Cuntz-Pimsner algebras arising from vector bundles and minimal homepmorphism

> Maria Grazia Viola Lakehead University

Joint work with M. S. Adamo, D. Archey, M. Forough, M. Georgescu, J. A Jeong, K. Strung

Canadian Operator Symposium 50th anniversary May 30-June 3, 2022

Right Hillbert A-modules

Let A be a C*-algebra. We say that ${\mathcal E}$ is a right Hilbert A-module if

- i) \mathcal{E} is is a right A-module
- ii) \mathcal{E} is equipped with a sesquilinear map $\langle \cdot, \cdot \rangle : \mathcal{E} \times \mathcal{E} \to A$, such that, for every $\xi, \eta \in \mathcal{E}$ and every $a \in A$ we have

$$(\xi, \eta_1 + \eta_2 a) = \langle \xi, \eta_1 \rangle + \langle \xi, \eta_2 \rangle a$$

$$(\eta,\xi) = \langle \xi,\eta \rangle^*$$

$$(\xi,\xi) \ge 0, \text{ and } \langle \xi,\xi\rangle = 0 \text{ iff } \xi = 0$$

iii) \mathcal{E} is complete with respect to the norm $\|\xi\| = \sqrt{\|\langle \xi, \xi \rangle\|}$.

Right Hillbert A-modules

Let A be a C*-algebra. We say that ${\mathcal E}$ is a right Hilbert A-module if

- i) \mathcal{E} is is a right A-module
- ii) \mathcal{E} is equipped with a sesquilinear map $\langle \cdot, \cdot \rangle : \mathcal{E} \times \mathcal{E} \to A$, such that, for every $\xi, \eta \in \mathcal{E}$ and every $a \in A$ we have

$$\langle \xi, \eta_1 + \eta_2 a \rangle = \langle \xi, \eta_1 \rangle + \langle \xi, \eta_2 \rangle a$$

$$(\eta, \xi) = \langle \xi, \eta \rangle^*$$

$$(\xi,\xi) \ge 0, \text{ and } \langle \xi,\xi \rangle = 0 \text{ iff } \xi = 0$$

iii) \mathcal{E} is complete with respect to the norm $\|\xi\| = \sqrt{\|\langle \xi, \xi \rangle\|}$.

Bimodule Assume \mathcal{E} is a right Hilbert *A*-module and a left Hilbert *A*-module. \mathcal{E} is an *A*-Hilbert bimodule if

$$\xi \langle \eta, \zeta \rangle_{\mathcal{E}} =_{\mathcal{E}} \langle \xi, \eta \rangle \zeta \qquad \xi, \eta, \zeta \in \mathcal{E}.$$

◆□ > ◆母 > ◆臣 > ◆臣 > ─ 臣 = のへで

where $\langle\cdot,\cdot\rangle_{\mathcal{E}}$ denotes the right inner product, and $_{\mathcal{E}}\langle\cdot,\cdot\rangle$ the left inner product.

C*-correspondences

We denote by $\mathcal{L}(\mathcal{E})$ the C*-algebra of adjointable operators.

 $\mathcal{K}(\mathcal{E})$ is the closed two-sided ideal of compact operators given by

$$\mathcal{K}(\mathcal{E}) = \overline{span}\{\theta_{\xi,\eta} \mid \xi, \eta \in \mathcal{E}\}$$

・ロト ・同ト ・ヨト ・ヨト

= na0

where $\theta_{\xi,\eta}(\zeta) = \xi \langle \eta, \zeta \rangle_{\mathcal{E}}.$

C*-correspondences

We denote by $\mathcal{L}(\mathcal{E})$ the C*-algebra of adjointable operators.

 $\mathcal{K}(\mathcal{E})$ is the closed two-sided ideal of compact operators given by

$$\mathcal{K}(\mathcal{E}) = \overline{span} \{ \theta_{\xi,\eta} \mid \xi, \eta \in \mathcal{E} \}$$

where $\theta_{\xi,\eta}(\zeta) = \xi \langle \eta, \zeta \rangle_{\mathcal{E}}$.

