let

$$
a_{F}:=\frac{1}{|F|} \sum_{f \in F} \Phi(f) \Phi(f)^{*}
$$

Then for $g \in \Gamma$ we have

$$
\Phi(g) a_{F} \Phi(g)^{*}=a_{g F}
$$

If $F(n)$, for $n \in \mathbb{N}$, is a Følner sequence then

$$
\begin{align*}
\|\Phi\|^{-2} & \leq a_{F(n)} \leq\|\Phi\|^{2} \tag{3}\\
\lim _{n}\left\|\Phi(g) a_{F(n)} \Phi(g)^{*}-a_{F(n)}\right\| & =0, \text { for all } g \in \Gamma \tag{4}
\end{align*}
$$

hence every finite subset of the system (1), (2) is approximately satisfied by $a_{F(n)}$ for some n.
Since $A^{\mathcal{U}}$ is an ultrapower, we can find an exact solution to this system and therefore unitarize Φ.

Tracial ultrapower

Let (M, τ) be a tracial von Neumann algebra with normalized trace tr and

$$
\|a\|_{2}:=\operatorname{tr}\left(a^{*} a\right)^{1 / 2}
$$

Then

$$
\mathcal{C}_{\mathcal{U}}(M)=\left\{\bar{a} \in \ell^{\infty}(M): \lim _{n \rightarrow \mathcal{U}}\left\|a_{n}\right\|_{2}=0\right\}
$$

is a closed ideal and

$$
M^{\mathcal{U}}:=\ell^{\infty}(M) / c_{\mathcal{U}}(M)
$$

is a tracial von Neumann algebra.

Early timeline (incomplete)

1954	F.B. Wright
1962	S. Sakai
1970	McDuff
1976	A. Connes
1976-present	\ldots

ultrapowers of $\mathrm{AW}{ }^{*} \mathrm{II}_{1}$ factors.
ultrapowers of II_{1} factors
relative commutants of II_{1} factors
applications
more applications

Early timeline (incomplete)

1954	F.B. Wright
1962	S. Sakai
1970	McDuff
1976	A. Connes
1976-present	\ldots

ultrapowers of $\mathrm{AW}{ }^{*} \mathrm{II}_{1}$ factors.
ultrapowers of II_{1} factors
relative commutants of II_{1} factors
applications
more applications

Proposition

An ultrapower of a I_{1} factor is a I_{1} factor (i.e., ultrapowers of tracial vNAs preserve simplicity).

Proposition

An ultrapower of a I_{1} factor is a I_{1} factor (i.e., ultrapowers of tracial vNAs preserve simplicity).

Proposition
If C^{*}-algebra A is tracial, then $A^{\mathcal{U}}$ is not simple.

Proposition

An ultrapower of a I_{1} factor is a I_{1} factor (i.e., ultrapowers of tracial vNAs preserve simplicity).

Proposition
If C^{*}-algebra A is tracial, then $A^{\mathcal{U}}$ is not simple.
Proposition
In each category equipped with an ultrapower, it is a functor which preserves exact sequences.

Early timeline (slightly more complete)

1954	F.B. Wright
1955	J. Łos
1960	A. Robinson
1962	S. Sakai
1966	H.J. Keisler
1969	W.A.J. Luxembourg
1970	McDuff
1972	Dacunha-Costelle- 1976
Krivine	W.H. Woodin
1976	A. Connes
1976-present	... and \ldots

ultrapowers of $\mathrm{AW}^{*} \mathrm{II}_{1}$ factors.
fundamental theorem
nonstandard analysis
ultrapowers of II_{1} factors
countable saturation
nonstandard hulls
of Banach spaces
relative commutants
ultrapowers of Banach spaces
discrete ultraproducts in automat continuity of Banach algebras
applications
more applications

Logic of metric structures

Ben Yaacov-Berenstein-Henson-Usvyatsov (2008), adapted to C^{*}-algebras and tracial von Neumann algebras by F.-Hart-Sherman (2014).

Logic of metric structures

Ben Yaacov-Berenstein-Henson-Usvyatsov (2008), adapted to C^{*}-algebras and tracial von Neumann algebras by F.-Hart-Sherman (2014).

classical logic	Banach spaces	C *-algebras	tracial vNa						
terms	linear combinations	noncommutative ${ }^{*}$-polynomials							
$a=b$	$\\|a-b\\|$	$\\|a-b\\|$	$\\|a-b\\|_{2}$						
T, \perp	$[0, \infty)$								
$\wedge, \vee, \leftrightarrow$	continuous $f: \mathbb{R}^{n} \rightarrow[0, \infty)$								
\forall, \exists	$\sup _{\\|x\\| \leq 1}, \inf _{\\|x\\| \leq 1}$								

Examples of sentences in logic of metric structures

For a sentence φ and a C*-algebra A one recursively defines interpretation of φ in A, φ^{A}.

