Ultrapowers and relative commutants of operator algebras

Ilijas Farah

York University

Aberdeen NBFAS, June 2015

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Nonprincipal ultrafilters on $\mathbb N$

A subset \mathcal{U} of the power-set of \mathbb{N} is an *nonprincipal (or free, or uniform) ultrafilter on* \mathbb{N} if

- 1. $x \in \mathcal{U}$ and $y \in \mathcal{U}$ implies $x \cap y \in \mathcal{U}$.
- 2. $x \in \mathcal{U}$ and $x \subseteq y$ implies $y \in \mathcal{U}$.
- 3. for every x, either $x \in \mathcal{U}$ or $\mathbb{N} \setminus x \in \mathcal{U}$.
- 4. all sets in \mathcal{U} are infinite.

Nonprincipal ultrafilters on $\mathbb N$

A subset \mathcal{U} of the power-set of \mathbb{N} is an *nonprincipal (or free, or uniform) ultrafilter on* \mathbb{N} if

- 1. $x \in \mathcal{U}$ and $y \in \mathcal{U}$ implies $x \cap y \in \mathcal{U}$.
- 2. $x \in \mathcal{U}$ and $x \subseteq y$ implies $y \in \mathcal{U}$.
- 3. for every x, either $x \in \mathcal{U}$ or $\mathbb{N} \setminus x \in \mathcal{U}$.
- 4. all sets in $\ensuremath{\mathcal{U}}$ are infinite.

In short, $\mathcal{U} \in \beta \mathbb{N} \setminus \mathbb{N}$.

Nonprincipal ultrafilters on $\mathbb N$

A subset \mathcal{U} of the power-set of \mathbb{N} is an *nonprincipal (or free, or uniform) ultrafilter on* \mathbb{N} if

- 1. $x \in \mathcal{U}$ and $y \in \mathcal{U}$ implies $x \cap y \in \mathcal{U}$.
- 2. $x \in \mathcal{U}$ and $x \subseteq y$ implies $y \in \mathcal{U}$.
- 3. for every x, either $x \in \mathcal{U}$ or $\mathbb{N} \setminus x \in \mathcal{U}$.
- 4. all sets in ${\cal U}$ are infinite.

In short, $\mathcal{U} \in \beta \mathbb{N} \setminus \mathbb{N}$. We fix such \mathcal{U} throughout.

$\mathcal{U}\text{-limits}$

Assume x_n , for $n \in \mathbb{N}$, is a sequence in a compact Hausdorff space X. Then function $n \mapsto x_n$ extends to a unique continuous

$$f: \beta \mathbb{N} \to X.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$\mathcal{U}\text{-limits}$

Assume x_n , for $n \in \mathbb{N}$, is a sequence in a compact Hausdorff space X. Then function $n \mapsto x_n$ extends to a unique continuous

$$f: \beta \mathbb{N} \to X.$$

We define

$$\lim_{n\to\mathcal{U}}x_n:=f(\mathcal{U}).$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ultrapower of a Banach space

Let Z_n be Banach spaces. Then

$$c_{\mathcal{U}}((Z_n)) := \{ \overline{z} \in \prod_n Z_n : \lim_{n \to \mathcal{U}} \|z_n\| = 0 \}$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

is a closed subspace of $\prod_n Z_n$.

Ultrapower of a Banach space

Let Z_n be Banach spaces. Then

$$c_{\mathcal{U}}((Z_n)) := \{ \overline{z} \in \prod_n Z_n : \lim_{n \to \mathcal{U}} \|z_n\| = 0 \}$$

is a closed subspace of $\prod_n Z_n$. Quotient Banach space

$$\prod_{\mathcal{U}} Z := \prod_n Z_n / c_{\mathcal{U}}((Z_n))$$

is the *ultraproduct* associated with \mathcal{U} .