Definition

Let A and B be C*-algebras. An A–B C*-correspondence is a right Hilbert B-module \mathcal{E} together with a *-homomorphism. $\varphi \colon A \to \mathcal{L}(\mathcal{E})$. If A = B then we call \mathcal{E} a C*-correspondence over A.

イロト イポト イヨト イヨト 一日

C*-correspondences

We denote by $\mathcal{L}(\mathcal{E})$ the C*-algebra of adjointable operators.

 $\mathcal{K}(\mathcal{E})$ is the closed two-sided ideal of compact operators given by

$$\mathcal{K}(\mathcal{E}) = \overline{span}\{\theta_{\xi,\eta} \mid \xi, \eta \in \mathcal{E}\}$$

where $\theta_{\xi,\eta}(\zeta) = \xi \langle \eta, \zeta \rangle_{\mathcal{E}}$.

Definition

Let A and B be C*-algebras. An A–B C*-correspondence is a right Hilbert B-module \mathcal{E} together with a *-homomorphism. $\varphi \colon A \to \mathcal{L}(\mathcal{E})$. If A = B then we call \mathcal{E} a C*-correspondence over A.

The map φ gives ${\mathcal E}$ a left A-module structure

$$a \cdot \xi = \varphi(a)(\xi) \text{ for } \xi \in \mathcal{E}.$$

▲□▶ ▲□▶ ▲■▶ ▲■▶ = うのので

Definition (Katsura 2004)

Let (\mathcal{E}, φ) be an C^* -correspondence over a C*-algebra A. A representation (π, τ) on a C*-algebra B consists of a *-homomorphism $\pi \colon A \to B$ and a linear map $\tau \colon \mathcal{E} \to B$ satisfying i) $\pi(\langle \xi, \eta \rangle) = \tau(\xi)^* \tau(\eta)$, for every $\xi, \eta \in \mathcal{E}$;

ii)
$$\tau(\varphi(a)\xi) = \pi(a)\tau(\xi)$$
, for every $\xi \in \mathcal{E}$, $a \in A$.

Let $\psi_\tau: K(\mathcal{E}) \to B$ be the *-homomorphism defined on rank one operators by

$$\psi_{\tau}(\theta_{\xi,\eta}) = \tau(\xi)\tau(\eta)^* \quad \text{ for } \xi, \eta \in \mathcal{E}.$$

The representation (π, τ) is *covariant* if

iii)
$$\pi(a) = \psi_{\tau}(\varphi(a))$$
 for every $a \in \varphi^{-1}(\mathcal{K}(\mathcal{E}))$.

Definition (Pimsner 1997, Katsura 2004)

Let A be a C*-algebra and (\mathcal{E}, φ) a C*-correspondence over A. The *Cuntz–Pimsner algebra of* \mathcal{E} over A, denoted by $\mathcal{O}_A(\mathcal{E})$ is the C*-algebra generated by the universal covariant representation of (\mathcal{E}, φ) .

(日) (周) (日) (日) (日) (日)

Definition (Pimsner 1997, Katsura 2004)

Let A be a C*-algebra and (\mathcal{E}, φ) a C*-correspondence over A. The *Cuntz–Pimsner algebra of* \mathcal{E} over A, denoted by $\mathcal{O}_A(\mathcal{E})$ is the C*-algebra generated by the universal covariant representation of (\mathcal{E}, φ) .

Examples

- If A is commutative and finite dimensional and E is finitely generated projective, then O_A(E) is a Cuntz-Krieger algebra.
- Let A be an arbitrary C*-algebra. Take $\mathcal{E} = A$, with right/left action given by right/left multiplication, and inner product given by $\langle a, b \rangle_A = a^*b$. If $\pi \colon A \to A$ is an automorphism, then π defines a Hilbert bimodule structure on \mathcal{E} , and one can shows that $\mathcal{O}_A(\mathcal{E})$ is simply the crossed product $A \rtimes_{\pi} \mathbb{Z}$.

Covariant representations for Hilbert A-bimodules were defined by Abadie, Eilers, and Exel. in the late '90s.

