A generalized Powers averaging property for commutative crossed products

Dan Ursu

University of Waterloo

COSy 2022

Dan Ursu (University of Waterloo)

Powers averaging for $C(X) \rtimes_r G$

COSy 2022

1/12

Assume A is a unital C*-algebra, and G is a countable discrete group acting on A by *-automorphisms.

Assume A is a unital C*-algebra, and G is a countable discrete group acting on A by *-automorphisms.

Similar to semidirect products for groups, can form a crossed product $A \rtimes G$:

Assume A is a unital C*-algebra, and G is a countable discrete group acting on A by *-automorphisms.

Similar to semidirect products for groups, can form a crossed product $A \rtimes G$:

• $A \subseteq A \rtimes G$

Assume A is a unital C*-algebra, and G is a countable discrete group acting on A by *-automorphisms.

Similar to semidirect products for groups, can form a crossed product $A \rtimes G$:

- $A \subseteq A \rtimes G$
- $G \subseteq A \rtimes G$ as unitaries λ_g .

Assume A is a unital C*-algebra, and G is a countable discrete group acting on A by *-automorphisms.

Similar to semidirect products for groups, can form a crossed product $A \rtimes G$:

- $A \subseteq A \rtimes G$
- $G \subseteq A \rtimes G$ as unitaries λ_g .
- The action $G \curvearrowright A$ is inner in $A \rtimes G$, i.e. $\lambda_g a \lambda_g^* = g \cdot a$.

Assume A is a unital C*-algebra, and G is a countable discrete group acting on A by *-automorphisms.

Similar to semidirect products for groups, can form a crossed product $A \rtimes G$:

- $A \subseteq A \rtimes G$
- $G \subseteq A \rtimes G$ as unitaries λ_g .
- The action $G \curvearrowright A$ is inner in $A \rtimes G$, i.e. $\lambda_g a \lambda_g^* = g \cdot a$.

Intuition: contains $\{\sum_{\text{finite}} a_t \lambda_t \mid t \in G, a_t \in A\}$ as a dense subset, and

$$a\lambda_s b\lambda_t = a\lambda_s b\lambda_s^*\lambda_s\lambda_t = (a(s \cdot b))\lambda_{st}.$$

2/12

Assume A is a unital C*-algebra, and G is a countable discrete group acting on A by *-automorphisms.

Similar to semidirect products for groups, can form a crossed product $A \rtimes G$:

- $A \subseteq A \rtimes G$
- $G \subseteq A \rtimes G$ as unitaries λ_g .
- The action $G \curvearrowright A$ is inner in $A \rtimes G$, i.e. $\lambda_g a \lambda_g^* = g \cdot a$.

Intuition: contains $\{\sum_{\text{finite}} a_t \lambda_t \mid t \in G, a_t \in A\}$ as a dense subset, and

$$a\lambda_sb\lambda_t = a\lambda_sb\lambda_s^*\lambda_s\lambda_t = (a(s \cdot b))\lambda_{st}.$$

The reduced crossed product $A \rtimes_r G$ is the unique norm completion such that $E(\sum a_t \lambda_t) = a_e$ is a faithful conditional expectation.

・ 何 ト ・ ヨ ト ・ ヨ ト … ヨ

Characterizations of simplicity of the reduced group C*-algebra $C_r^*(G)$:

< 47 ▶

Characterizations of simplicity of the reduced group C*-algebra $C_r^*(G)$:

Dynamical characterization on the Fursten-	Kalantar-Kennedy, 2017
berg boundary $I_G(\mathbb{C})=\partial_F G$	
Intrinsic characterization in terms of con-	Kennedy, 2020
fined subgroups of G	
Powers' averaging property for $C_r^*(G)$	Haagerup, 2016 and
	Kennedy, 2020
Unique stationarity of the canonical trace	Hartman-Kalantar, 2017

< 47 ▶

Characterizations of simplicity of the reduced group C*-algebra $C_r^*(G)$:

Dynamical characterization on the Fursten-	Kalantar-Kennedy, 2017
berg boundary $I_{G}(\mathbb{C})=\partial_{F}G$	
Intrinsic characterization in terms of con-	Kennedy, 2020
fined subgroups of G	
Powers' averaging property for $C_r^*(G)$	Haagerup, 2016 and
	Kennedy, 2020
Unique stationarity of the canonical trace	Hartman-Kalantar, 2017

NOTE: Powers' averaging property is what Powers (1975) used to show that $C_r^*(\mathbb{F}_2)$ is simple.

Characterizations of simplicity of the reduced crossed product $C(X) \rtimes_r G$:

< 47 ▶

Characterizations of simplicity of the reduced crossed product $C(X) \rtimes_r G$:

Dynamical characterization on the Fursten-	Kawabe, 2017
berg boundary $I_G(C(X))$ (spectrum)	
Intrinsic characterization in terms of gener-	Kawabe, 2017
alized residually normal subgroups	
Powers averaging property for $C(X) \rtimes_r G$???
Unique stationarity of something	???

< 47 ▶

Consider the reduced group C*-algebra $C_r^*(G)$ with the canonical trace τ , where $\tau(\sum_g \alpha_g \lambda_g) = \alpha_e$. Recall that $G \curvearrowright C_r^*(G)$ by $g \cdot a = \lambda_g a \lambda_g^*$.

Consider the reduced group C*-algebra $C_r^*(G)$ with the canonical trace τ , where $\tau(\sum_g \alpha_g \lambda_g) = \alpha_e$. Recall that $G \curvearrowright C_r^*(G)$ by $g \cdot a = \lambda_g a \lambda_g^*$.