Ultrapower of a Banach space

Let Z_n be Banach spaces. Then

$$c_{\mathcal{U}}((Z_n)) := \{ \overline{z} \in \prod_n Z_n : \lim_{n \to \mathcal{U}} \|z_n\| = 0 \}$$

is a closed subspace of $\prod_n Z_n$. Quotient Banach space

$$\prod_{\mathcal{U}} Z := \prod_n Z_n / c_{\mathcal{U}}((Z_n))$$

is the *ultraproduct* associated with \mathcal{U} . I will concentrate on the *ultrapowers*,

$$Z^{\mathcal{U}} := \prod_{\mathcal{U}} Z.$$

Example $(\ell^2)^{\mathcal{U}} \cong$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example $(\ell^2)^{\mathcal{U}} \cong \ell^2(2^{\aleph_0}).$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Example $(\ell^2)^{\mathcal{U}} \cong \ell^2(2^{\aleph_0}).$

Example

Every ultrapower of an infinte-dimensional Banach space contains an isometric copy of $\ell^2(2^{\aleph_0})$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

The following are equivalent for all Z and p.

- 1. ℓ^p is finitely represented in Z.
- 2. ℓ^p is isometric to a subspace of $Z^{\mathcal{U}}$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

The following are equivalent for all Z and p.

- 1. ℓ^p is finitely represented in Z.
- 2. ℓ^p is isometric to a subspace of $Z^{\mathcal{U}}$.

Proof that $(1) \Rightarrow (2)$. Fix $f_n \colon \ell^p(n) \to Z$ such that

$$(1-rac{1}{n})\|z\|\leq \|f(z)\|\leq (1+rac{1}{n})\|z\|.$$

The following are equivalent for all Z and p.

- 1. ℓ^p is finitely represented in Z.
- 2. ℓ^p is isometric to a subspace of $Z^{\mathcal{U}}$.

Proof that $(1) \Rightarrow (2)$. Fix $f_n: \ell^p(n) \to Z$ such that

$$(1-\frac{1}{n})\|z\| \le \|f(z)\| \le (1+\frac{1}{n})\|z\|.$$

Define $f: \ell^p(\mathbb{N}) \to Z^{\mathcal{U}}$ via

$$f(z)=(f_n(z))/\mathcal{U}.$$

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

The following are equivalent for all Z and p.

- 1. ℓ^p is finitely represented in Z.
- 2. ℓ^p is isometric to a subspace of $Z^{\mathcal{U}}$.

Proof that $(1) \Rightarrow (2)$. Fix $f_n: \ell^p(n) \to Z$ such that

$$(1-\frac{1}{n})\|z\| \le \|f(z)\| \le (1+\frac{1}{n})\|z\|.$$

Define $f: \ell^p(\mathbb{N}) \to Z^{\mathcal{U}}$ via

$$f(z)=(f_n(z))/\mathcal{U}.$$

Exercise (2) implies $\ell^{p}(2^{\aleph_{0}})$ embeds into $Z^{\mathcal{U}}$ isometrically.

Ultrapowers of C*-algebras

Let A be a C*-algebra. Let

$$c_{\mathcal{U}}(A) = \{ \overline{a} \in \ell^{\infty}(A) : \lim_{n \to \mathcal{U}} \|a_n\| = 0 \}$$

and

$$A^{\mathcal{U}} := \ell^{\infty}(A)/c_{\mathcal{U}}(A).$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Proposition (Choi-F.-Ozawa)

Let Γ be a countable amenable group and let A be a unital C^* -algebra. Then every bounded homomorphism $\Phi \colon \Gamma \to GL(A^{\mathcal{U}})$ is unitarizable.

Proposition (Choi–F.–Ozawa)

Let Γ be a countable amenable group and let A be a unital C^* -algebra. Then every bounded homomorphism $\Phi \colon \Gamma \to GL(A^{\mathcal{U}})$ is unitarizable.