Let \mathcal{E} be a Hilbert A-bimodule with left and right inner products given by $_{\mathcal{E}}\langle\cdot,\cdot\rangle$ and $\langle\cdot,\cdot\rangle_{\mathcal{E}}$, respectively. A covariant representation (π,τ) of \mathcal{E} on a C*-algebra B consists of a *-homomorphism $\pi: A \to B$ and linear map $\tau: \mathcal{E} \to B$ satisfying

$$\ \, \bullet \ \, \pi(\langle \xi,\eta\rangle_{\mathcal E})=\tau(\xi)^*\tau(\eta), \text{ for every } \xi,\eta\in \mathcal E;$$

$$\ \, {\bf 2} \ \, \pi(_{\mathcal E}\langle\xi,\eta\rangle)=\tau(\xi)\tau(\eta)^* \ \, {\rm for \ every} \ \, \xi,\eta\in\mathcal E.$$

Covariant representations for Hilbert A-bimodules were defined by Abadie, Eilers, and Exel. in the late '90s.

Let \mathcal{E} be a Hilbert A-bimodule with left and right inner products given by $_{\mathcal{E}}\langle\cdot,\cdot\rangle$ and $\langle\cdot,\cdot\rangle_{\mathcal{E}}$, respectively. A covariant representation (π,τ) of \mathcal{E} on a C*-algebra B consists of a *-homomorphism $\pi: A \to B$ and linear map $\tau: \mathcal{E} \to B$ satisfying

- $\ \, \bullet \ \, \pi(\langle \xi,\eta\rangle_{\mathcal E})=\tau(\xi)^*\tau(\eta), \text{ for every } \xi,\eta\in \mathcal E;$
- $\ \, \mathbf{2} \ \, \pi(_{\mathcal{E}}\langle \xi,\eta\rangle)=\tau(\xi)\tau(\eta)^* \ \, \text{for every} \ \, \xi,\eta\in\mathcal{E}.$

Definition

Let \mathcal{E} be a Hilbert A-bimodule . We denote by $A \rtimes_{\mathcal{E}} \mathbb{Z}$ the C^{*}-algebra generated by the universal covariant representation of \mathcal{E} , and refer to it as the crossed product of A by the Hilbert bimodule \mathcal{E} .

Example

Let X be a compact metric space and let $\mathcal{V} = [V, p, X]$ be a vector bundle of finite rank (that means that $p: V \to X$ is a continuous surjective map and for every $x \in X$, $p^{-1}(x) \cong \mathbb{C}^{n_x}$ for some n_x). Set

$$\Gamma(\mathcal{V}) = \{\xi \colon X \to V \,|\, \xi \text{ is continuous and } p \circ \xi = id_X\}.$$

Define a right C(X)-action on $\Gamma(\mathcal{V})$ by

$$(\xi \cdot f)(x) = \xi(x)f(x)$$
 for $\xi \in \mathcal{E}, f \in C(X)$.

We can find open sets U_1, \ldots, U_n that cover X, and homeomorphisms $t_i : p^{-1}(U_i) \to U_i \times \mathbb{C}^{n_i}$. Let $\gamma_1, \ldots, \gamma_n$ be a partition of unity subordinate to U_1, \ldots, U_n . Define for $\xi, \eta \in \Gamma(\mathcal{V})$

$$\langle \xi, \eta \rangle(x) := \sum_{i=1}^n \gamma_i(x) \langle t_i(\xi(x)), t_i(\eta(x)) \rangle_{\mathbb{C}^{n_i}}.$$

Then $\Gamma(\mathcal{V})$ is a right Hilbert C(X)-module.

Example

Let X be a compact metric space and let $\mathcal{V} = [V, p, X]$ be a vector bundle of finite rank (that means that $p: V \to X$ is a continuous surjective map and for every $x \in X$, $p^{-1}(x) \cong \mathbb{C}^{n_x}$ for some n_x). Set

$$\Gamma(\mathcal{V}) = \{ \xi \colon X \to V \, | \, \xi \text{ is continuous and } p \circ \xi = id_X \}.$$

Define a right $C(X)\text{-}{\rm action}$ on $\Gamma(\mathcal{V})$ by

$$(\xi \cdot f)(x) = \xi(x)f(x)$$
 for $\xi \in \mathcal{E}, f \in C(X)$.