The theory of A is $\operatorname{Th}(A):=\left\{\varphi \mid \varphi^{A}=0\right\}$.

Examples of sentences in logic of metric structures

For a sentence φ and a C*-algebra A one recursively defines interpretation of φ in A, φ^{A}.

$$
\text { The theory of } A \text { is } \operatorname{Th}(A):=\left\{\varphi \mid \varphi^{A}=0\right\} \text {. }
$$

1. $C^{*}: \sup _{x, y}\|[x, y]\|$

Examples of sentences in logic of metric structures

For a sentence φ and a C^{*}-algebra A one recursively defines interpretation of φ in A, φ^{A}.

$$
\text { The theory of } A \text { is } \operatorname{Th}(A):=\left\{\varphi \mid \varphi^{A}=0\right\} \text {. }
$$

1. $\mathrm{C}^{*}: \sup _{x, y}\|[x, y]\|$
2. Banach spaces:

$$
\sup _{x, y}\left|\|x+y\|^{2}+\|x-y\|^{2}-2\left(\|x\|^{2}+\|y\|^{2}\right)\right| .
$$

Examples of sentences in logic of metric structures

For a sentence φ and a C^{*}-algebra A one recursively defines interpretation of φ in A, φ^{A}.

$$
\text { The theory of } A \text { is } \operatorname{Th}(A):=\left\{\varphi \mid \varphi^{A}=0\right\} \text {. }
$$

1. $\mathrm{C}^{*}: \sup _{x, y}\|[x, y]\|$
2. Banach spaces:

$$
\sup _{x, y}\left|\|x+y\|^{2}+\|x-y\|^{2}-2\left(\|x\|^{2}+\|y\|^{2}\right)\right| .
$$

3. Tracial vNA:

$$
\sup _{x} \max \left\{0,\left(\|x-\operatorname{tr}(x) \cdot 1\|_{2}-\sup _{y}\|[x, y]\|_{2}\right)\right\} .
$$

Examples of sentences in logic of metric structures

For a sentence φ and a C^{*}-algebra A one recursively defines interpretation of φ in A, φ^{A}.

The theory of A is $\operatorname{Th}(A):=\left\{\varphi \mid \varphi^{A}=0\right\}$.

1. $C^{*}: \sup _{x, y}\|[x, y]\|$
2. Banach spaces:

$$
\sup _{x, y}\left|\|x+y\|^{2}+\|x-y\|^{2}-2\left(\|x\|^{2}+\|y\|^{2}\right)\right| .
$$

3. Tracial vNA:

$$
\sup _{x} \max \left\{0,\left(\|x-\operatorname{tr}(x) \cdot 1\|_{2}-\sup _{y}\|[x, y]\|_{2}\right)\right\} .
$$

4. $\inf _{x_{1}} \sup _{x_{2}} \inf _{x_{3}} \sup _{x_{4}} \inf _{x_{5}, x_{6}} \max \left(\left\|x_{2} x_{2}^{*}-x_{1} x_{1}^{*}\right\|, \frac{3}{4}\left\|x_{3}^{*} x_{3}-x_{4}\right\|-\frac{2}{3}\left\|x_{1}^{*} x_{4} x_{2}-x_{2}^{*} x_{5}^{*} x_{1}\right\|\right)$

Elementary embeddings

A map $\Phi: A \rightarrow B$ is an elementary embedding if for every $\psi(\bar{x})$ and \bar{a} in A we have

$$
\psi(\bar{a})^{A}=\psi(\Phi(\bar{a}))^{B} .
$$

Elementary embeddings

A map $\Phi: A \rightarrow B$ is an elementary embedding if for every $\psi(\bar{x})$ and \bar{a} in A we have

$$
\psi(\bar{a})^{A}=\psi(\Phi(\bar{a}))^{B} .
$$

Theorem (Fundamental Theorem of Ultraproducts. Łos, 1955) The diagonal embedding of A into $A^{\mathcal{U}}$ is elementary.

Types

A condition on $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ is an expression of the form $\varphi(\bar{x}) \leq r, \varphi(\bar{x}) \geq r$, or $\varphi(\bar{x})=0$.