Proof. If $x \in A^{\mathcal{U}}$ satisfies

$$\|\Phi\|^{-2} \le x \le \|\Phi\|^2 \tag{1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

$$\|\Phi(g)x\Phi(g)^*-x\|=0, \text{ for all } g\in\Gamma, \tag{2}$$

Proposition (Choi–F.–Ozawa)

Let Γ be a countable amenable group and let A be a unital C^* -algebra. Then every bounded homomorphism $\Phi \colon \Gamma \to GL(A^{\mathcal{U}})$ is unitarizable.

Proof. If $x \in A^{\mathcal{U}}$ satisfies

$$\|\Phi\|^{-2} \le x \le \|\Phi\|^2 \tag{1}$$

$$\|\Phi(g)x\Phi(g)^*-x\|=0, \text{ for all } g\in\Gamma, \tag{2}$$

then

$$g \mapsto x^{1/2} \Phi(g) x^{-1/2}$$

is a homomorphism from Γ into $U(A^{\mathcal{U}})$.

$$a_F := rac{1}{|F|} \sum_{f \in F} \Phi(f) \Phi(f)^*.$$

$$a_F := rac{1}{|F|} \sum_{f \in F} \Phi(f) \Phi(f)^*.$$

Then for $g \in \Gamma$ we have

$$\Phi(g)a_F\Phi(g)^*=a_{gF}.$$

$$a_F := rac{1}{|F|} \sum_{f \in F} \Phi(f) \Phi(f)^*.$$

Then for $g \in \Gamma$ we have

$$\Phi(g)a_F\Phi(g)^*=a_{gF}.$$

If F(n), for $n \in \mathbb{N}$, is a Følner sequence then

$$\|\Phi\|^{-2} \le a_{F(n)} \le \|\Phi\|^2,$$
(3)
$$\lim_{n} \|\Phi(g)a_{F(n)}\Phi(g)^* - a_{F(n)}\| = 0, \text{ for all } g \in \Gamma,$$
(4)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$a_F := rac{1}{|F|} \sum_{f \in F} \Phi(f) \Phi(f)^*.$$

Then for $g \in \Gamma$ we have

$$\Phi(g)a_F\Phi(g)^*=a_{gF}.$$

If F(n), for $n \in \mathbb{N}$, is a Følner sequence then

$$\|\Phi\|^{-2} \le a_{F(n)} \le \|\Phi\|^2,$$
(3)
$$\lim_{n} \|\Phi(g)a_{F(n)}\Phi(g)^* - a_{F(n)}\| = 0, \text{ for all } g \in \Gamma,$$
(4)

hence every finite subset of the system (1), (2) is approximately satisfied by $a_{F(n)}$ for some *n*.

$$a_F := rac{1}{|F|} \sum_{f \in F} \Phi(f) \Phi(f)^*.$$

Then for $g \in \Gamma$ we have

$$\Phi(g)a_F\Phi(g)^*=a_{gF}.$$

If F(n), for $n \in \mathbb{N}$, is a Følner sequence then

$$\|\Phi\|^{-2} \le a_{F(n)} \le \|\Phi\|^2,$$
(3)
$$\lim_{n} \|\Phi(g)a_{F(n)}\Phi(g)^* - a_{F(n)}\| = 0, \text{ for all } g \in \Gamma,$$
(4)

hence every finite subset of the system (1), (2) is approximately satisfied by $a_{F(n)}$ for some n. Since A^{U} is an ultrapower, we can find an exact solution to this system and therefore unitarize Φ .

Tracial ultrapower

Let (M, τ) be a tracial von Neumann algebra with normalized trace tr and

$$\|a\|_2 := \operatorname{tr}(a^*a)^{1/2}.$$

Then

$$c_{\mathcal{U}}(M) = \{ \overline{a} \in \ell^{\infty}(M) : \lim_{n \to \mathcal{U}} ||a_n||_2 = 0 \}$$

is a closed ideal and

$$M^{\mathcal{U}} := \ell^{\infty}(M)/c_{\mathcal{U}}(M)$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

is a tracial von Neumann algebra.