We can find open sets U_1, \ldots, U_n that cover X, and homeomorphisms $t_i : p^{-1}(U_i) \to U_i \times \mathbb{C}^{n_i}$. Let $\gamma_1, \ldots, \gamma_n$ be a partition of unity subordinate to U_1, \ldots, U_n . Define for $\xi, \eta \in \Gamma(\mathcal{V})$

$$\langle \xi, \eta \rangle(x) := \sum_{i=1}^n \gamma_i(x) \langle t_i(\xi(x)), t_i(\eta(x)) \rangle_{\mathbb{C}^{n_i}}.$$

Then $\Gamma(\mathcal{V})$ is a right Hilbert C(X)-module. Given a homeomorphism $\alpha \colon X \to X$ define $\varphi \colon C(X) \to K(\Gamma(\mathcal{V}))$ by $\varphi(f)(\xi) = \xi \cdot (f \circ \alpha)$. Denote the associate C^{*}-correspondence by $\Gamma(\mathcal{V}, \alpha)$. In general the C*-correspondence $\Gamma(\mathcal{V}, \alpha)$ will not admit a Hilbert C(X)-bimodule structure, only a $\mathcal{K}(\Gamma(\mathcal{V}, \alpha))$ -C(X)-bimodule structure,

In general the C*-correspondence $\Gamma(\mathcal{V}, \alpha)$ will not admit a Hilbert C(X)-bimodule structure, only a $\mathcal{K}(\Gamma(\mathcal{V}, \alpha))$ -C(X)-bimodule structure,

Proposition (AAFGJSV)

Let X be a compact metric space. Suppose that $\mathcal{E} = \Gamma(\mathcal{V})$ is the right Hilbert C(X)-module of continuous sections of a complex line bundle over X. Then for any homeomorphism $\alpha \colon X \to X$ the left multiplication

$$f \cdot \xi := \xi(f \circ \alpha), \qquad f \in C(X), \xi \in \mathcal{E},$$

and left C(X)-inner product

$$_{\mathcal{E}}\langle\xi,\eta\rangle := \langle\eta,\xi\rangle_{\mathcal{E}} \circ \alpha^{-1}, \qquad \xi,\eta \in \mathcal{E},$$

make \mathcal{E} into a Hilbert C(X)-bimodule. Moreover, if $\varphi: C(X) \to \mathcal{K}(\mathcal{E})$ is the *-homomorphism

$$\varphi(f)(\xi) = \xi(f \circ \alpha), \qquad \xi \in \mathcal{E}, f \in C(X),$$

then

$$_{\mathcal{E}}\langle \xi,\eta\rangle = \varphi^{-1}(\theta_{\xi,\eta}), \qquad \xi,\eta\in\mathcal{E}.$$

Cuntz-Pimsner algebras arising from vector bundles and

Example

1) Let $\mathcal{V} = [V, p, X]$ be a line bundle and take $\alpha = id_X$. Then $C(X) \cong \mathcal{K}(\Gamma(\mathcal{V}))$, and $\Gamma(\mathcal{V}, id_X)$ has the structure of a Hilbert C(X)-bimodule. Moreover, $\mathcal{O}(\Gamma(\mathcal{V}, id)_X) \cong C(X) \rtimes_{\Gamma(\mathcal{V}, id_X)} \mathbb{Z}$.

▲□▶ ▲□▶ ▲■▶ ▲■▶ = うのので

Example

- 1) Let $\mathcal{V} = [V, p, X]$ be a line bundle and take $\alpha = id_X$. Then $C(X) \cong \mathcal{K}(\Gamma(\mathcal{V}))$, and $\Gamma(\mathcal{V}, id_X)$ has the structure of a Hilbert C(X)-bimodule. Moreover, $\mathcal{O}(\Gamma(\mathcal{V}, id)_X) \cong C(X) \rtimes_{\Gamma(\mathcal{V}, id_X)} \mathbb{Z}$.
- 2) Let $\mathcal{V} = [V, p, X]$ be a trivial line bundle and $\alpha \colon X \to X$ a homeomorphism. Then $\mathcal{E} = \Gamma(\mathcal{V}, \alpha)$ is generated by a single element, which is easily seen to be a unitary element $u \in \mathcal{O}(\mathcal{E})$ and satisfies $ufu^* = f \circ \alpha^{-1}$. Therefore, $\mathcal{O}(\mathcal{E}) = C(X) \rtimes_{\alpha} \mathbb{Z}$.