Types

A condition on $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ is an expression of the form $\varphi(\bar{x}) \leq r, \varphi(\bar{x}) \geq r$, or $\varphi(\bar{x})=0$. Type in \bar{x} is a set of conditions on \bar{x}.

Types

A condition on $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ is an expression of the form $\varphi(\bar{x}) \leq r, \varphi(\bar{x}) \geq r$, or $\varphi(\bar{x})=0$. Type in \bar{x} is a set of conditions on \bar{x}.

Example

A type in x, with parameters in algebra C.

$$
\begin{aligned}
M^{-2} & \leq\left\|x^{*} x\right\| \leq M^{2} \\
\left\|a_{n}\left(x^{*} x\right) a_{n}{ }^{*}-x^{*} x\right\| & =0, \text { for all } n \in \mathbb{N} .
\end{aligned}
$$

Types

A condition on $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ is an expression of the form $\varphi(\bar{x}) \leq r, \varphi(\bar{x}) \geq r$, or $\varphi(\bar{x})=0$. Type in \bar{x} is a set of conditions on \bar{x}.

Example

A type in x, with parameters in algebra C.

$$
\begin{aligned}
M^{-2} & \leq\left\|x^{*} x\right\| \leq M^{2} \\
\left\|a_{n}\left(x^{*} x\right) a_{n}{ }^{*}-x^{*} x\right\| & =0, \text { for all } n \in \mathbb{N} .
\end{aligned}
$$

Types

A condition on $\bar{x}=\left(x_{1}, \ldots, x_{n}\right)$ is an expression of the form $\varphi(\bar{x}) \leq r, \varphi(\bar{x}) \geq r$, or $\varphi(\bar{x})=0$. Type in \bar{x} is a set of conditions on \bar{x}.

Example

A type in x, with parameters in algebra C.

$$
\begin{aligned}
M^{-2} & \leq\left\|x^{*} x\right\| \leq M^{2} \\
\left\|a_{n}\left(x^{*} x\right) a_{n}^{*}-x^{*} x\right\| & =0, \text { for all } n \in \mathbb{N} .
\end{aligned}
$$

Type is satisfied in C if some \bar{c} satisfies all of its conditions. Type is consistent if each of its finite subsets is approximately satisfiable.

All you need to know about ultrapowers

Theorem (Countable saturation. Keisler, 1966)
Every consistent countable type with parameters in $A^{\mathcal{U}}$ is satisfied in A^{U}.

All you need to know about ultrapowers

Theorem (Countable saturation. Keisler, 1966)
Every consistent countable type with parameters in $A^{\mathcal{U}}$ is satisfied in A^{U}.

A structure satisfying the conclusion of Keisler's theorem is countably saturated.

All you need to know about ultrapowers

Theorem (Countable saturation. Keisler, 1966)
Every consistent countable type with parameters in $A^{\mathcal{U}}$ is satisfied in A^{U}.

A structure satisfying the conclusion of Keisler's theorem is countably saturated.
Corollary (to Łos and Keisler)
C is an ultrapower of $A \subseteq C$ iff
(i) id: $A \rightarrow C$ is elementary and
(ii) C is countably saturated.
(Assuming A is separable, C has cardinality $2{ }^{N_{0}}$, and the Continuum Hypothesis holds.)

All you need to know about ultrapowers

Theorem (Countable saturation. Keisler, 1966)
Every consistent countable type with parameters in $A^{\mathcal{U}}$ is satisfied in A^{U}.

A structure satisfying the conclusion of Keisler's theorem is countably saturated.
Corollary (to Łos and Keisler)
C is an ultrapower of $A \subseteq C$ iff
(i) id: $A \rightarrow C$ is elementary and
(ii) C is countably saturated.
(Assuming A is separable, C has cardinality $2{ }^{N_{0}}$, and the Continuum Hypothesis holds.)
Theorem (Keisler-Shelah)
For all A and $B, \operatorname{Th}(A)=\operatorname{Th}(B)$ if and only if A and B have isomorphic ultrapowers.

Ultrafilter not necessarily on \mathbb{N} but A and B are not necessarily separable.

Does the choice of \mathcal{U} matter?

Metatheorem

Assume $\mathbb{P}(B)$ is any statement that refers only to elements and separable substructures of B. Then for a separable metric structure A and all \mathcal{U} and \mathcal{V} we have

$$
\mathbb{P}\left(A^{\mathcal{U}}\right) \Leftrightarrow \mathbb{P}\left(A^{\mathcal{V}}\right)
$$

Does the choice of \mathcal{U} matter?