Early timeline (incomplete)

1954	F.B. Wright	ultrapowers of AW * II $_1$ factors.		
1962	S. Sakai	ultrapowers of II_1 factors		
1970	McDuff	relative commutants of II ₁ factors		
1976	A. Connes	applications		
1976–present		more applications		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Early timeline (incomplete)

1954	F.B. Wright	ultrapowers of AW * II $_1$ factors.		
1962	S. Sakai	ultrapowers of II_1 factors		
1970	McDuff	relative commutants of II ₁ factors		
1976	A. Connes	applications		
1976–present		more applications		

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

An ultrapower of a II_1 factor is a II_1 factor (i.e., ultrapowers of tracial vNAs preserve simplicity).

▲ロト ▲帰 ト ▲ ヨ ト ▲ ヨ ト ・ ヨ ・ の Q ()

An ultrapower of a II_1 factor is a II_1 factor (i.e., ultrapowers of tracial vNAs preserve simplicity).

Proposition

If C*-algebra A is tracial, then $A^{\mathcal{U}}$ is not simple.

An ultrapower of a II_1 factor is a II_1 factor (i.e., ultrapowers of tracial vNAs preserve simplicity).

Proposition If C^* -algebra A is tracial, then $A^{\mathcal{U}}$ is not simple.

Proposition

In each category equipped with an ultrapower, it is a functor which preserves exact sequences.

Early timeline (slightly more complete)

1954 1955 1960 1962 1966	F.B. Wright J. Łos A. Robinson S. Sakai H.J. Keisler	ultrapowers of AW* II ₁ factors. fundamental theorem nonstandard analysis ultrapowers of II ₁ factors countable saturation	
1969	W.A.J. Luxembourg	nonstandard hulls of Banach spaces	
1970	McDuff	relative commutants	
1972	Dacunha-Costelle– Krivine	ultrapowers of Banach spaces	
1976	W.H. Woodin	discrete ultraproducts in automat continuity of Banach algebras	
1976 1976–present	A. Connes and	applications more applications	

(ロ)、(型)、(E)、(E)、 E) の(の)

Logic of metric structures

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Ben Yaacov–Berenstein–Henson–Usvyatsov (2008), adapted to C*-algebras and tracial von Neumann algebras by F.–Hart–Sherman (2014).

Logic of metric structures

Ben Yaacov–Berenstein–Henson–Usvyatsov (2008), adapted to C*-algebras and tracial von Neumann algebras by F.–Hart–Sherman (2014).

classical logic	Banach spaces	C*-algebras	tracial vNa	
terms	linear combinations	noncommutative *-polynomials		
a = b	$\ a-b\ $	$\ a - b\ $	$\ a-b\ _2$	
o, $ o$	$[0,\infty)$			
$\land,\lor,\leftrightarrow$	continuous $f \colon \mathbb{R}^n o [0,\infty)$			
\forall, \exists	$\sup_{\ x\ \leq 1}$, $\inf_{\ x\ \leq 1}$			

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Examples of sentences in logic of metric structures

For a sentence φ and a C*-algebra A one recursively defines interpretation of φ in A, φ^A .

The *theory* of A is $Th(A) := \{\varphi | \varphi^A = 0\}.$

Examples of sentences in logic of metric structures

For a sentence φ and a C*-algebra A one recursively defines interpretation of φ in A, φ^A .

The *theory* of A is $Th(A) := \{\varphi | \varphi^A = 0\}.$

1. C*: $\sup_{x,y} \| [x,y] \|$

Examples of sentences in logic of metric structures

For a sentence φ and a C*-algebra A one recursively defines interpretation of φ in A, φ^A .