▲□▶ ▲□▶ ▲■▶ ▲■▶ = うのので

Let \mathcal{E} be a non-zero Hilbert C(X)-bimodule which is finitely generated projective as a right Hilbert C(X)-module, and full as a left Hilbert C(X)-module. Then there exist a compact metric space X, a line bundle $\mathcal{V} = [V, p, X]$ and a homeomorphisms $\alpha : X \to X$ such that

 $\mathcal{E} \cong \Gamma(\mathcal{V}, \alpha).$

▲□▶ ▲□▶ ▲■▶ ▲■▶ = うのの

Let \mathcal{E} be a non-zero Hilbert C(X)-bimodule which is finitely generated projective as a right Hilbert C(X)-module, and full as a left Hilbert C(X)-module. Then there exist a compact metric space X, a line bundle $\mathcal{V} = [V, p, X]$ and a homeomorphisms $\alpha : X \to X$ such that

 $\mathcal{E} \cong \Gamma(\mathcal{V}, \alpha).$

Proposition

Let X be an infinite compact metric space, $\mathcal{V} = [V, p, X]$ a vector bundle, and $\alpha \colon X \to X$ an homeomorphism. Then, the following are equivalent.

イロト イポト イヨト イヨト 一日

- $\mathcal{O}(\Gamma(\mathcal{V}, \alpha) \text{ is simple.})$
- $\mathbf{2} \ \alpha$ is minimal.

Let $\mathcal{V} = [V, p, X]$ be a vector bundle and $\alpha \colon X \to X$ a homeomorphism.

▲□▼▲□▼▲□▼ □ のなべ

• $T(\mathcal{O}(\Gamma(\mathcal{V}, \alpha))) \neq \emptyset$ if and only if \mathcal{V} is a line bundle.

Let $\mathcal{V} = [V, p, X]$ be a vector bundle and $\alpha \colon X \to X$ a homeomorphism.

3 $T(\mathcal{O}(\Gamma(\mathcal{V}, \alpha))) \neq \emptyset$ if and only if \mathcal{V} is a line bundle.

 If V = [V, p, X] is a line bundle and α: X → X an aperiodic homeomorphism then there are affine homeomorphisms

 $T(\mathcal{O}(\Gamma(\mathcal{V},\alpha))) \cong M^1(X,\alpha),$

where $M^1(X, \alpha)$ denotes the space of α -invariant Borel probability measures.

▲□▶ ▲□▶ ▲■▶ ▲■▶ = うのの

Let $\mathcal{V} = [V, p, X]$ be a line bundle and $\alpha \colon X \to X$ a minimal homeomorphism. Then $\mathcal{O}(\Gamma(\mathcal{V}, \alpha))$ is stably finite.

▲口 > ▲母 > ▲臣 > ▲臣 > → 臣 → のへで

Let $\mathcal{V} = [V, p, X]$ be a line bundle and $\alpha \colon X \to X$ a minimal homeomorphism. Then $\mathcal{O}(\Gamma(\mathcal{V}, \alpha))$ is stably finite.

Theorem (Katsura 2004)

Let A be a unital C^{*}-algebra and (\mathcal{E}, φ) a C^{*}-correspondence over A.

- If A is nuclear, then $\mathcal{O}_A(\mathcal{E})$ is nuclear.
- If A is separable, nuclear and it satisfies the UCT, then $\mathcal{O}_A(\mathcal{E})$ satisfies the UCT

Let $\mathcal{V} = [V, p, X]$ be a line bundle and $\alpha \colon X \to X$ a minimal homeomorphism. Then $\mathcal{O}(\Gamma(\mathcal{V}, \alpha))$ is stably finite.