Metatheorem

Assume $\mathbb{P}(B)$ is any statement that refers only to elements and separable substructures of B. Then for a separable metric structure A and all \mathcal{U} and \mathcal{V} we have

$$
\mathbb{P}\left(A^{\mathcal{U}}\right) \Leftrightarrow \mathbb{P}\left(A^{\mathcal{V}}\right)
$$

regardless of whether Continuum Hypothesis holds or not.

Does the choice of \mathcal{U} matter?

Metatheorem

Assume $\mathbb{P}(B)$ is any statement that refers only to elements and separable substructures of B. Then for a separable metric structure
A and all \mathcal{U} and \mathcal{V} we have

$$
\mathbb{P}\left(A^{\mathcal{U}}\right) \Leftrightarrow \mathbb{P}\left(A^{\mathcal{V}}\right)
$$

regardless of whether Continuum Hypothesis holds or not.

By results of Shelah, Dow, Ge-Hadwin, F.-Hart-Sherman, F.-Shelah, one can code many complicated total orders inside ultrapowers of A and, if Continuum Hypothesis fails, obtain $2^{2^{N_{0}}}$ nonisomorphic ultrapowers of the same algebra.

Relative commutant

For C^{*}-algebras and tracial von Neumann algebras define

$$
A^{\prime} \cap A^{\mathcal{U}}=\left\{b \in A^{\mathcal{U}}:(\forall a \in A) a b=b a\right\}
$$

Relative commutant

For C^{*}-algebras and tracial von Neumann algebras define

$$
A^{\prime} \cap A^{\mathcal{U}}=\left\{b \in A^{\mathcal{U}}:(\forall a \in A) a b=b a\right\}
$$

Hyperfinite I_{1} factor R is the $\|\cdot\|_{2}$-completion of $\bigotimes_{\mathbb{N}} M_{2}(\mathbb{C})$.
Theorem (McDuff, 1970)
For a I_{1} factor M the following are equivalent.

1. $M \bar{\otimes} R \cong M$, where R is the hyperfinite I_{1} factor.
2. $M_{2}(\mathbb{C})$ embeds unitally into $M^{\prime} \cap M^{\mathcal{U}}$.
3. mix-and-match (1) and (2)

Relative commutant

For C^{*}-algebras and tracial von Neumann algebras define

$$
A^{\prime} \cap A^{\mathcal{U}}=\left\{b \in A^{\mathcal{U}}:(\forall a \in A) a b=b a\right\}
$$

Hyperfinite I_{1} factor R is the $\|\cdot\|_{2}$-completion of $\bigotimes_{\mathbb{N}} M_{2}(\mathbb{C})$.
Theorem (McDuff, 1970)
For a I_{1} factor M the following are equivalent.

1. $M \bar{\otimes} R \cong M$, where R is the hyperfinite I_{1} factor.
2. $M_{2}(\mathbb{C})$ embeds unitally into $M^{\prime} \cap M^{\mathcal{U}}$.
3. mix-and-match (1) and (2)

Factors satisfynig (1)-(3) are McDuff factors.

Approximately inner flip

Definition

An operator algebra D has an approximately inner flip (a.i.f.) if the flip automorphism of $D \otimes D$ is approximately inner.

Approximately inner flip

Definition

An operator algebra D has an approximately inner flip (a.i.f.) if the flip automorphism of $D \otimes D$ is approximately inner.

Theorem (Effros-Rosenberg, after McDuff)
If C^{*}-algebra D has approximately inner half-flip then the following are equivalent for every (separable) A.

1. $A \otimes D \cong A$
2. D unitally embeds into $A^{\prime} \cap A^{\mathcal{U}}$.

Theorem (Connes, 1976)
For I_{1} factors a.i.f. \Leftrightarrow hyperfinite.

Theorem (Connes, 1976)
For I_{1} factors a.i.f. \Leftrightarrow hyperfinite.
Theorem (Effros-Rosenberg, 1978)
If (C*-algebra) D has an approximately inner (half) flip then it is nuclear, simple, and has at most one trace.

Theorem (Connes, 1976)
For I_{1} factors a.i.f. \Leftrightarrow hyperfinite.
Theorem (Effros-Rosenberg, 1978)
If (C*-algebra) D has an approximately inner (half) flip then it is nuclear, simple, and has at most one trace.

Question (Connes embedding problem)
Does every I_{1} factor with separable predual embed into $R^{\mathcal{U}}$?