The *theory* of A is $Th(A) := \{\varphi | \varphi^A = 0\}.$

- 1. C*: $\sup_{x,y} \|[x,y]\|$
- 2. Banach spaces: $\sup_{x,y} \left| \|x+y\|^2 + \|x-y\|^2 - 2(\|x\|^2 + \|y\|^2) \right|.$

Examples of sentences in logic of metric structures

For a sentence φ and a C*-algebra A one recursively defines interpretation of φ in A, φ^A .

The *theory* of A is $Th(A) := \{\varphi | \varphi^A = 0\}.$

- 1. C*: $\sup_{x,y} \|[x,y]\|$
- 2. Banach spaces: $\sup_{x,y} \left| \|x+y\|^2 + \|x-y\|^2 - 2(\|x\|^2 + \|y\|^2) \right|.$
- 3. Tracial vNA:

$$\sup_{x} \max\{0, (\|x - tr(x) \cdot 1\|_2 - \sup_{y} \|[x, y]\|_2)\}.$$

Examples of sentences in logic of metric structures

For a sentence φ and a C*-algebra A one recursively defines interpretation of φ in A, φ^A .

The *theory* of A is $Th(A) := \{\varphi | \varphi^A = 0\}.$

1. C*: $\sup_{x,y} \|[x,y]\|$

2. Banach spaces: $\sup_{x,y} \left| \|x+y\|^2 + \|x-y\|^2 - 2(\|x\|^2 + \|y\|^2) \right|.$

3. Tracial vNA:

$$\sup_{x} \max\{0, (\|x - tr(x) \cdot 1\|_2 - \sup_{y} \|[x, y]\|_2)\}.$$

 $4. \quad \mathsf{inf}_{x_1} \mathsf{sup}_{x_2} \mathsf{inf}_{x_3} \mathsf{sup}_{x_4} \mathsf{inf}_{x_5, x_6} \mathsf{max}(\|x_2 x_2^* - x_1 x_1^*\|, \frac{3}{4} \|x_3^* x_3 - x_4\| - \frac{2}{3} \|x_1^* x_4 x_2 - x_2^* x_5^* x_1\|)$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○

Elementary embeddings

A map $\Phi: A \to B$ is an *elementary embedding* if for every $\psi(\bar{x})$ and \bar{a} in A we have

$$\psi(\bar{a})^{A} = \psi(\Phi(\bar{a}))^{B}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Elementary embeddings

A map $\Phi: A \to B$ is an *elementary embedding* if for every $\psi(\bar{x})$ and \bar{a} in A we have

$$\psi(\bar{a})^{A} = \psi(\Phi(\bar{a}))^{B}.$$

Theorem (Fundamental Theorem of Ultraproducts. Łos, 1955) The diagonal embedding of A into A^{U} is elementary.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

A condition on $\bar{x} = (x_1, ..., x_n)$ is an expression of the form $\varphi(\bar{x}) \leq r$, $\varphi(\bar{x}) \geq r$, or $\varphi(\bar{x}) = 0$.

A condition on $\bar{x} = (x_1, ..., x_n)$ is an expression of the form $\varphi(\bar{x}) \leq r$, $\varphi(\bar{x}) \geq r$, or $\varphi(\bar{x}) = 0$. Type in \bar{x} is a set of conditions on \bar{x} .

A condition on $\bar{x} = (x_1, ..., x_n)$ is an expression of the form $\varphi(\bar{x}) \leq r$, $\varphi(\bar{x}) \geq r$, or $\varphi(\bar{x}) = 0$. Type in \bar{x} is a set of conditions on \bar{x} .

Example

A type in x, with parameters in algebra C.

$$M^{-2} \le ||x^*x|| \le M^2$$

 $||a_n(x^*x)a_n^* - x^*x|| = 0, \text{ for all } n \in \mathbb{N}.$

A condition on $\bar{x} = (x_1, ..., x_n)$ is an expression of the form $\varphi(\bar{x}) \leq r$, $\varphi(\bar{x}) \geq r$, or $\varphi(\bar{x}) = 0$. Type in \bar{x} is a set of conditions on \bar{x} .