Theorem (Katsura 2004)

Let A be a unital C^{*}-algebra and (\mathcal{E}, φ) a C^{*}-correspondence over A.

- If A is nuclear, then $\mathcal{O}_A(\mathcal{E})$ is nuclear.
- If A is separable, nuclear and it satisfies the UCT, then $\mathcal{O}_A(\mathcal{E})$ satisfies the UCT

Since C(X) is nuclear and satisfies the UCT, so does $\mathcal{O}(\Gamma(V,\alpha))$.

Question

Given a C^{*}-correspondence (\mathcal{E}, φ) , when does $\mathcal{O}(\mathcal{E})$ have finite nuclear dimension?

▲口 > ▲母 > ▲臣 > ▲臣 > → 臣 → のへで

Question

Given a C^{*}-correspondence (\mathcal{E}, φ) , when does $\mathcal{O}(\mathcal{E})$ have finite nuclear dimension?

Theorem (Brown-Tikuisis-Zelenberg 2018)

Assume the C^{*}-algebra A is a simple, unital, satisfies the UCT and has finite nuclear dimension. For every finitely generated projective C^{*}-correspondence \mathcal{E} with finite Rokhlin dimension, the Cuntz-Pimsner algebra $\mathcal{O}_A(\mathcal{E})$ has finite nuclear dimension.

イロト イポト イヨト イヨト 一日

Definition (Brown, Tikuisis, and Zelenberg, 2018)

Let A be a separable C*-algebra and let (\mathcal{E}, φ) be a countably generated C^{*}-correspondence over A. We say that (\mathcal{E}, φ) has Rokhlin dimension at most d if, for any $\varepsilon > 0$, any $p \in \mathbb{N} \setminus \{0\}$, every finite subset $F \subset A$ and every finite subset $\mathcal{G} \subset \mathcal{E}$, there exists positive contractions $\{f_k^{(l)}\}_{l=0,\ldots,d;k\in\mathbb{Z}/p}\subset A$ satisfying $||f_h^{(l)} f_{h'}^{(l)}|| < \varepsilon \text{ when } k \neq k'.$ $\ \ \, { \ 2 } \ \, { } \| \sum f_k^{(l)} - 1 \| < \varepsilon ,$ $\| [f_{l_{h}}^{(l)}, a] \| < \varepsilon \text{ for every } k \in \mathbb{Z}/p, \ 0 \le l \le d, \text{ and every } a \in F.$

▲ロ → ▲園 → ▲ 国 → ▲ 国 → ▲ 回 →

Theorem (AAFGJSV)

Let X be an infinite compact metric space with $\dim(X) < \infty$, $\mathcal{V} = [V, p, X]$ a vector bundle, and $\alpha \colon X \to X$ an aperiodic homeomorphism. Then $\mathcal{E} = \Gamma(\mathcal{V}, \alpha)$ has finite Rokhlin dimension.

▲□▶ ▲□▶ ▲■▶ ▲■▶ = うのの

Theorem (AAFGJSV)

Let X be an infinite compact metric space with $\dim(X) < \infty$, $\mathcal{V} = [V, p, X]$ a vector bundle, and $\alpha \colon X \to X$ an aperiodic homeomorphism. Then $\mathcal{E} = \Gamma(\mathcal{V}, \alpha)$ has finite Rokhlin dimension.

Corollary (AAFGJSV)

Let X be an infinite compact metric space with dim $(X) < \infty$, $\mathcal{V} = [V, p, X]$ a vector bundle, and $\alpha \colon X \to X$ an aperiodic homeomorphism. Then $\mathcal{O}(\Gamma(\mathcal{V}, \alpha))$ has finite nuclear dimension. If α is minimal, the nuclear dimension is one.

イロト イポト イヨト イヨト 一日

Let X be an infinite compact metric space with $\dim(X) < \infty$, $\mathcal{V} = [V, p, X]$ a vector bundle, and $\alpha \colon X \to X$ a minimal homeomorphism. Then $\mathcal{O}(\Gamma(\mathcal{V}, \alpha))$ is classifiable.