Question (Connes embedding problem)
Does every I_{1} factor with separable predual embed into R^{U} ?
Proposition (Folklore)
A l_{1} factor M with separable predual embeds into R^{u} if and only if it embeds into $R^{\prime} \cap R^{U}$.

Relative commutant has no well-understood abstract analogue

On relative commutants

$A \prec B$ stands for ' $A \subseteq B$ and id: $A \rightarrow B$ is elementary.'
Theorem (F.-Hart-Rørdam-Tikuisis, 2015)
Assume D has approximately inner half-flip and $A \otimes D \cong A$. Then

$$
D^{\prime} \cap A^{\mathcal{U}} \prec C^{*}\left(D, D^{\prime} \cap A^{\mathcal{U}}\right) \prec A^{\mathcal{U}} \prec A^{\mathcal{U}} \otimes D .
$$

On relative commutants

$A \prec B$ stands for ' $A \subseteq B$ and id: $A \rightarrow B$ is elementary.'
Theorem (F.-Hart-Rørdam-Tikuisis, 2015)
Assume D has approximately inner half-flip and $A \otimes D \cong A$. Then

$$
D^{\prime} \cap A^{\mathcal{U}} \prec C^{*}\left(D, D^{\prime} \cap A^{\mathcal{U}}\right) \prec A^{\mathcal{U}} \prec A^{\mathcal{U}} \otimes D .
$$

For the hyperfinite I_{1} factor R and a McDuff factor with separable predual M we have

$$
R^{\prime} \cap M^{\mathcal{U}} \prec W^{*}\left(R, R^{\prime} \cap M^{\mathcal{U}}\right) \prec M^{\mathcal{U}} \prec M^{\mathcal{U}} \bar{\otimes} R .
$$

Assume Continuum Hypothesis

Theorem (FHRT, 2015)
Assume C^{*}-algebra D has approximately inner half-flip and $A \otimes D \cong A$. Then

$$
D^{\prime} \cap A^{\mathcal{U}} \cong A^{\mathcal{U}} \quad \text { and } \quad C^{*}\left(D, D^{\prime} \cap A^{\mathcal{U}}\right) \cong A^{\mathcal{U}} \otimes D
$$

and both isomorphisms are approximately inner.

Assume Continuum Hypothesis

Theorem (FHRT, 2015)
Assume C^{*}-algebra D has approximately inner half-flip and $A \otimes D \cong A$. Then

$$
D^{\prime} \cap A^{\mathcal{U}} \cong A^{\mathcal{U}} \quad \text { and } \quad C^{*}\left(D, D^{\prime} \cap A^{\mathcal{U}}\right) \cong A^{\mathcal{U}} \otimes D
$$

and both isomorphisms are approximately inner. Also, for a McDuff factor with separable predual M we have $R^{\prime} \cap M^{\mathcal{U}} \cong M^{\mathcal{U}}$ and $W^{*}\left(R, R^{\prime} \cap M^{\mathcal{U}}\right) \cong M^{\mathcal{U}} \bar{\otimes} R$.

Assume Continuum Hypothesis

Theorem (FHRT, 2015)
Assume C^{*}-algebra D has approximately inner half-flip and $A \otimes D \cong A$. Then

$$
D^{\prime} \cap A^{\mathcal{U}} \cong A^{\mathcal{U}} \quad \text { and } \quad C^{*}\left(D, D^{\prime} \cap A^{u}\right) \cong A^{\mathcal{U}} \otimes D
$$

and both isomorphisms are approximately inner.
Also, for a McDuff factor with separable predual M we have $R^{\prime} \cap M^{\mathcal{U}} \cong M^{\mathcal{U}}$ and $W^{*}\left(R, R^{\prime} \cap M^{\mathcal{U}}\right) \cong M^{\mathcal{U}} \bar{\otimes} R$.

Proposition (Fang-Ge-Li, Ghasemi)
Nontrivial ultrapowers are tensorially indecomposable. In particular, $R^{\mathcal{U}} \bar{\otimes} R \not \approx R^{\mathcal{U}}$ and $D^{\mathcal{U}} \otimes D \nsubseteq D^{\mathcal{U}}$.

Question
Do all free group factors $L\left(F_{n}\right), n \geq 2$, have isomorphic ultrapowers?

Question
Can one describe automorphisms of $A^{\mathcal{U}} \otimes A^{\mathcal{U}}$ in terms of the automorphisms of $A^{\mathcal{U}}$?
(F.: Yes if A is abelian.)