Example

A type in x, with parameters in algebra C.

$$M^{-2} \le ||x^*x|| \le M^2$$

 $||a_n(x^*x)a_n^* - x^*x|| = 0$, for all $n \in \mathbb{N}$.

A condition on $\bar{x} = (x_1, ..., x_n)$ is an expression of the form $\varphi(\bar{x}) \leq r$, $\varphi(\bar{x}) \geq r$, or $\varphi(\bar{x}) = 0$. Type in \bar{x} is a set of conditions on \bar{x} .

Example

A type in x, with parameters in algebra C.

$$M^{-2} \le ||x^*x|| \le M^2$$

 $||a_n(x^*x)a_n^* - x^*x|| = 0, \text{ for all } n \in \mathbb{N}.$

Type is *satisfied* in C if some \bar{c} satisfies all of its conditions. Type is *consistent* if each of its finite subsets is approximately satisfiable.

Theorem (Countable saturation. Keisler, 1966) Every consistent countable type with parameters in A^{U} is satisfied in A^{U} .

・ロト・日本・モート モー うへぐ

Theorem (Countable saturation. Keisler, 1966) Every consistent countable type with parameters in A^{U} is satisfied in A^{U} .

・ロト・日本・モート モー うへぐ

A structure satisfying the conclusion of Keisler's theorem is *countably saturated*.

Theorem (Countable saturation. Keisler, 1966)

Every consistent countable type with parameters in $A^{\mathcal{U}}$ is satisfied in $A^{\mathcal{U}}$.

A structure satisfying the conclusion of Keisler's theorem is *countably saturated*.

Corollary (to Łos and Keisler) *C* is an ultrapower of $A \subseteq C$ iff (i) id: $A \rightarrow C$ is elementary and (ii) *C* is countably saturated.

(Assuming A is separable, C has cardinality 2^{\aleph_0} , and the Continuum Hypothesis holds.)

Theorem (Countable saturation. Keisler, 1966)

Every consistent countable type with parameters in $A^{\mathcal{U}}$ is satisfied in $A^{\mathcal{U}}$.

A structure satisfying the conclusion of Keisler's theorem is *countably saturated*.

Corollary (to Łos and Keisler) *C* is an ultrapower of $A \subseteq C$ iff (i) id: $A \rightarrow C$ is elementary and (ii) *C* is countably saturated.

(Assuming A is separable, C has cardinality 2^{\aleph_0} , and the Continuum Hypothesis holds.)

Theorem (Keisler-Shelah)

For all A and B, Th(A) = Th(B) if and only if A and B have isomorphic ultrapowers.

Ultrafilter not necessarily on ${\mathbb N}$ but A and B are not necessarily separable.

Does the choice of \mathcal{U} matter?

Metatheorem

Assume $\mathbb{P}(B)$ is any statement that refers only to elements and separable substructures of B. Then for a separable metric structure A and all \mathcal{U} and \mathcal{V} we have

 $\mathbb{P}(A^{\mathcal{U}}) \Leftrightarrow \mathbb{P}(A^{\mathcal{V}})$

Does the choice of \mathcal{U} matter?

Metatheorem

Assume $\mathbb{P}(B)$ is any statement that refers only to elements and separable substructures of B. Then for a separable metric structure A and all \mathcal{U} and \mathcal{V} we have

 $\mathbb{P}(A^{\mathcal{U}}) \Leftrightarrow \mathbb{P}(A^{\mathcal{V}})$

regardless of whether Continuum Hypothesis holds or not.

Does the choice of \mathcal{U} matter?

Metatheorem

Assume $\mathbb{P}(B)$ is any statement that refers only to elements and separable substructures of B. Then for a separable metric structure A and all \mathcal{U} and \mathcal{V} we have

$\mathbb{P}(A^{\mathcal{U}}) \Leftrightarrow \mathbb{P}(A^{\mathcal{V}})$

regardless of whether Continuum Hypothesis holds or not.