▲□▶ ▲□▶ ▲■▶ ▲■▶ = うのの

Let X be an infinite compact metric space with $\dim(X) < \infty$, $\mathcal{V} = [V, p, X]$ a vector bundle, and $\alpha \colon X \to X$ a minimal homeomorphism. Then $\mathcal{O}(\Gamma(\mathcal{V}, \alpha))$ is classifiable.

Corollary

Let X be an infinite compact metric space with $\dim(X) < \infty$, $\mathcal{V} = [V, p, X]$ a vector bundle, and $\alpha \colon X \to X$ a minimal homeomorphism.

- **1** If \mathcal{V} is a line bundle, $\mathcal{O}(\Gamma(\mathcal{V}, \alpha))$ has stable rank one.
- If V has (not necessarily constant) rank greater than one, O(Γ(V, α)) is purely infinite.

イロト イポト イヨト イヨト 一日

Orbit-breaking Subalgebras

Trivial line bundle case: Let $\mathcal{V} = [V, p, X]$ be the trivial line bundle and $\alpha \colon X \to X$ a minimal homeomorphism, so that

$$A = \mathcal{O}(\Gamma(\mathcal{V}, \alpha)) = C(X) \rtimes_{\alpha} \mathbb{Z}.$$

Let u be the unitary implementing the crossed product, and let $Y \subset X$ be a nonempty closed subset. Then

$$A_Y = C^*(C(X), C_0(X \setminus Y)u)$$

is the orbit-breaking subalgebra at Y of A.

Assume that Y meets every $\alpha\text{-orbit}$ at most once. Then

- A_Y is a simple, separable nuclear C*-algebra,
- the inclusion A_Y ⊂ A induces an affine homeomorphism T(A_Y) ≅ T(A).
- A_Y is a centrally large subalgebra of C(X) ⋊_α Z in the sense of Phillips.

Definition

Let A be an infinite dimensional simple unital C^* -algebra. A unital C*-subalgebra $B \subset A$ is *large* if, for every $m \in \mathbb{N} \setminus \{0\}, a_1, \ldots, a_m \in A$, $\epsilon > 0, x \in A_+$ with ||x|| = 1 and every $y \in B_+ \setminus \{0\}$, there are $c_1, c_2, \ldots, c_m \in A$ and $g \in B$ such that **1** $0 \le q \le 1;$ $||c_i - a_i|| < \epsilon,$ $(1-q)c_i \in B,$ **5** $||(1-q)x(1-q)|| > 1-\epsilon$. If, in addition q can be chosen so that

$$\|ga_j - a_jg\| < \epsilon,$$

then we say that B is centrally large.

If $B \subset A$ is a large subalgebra then

- **1** *B* is simple and infinite-dimensional.
- **2** A is finite \Leftrightarrow B is finite, and A is purely infinite \Leftrightarrow B is purely infinite.

・ロ・・ 「「」・ (三) ・ 三 ・ ・ ○ ● ・ へのぐ

● The inclusion $\iota : B \to A$ induces an affine homeomorphism $T(A) \cong T(B)$.

If $B \subset A$ is a large subalgebra then

- B is simple and infinite-dimensional.
- **2** A is finite \Leftrightarrow B is finite, and A is purely infinite \Leftrightarrow B is purely infinite.
- The inclusion $\iota : B \to A$ induces an affine homeomorphism $T(A) \cong T(B)$.
- If, in addition ${\cal B}$ is a centrally large subalgebra of ${\cal A}$ then,
 - A is stably finite if and only if B is stably finite.
 - If A and B are both separable and nuclear then A is Z-stable ⇔ B is Z-stable. (Archey–Buck–Phillips)

イロト イポト イヨト イヨト 二日

Orbit-Breaking Subalgebras of $\mathcal{O}(\Gamma(V, \alpha))$

Let X be an infinite compact metric space, $\mathcal{V} = [V, p, X]$ a vector bundle and $\alpha \colon X \to X$ a minimal homeomorphism. Let $\mathcal{E} := \Gamma(\mathcal{V}, \alpha)$.