By results of Shelah, Dow, Ge–Hadwin, F.–Hart–Sherman, F.–Shelah, one can code many complicated total orders inside ultrapowers of A and, if Continuum Hypothesis fails, obtain $2^{2^{\aleph_0}}$ nonisomorphic ultrapowers of the same algebra.

Relative commutant

For C*-algebras and tracial von Neumann algebras define

$$\mathcal{A}'\cap\mathcal{A}^{\mathcal{U}}=\{b\in\mathcal{A}^{\mathcal{U}}:(orall a\in\mathcal{A})ab=ba\}$$

(ロ)、(型)、(E)、(E)、 E) の(の)

Relative commutant

For C*-algebras and tracial von Neumann algebras define

$$\mathcal{A}'\cap\mathcal{A}^{\mathcal{U}}=\{b\in\mathcal{A}^{\mathcal{U}}:(orall a\in\mathcal{A})ab=ba\}$$

Hyperfinite II₁ factor R is the $\|\cdot\|_2$ -completion of $\bigotimes_{\mathbb{N}} M_2(\mathbb{C})$. Theorem (McDuff, 1970)

For a II_1 factor M the following are equivalent.

- 1. $M \bar{\otimes} R \cong M$, where R is the hyperfinite II₁ factor.
- 2. $M_2(\mathbb{C})$ embeds unitally into $M' \cap M^{\mathcal{U}}$.
- 3. mix-and-match (1) and (2)

Relative commutant

For C*-algebras and tracial von Neumann algebras define

$$\mathcal{A}'\cap\mathcal{A}^{\mathcal{U}}=\{b\in\mathcal{A}^{\mathcal{U}}:(orall a\in\mathcal{A})ab=ba\}$$

Hyperfinite II₁ factor R is the $\|\cdot\|_2$ -completion of $\bigotimes_{\mathbb{N}} M_2(\mathbb{C})$. Theorem (McDuff, 1970)

For a II_1 factor M the following are equivalent.

- 1. $M \bar{\otimes} R \cong M$, where R is the hyperfinite II₁ factor.
- 2. $M_2(\mathbb{C})$ embeds unitally into $M' \cap M^{\mathcal{U}}$.
- 3. mix-and-match (1) and (2)

Factors satisfynig (1)-(3) are *McDuff factors*.

Approximately inner flip

Definition

An operator algebra D has an *approximately inner flip (a.i.f.)* if the flip automorphism of $D \otimes D$ is approximately inner.

Approximately inner flip

Definition

An operator algebra D has an *approximately inner flip (a.i.f.)* if the flip automorphism of $D \otimes D$ is approximately inner.

Theorem (Effros-Rosenberg, after McDuff)

If C*-algebra D has approximately inner half-flip then the following are equivalent for every (separable) A.

- 1. $A \otimes D \cong A$
- 2. D unitally embeds into $A' \cap A^{\mathcal{U}}$.

Theorem (Connes, 1976) For II_1 factors a.i.f. \Leftrightarrow hyperfinite.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Theorem (Connes, 1976) For II_1 factors a.i.f. \Leftrightarrow hyperfinite.

Theorem (Effros-Rosenberg, 1978)

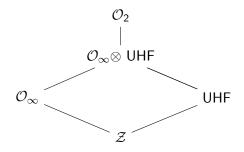
If (C*-algebra) D has an approximately inner (half) flip then it is nuclear, simple, and has at most one trace.

Theorem (Connes, 1976)

For II_1 factors a.i.f. \Leftrightarrow hyperfinite.

Theorem (Effros-Rosenberg, 1978)

If (C*-algebra) D has an approximately inner (half) flip then it is nuclear, simple, and has at most one trace.



Question (Connes embedding problem)

Does every II_1 factor with separable predual embed into $R^{\mathcal{U}}$?

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Question (Connes embedding problem)

Does every II_1 factor with separable predual embed into $R^{\mathcal{U}}$?

Proposition (Folklore)

A II₁ factor M with separable predual embeds into $R^{\mathcal{U}}$ if and only if it embeds into $R' \cap R^{\mathcal{U}}$.

Relative commutant has no well-understood abstract analogue

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

On relative commutants

 $A \prec B$ stands for ' $A \subseteq B$ and id: $A \rightarrow B$ is elementary.' Theorem (F.-Hart-Rørdam-Tikuisis, 2015) Assume D has approximately inner half-flip and $A \otimes D \cong A$. Then

$$D'\cap A^{\mathcal{U}}\prec C^*(D,D'\cap A^{\mathcal{U}})\prec A^{\mathcal{U}}\prec A^{\mathcal{U}}\otimes D.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

On relative commutants

 $A \prec B$ stands for ' $A \subseteq B$ and id: $A \to B$ is elementary.' Theorem (F.-Hart-Rørdam-Tikuisis, 2015) Assume D has approximately inner half-flip and $A \otimes D \cong A$. Then $D' \cap A^{\mathcal{U}} \prec C^*(D, D' \cap A^{\mathcal{U}}) \prec A^{\mathcal{U}} \prec A^{\mathcal{U}} \otimes D$.

For the hyperfinite II_1 factor R and a McDuff factor with separable predual M we have

$$R' \cap M^{\mathcal{U}} \prec W^*(R, R' \cap M^{\mathcal{U}}) \prec M^{\mathcal{U}} \prec M^{\mathcal{U}} \bar{\otimes} R.$$

Assume Continuum Hypothesis

Theorem (FHRT, 2015)

Assume C*-algebra D has approximately inner half-flip and $A \otimes D \cong A$. Then

$$D' \cap A^{\mathcal{U}} \cong A^{\mathcal{U}}$$
 and $C^*(D, D' \cap A^{\mathcal{U}}) \cong A^{\mathcal{U}} \otimes D$

and both isomorphisms are approximately inner.

Assume Continuum Hypothesis

Theorem (FHRT, 2015)

Assume C*-algebra D has approximately inner half-flip and $A \otimes D \cong A$. Then

 $D' \cap A^{\mathcal{U}} \cong A^{\mathcal{U}}$ and $C^*(D, D' \cap A^{\mathcal{U}}) \cong A^{\mathcal{U}} \otimes D$

and both isomorphisms are approximately inner. Also, for a McDuff factor with separable predual M we have $R' \cap M^{\mathcal{U}} \cong M^{\mathcal{U}}$ and $W^*(R, R' \cap M^{\mathcal{U}}) \cong M^{\mathcal{U}} \bar{\otimes} R$.

Assume Continuum Hypothesis

Theorem (FHRT, 2015)

Assume C*-algebra D has approximately inner half-flip and $A \otimes D \cong A$. Then

 $D' \cap A^{\mathcal{U}} \cong A^{\mathcal{U}}$ and $C^*(D, D' \cap A^{\mathcal{U}}) \cong A^{\mathcal{U}} \otimes D$

and both isomorphisms are approximately inner. Also, for a McDuff factor with separable predual M we have $R' \cap M^{\mathcal{U}} \cong M^{\mathcal{U}}$ and $W^*(R, R' \cap M^{\mathcal{U}}) \cong M^{\mathcal{U}} \bar{\otimes} R$.

Proposition (Fang-Ge-Li, Ghasemi)

Nontrivial ultrapowers are tensorially indecomposable. In particular, $R^{\mathcal{U}} \bar{\otimes} R \ncong R^{\mathcal{U}}$ and $D^{\mathcal{U}} \otimes D \ncong D^{\mathcal{U}}$.

Question

Do all free group factors $L(F_n)$, $n \ge 2$, have isomorphic ultrapowers?

Question

Can one describe automorphisms of $A^{\cal U}\otimes A^{\cal U}$ in terms of the automorphisms of $A^{\cal U}$?

(F.: Yes if A is abelian.)