Definition

Let $Y \subset X$ be a non-empty closed subset. The *orbit-breaking subalgebra* of $\mathcal{O}(\mathcal{E})$ at Y is $\mathcal{O}(C_0(X \setminus Y)\mathcal{E})$, that is, the Cuntz–Pimsner algebra of the C*-correspondence over C(X) given by $\mathcal{E}_Y = C_0(X \setminus Y)\mathcal{E}$.

▲口 > ▲母 > ▲目 > ▲目 > ▲目 > ● ④ ●

Orbit-Breaking Subalgebras of $\mathcal{O}(\Gamma(V, \alpha))$

Let X be an infinite compact metric space, $\mathcal{V} = [V, p, X]$ a vector bundle and $\alpha \colon X \to X$ a minimal homeomorphism. Let $\mathcal{E} := \Gamma(\mathcal{V}, \alpha)$.

Definition

Let $Y \subset X$ be a non-empty closed subset. The *orbit-breaking subalgebra* of $\mathcal{O}(\mathcal{E})$ at Y is $\mathcal{O}(C_0(X \setminus Y)\mathcal{E})$, that is, the Cuntz–Pimsner algebra of the C*-correspondence over C(X) given by $\mathcal{E}_Y = C_0(X \setminus Y)\mathcal{E}$.

Theorem (AAFGJSV)

Let $Y \subset X$ be a non-empty closed subset meeting each α -orbit at most once and such that for every $N \in \mathbb{Z}_{\geq 0}$ there exists an open set $W_N \supset Y$ for which $\mathcal{V}|_{\alpha^m(W_N)}$ is trivial whenever $-N \leq m \leq N$.

Then $\mathcal{O}(\mathcal{E}_Y)$ is a large subalgebra of $\mathcal{O}(\mathcal{E})$. In fact, it is stably large.

Corollary

Let $Y \subset X$ be a non-empty closed subset meeting each α -orbit at most once and such that for every $N \in \mathbb{Z}_{\geq 0}$ there exists an open set $W_N \supset Y$ for which $\mathcal{V}|_{\alpha^m(W_N)}$ is trivial whenever $-N \leq m \leq N$.

イロト イポト イヨト イヨト 二日

Then $\mathcal{O}(\mathcal{E}_Y)$ is simple and there is an affine homeomorphism $T(\mathcal{O}(\mathcal{E}_Y)) \cong T(\mathcal{O}(\mathcal{E})).$

Corollary

Let $Y \subset X$ be a non-empty closed subset meeting each α -orbit at most once and such that for every $N \in \mathbb{Z}_{\geq 0}$ there exists an open set $W_N \supset Y$ for which $\mathcal{V}|_{\alpha^m(W_N)}$ is trivial whenever $-N \leq m \leq N$.

Then $\mathcal{O}(\mathcal{E}_Y)$ is simple and there is an affine homeomorphism $T(\mathcal{O}(\mathcal{E}_Y)) \cong T(\mathcal{O}(\mathcal{E})).$

Theorem (AAFGJSV)

Suppose that $\mathcal{V} = [V, p, X]$ is a line bundle over X. Assume that Y satisfies the same hypotheses as above. Then $\mathcal{O}(\mathcal{E}_Y)$ is a centrally large subalgebra of $\mathcal{O}(\mathcal{E})$.

イロト イポト イヨト イヨト 一日

Let X be an infinite compact metric space with $\dim(X) < \infty$ and $\mathcal{V} = [V, p, X]$ a line bundle. Under the same hypothesis on Y as in the previous theorem, $\mathcal{O}(\mathcal{E}_Y)$ has nuclear dimension one.

▲□▶ ▲□▶ ▲■▶ ▲■▶ = うのの

Let X be an infinite compact metric space with $\dim(X) < \infty$ and $\mathcal{V} = [V, p, X]$ a line bundle. Under the same hypothesis on Y as in the previous theorem, $\mathcal{O}(\mathcal{E}_Y)$ has nuclear dimension one.

▲□▶ ▲□▶ ▲■▶ ▲■▶ = うのので

Therefore, $\mathcal{O}(\mathcal{E}_Y)$ is classifiable by the Elliott invariant.