Theorem (Haagerup, 2016 and Kennedy, 2020)

 $C_r^*(G)$ is simple if and only if Powers' averaging holds: for any $a \in C_r^*(G)$,

$$\tau(a) \in \overline{\operatorname{conv}} \{ g \cdot a \mid g \in G \}.$$

Consider the reduced group C*-algebra $C_r^*(G)$ with the canonical trace τ , where $\tau(\sum_g \alpha_g \lambda_g) = \alpha_e$. Recall that $G \curvearrowright C_r^*(G)$ by $g \cdot a = \lambda_g a \lambda_g^*$.

Theorem (Haagerup, 2016 and Kennedy, 2020)

 $C_r^*(G)$ is simple if and only if Powers' averaging holds: for any $a \in C_r^*(G)$,

$$\tau(a) \in \overline{\operatorname{conv}} \{g \cdot a \mid g \in G\}.$$

This should remind you of the **Dixmier property** for II_1 factors:

5/12

Consider the reduced group C*-algebra $C_r^*(G)$ with the canonical trace τ , where $\tau(\sum_g \alpha_g \lambda_g) = \alpha_e$. Recall that $G \curvearrowright C_r^*(G)$ by $g \cdot a = \lambda_g a \lambda_g^*$.

Theorem (Haagerup, 2016 and Kennedy, 2020)

 $C_r^*(G)$ is simple if and only if Powers' averaging holds: for any $a \in C_r^*(G)$,

$$au(a) \in \overline{\operatorname{conv}} \{ g \cdot a \mid g \in G \}.$$

This should remind you of the **Dixmier property** for II_1 factors:

Theorem

A tracial von Neumann algebra (M, τ) is a factor if and only if

$$\tau(x)\in \overline{\operatorname{conv}}\left\{uxu^* \mid u\in U(M)\right\}.$$

Convenient way to represent convex combinations of $g \cdot a$. Consider P(G), the set of probability measures on G. Given $\mu \in P(G)$, $\mu = \sum \alpha_g \delta_g$, "extend linearly" and define

$$\mu a = \sum_{g \in G} \alpha_g(g \cdot a).$$

Convenient way to represent convex combinations of $g \cdot a$. Consider P(G), the set of probability measures on G. Given $\mu \in P(G)$, $\mu = \sum \alpha_g \delta_g$, "extend linearly" and define

$$\mu a = \sum_{g \in G} \alpha_g(g \cdot a).$$

Then $C_r^*(G)$ is simple if and only if for any $a \in C_r^*(G)$, we have

$$\tau(a) \in \overline{\{\mu a \mid \mu \in P(G)\}}.$$

6/12

Appropriate notion for $C(X) \rtimes_r G$: replace convex hull by C(X)-convex hull.

Appropriate notion for $C(X) \rtimes_r G$: replace convex hull by C(X)-convex hull.

Assume $C(X) \subseteq B$. A C(X)-convex combination of elements of B is:

$$\sum f_i b_i f_i, \quad b_i \in B, \ f_i \in C(X), \ f_i \geq 0, \ \sum f_i^2 = 1.$$

Appropriate notion for $C(X) \rtimes_r G$: replace convex hull by C(X)-convex hull.

Assume $C(X) \subseteq B$. A C(X)-convex combination of elements of B is:

$$\sum f_i b_i f_i, \quad b_i \in B, \ f_i \in C(X), \ f_i \geq 0, \ \sum f_i^2 = 1.$$

NOTE: Usual definition might be slightly different with f_i not necessarily positive, and with $f_i b_i f_i^*$ instead.

Appropriate notion for $C(X) \rtimes_r G$: replace convex hull by C(X)-convex hull.

Assume $C(X) \subseteq B$. A C(X)-convex combination of elements of B is:

$$\sum f_i b_i f_i, \quad b_i \in B, \ f_i \in C(X), \ f_i \geq 0, \ \sum f_i^2 = 1.$$

NOTE: Usual definition might be slightly different with f_i not necessarily positive, and with $f_i b_i f_i^*$ instead.

Just like before, can define generalized measure $\mu \in P(G, C(X))$ to be

$$\mu = \sum_{i \in I} f_i g_i f_i$$
, repetition of $g_i \in G$ allowed!

COSy 2022

Appropriate notion for $C(X) \rtimes_r G$: replace convex hull by C(X)-convex hull.

Assume $C(X) \subseteq B$. A C(X)-convex combination of elements of B is:

$$\sum f_i b_i f_i, \quad b_i \in B, \ f_i \in C(X), \ f_i \geq 0, \ \sum f_i^2 = 1.$$

NOTE: Usual definition might be slightly different with f_i not necessarily positive, and with $f_i b_i f_i^*$ instead.

Just like before, can define generalized measure $\mu \in P(G, C(X))$ to be

$$\mu = \sum_{i \in I} f_i g_i f_i$$
, repetition of $g_i \in G$ allowed!

and an action on $C(X) \rtimes_r G$ (or any G-C*-algebra containing C(X) equivariantly) by

$$\mu a = \sum_{i \in I} f_i (g_i \cdot a) f_i$$

Powers' averaging property for $C(X) \rtimes_r G$

Consider $C(X) \rtimes_r G$, with canonical expectation $E : C(X) \rtimes_r G \to C(X)$, where $E(\sum_g f_g \lambda_g) = f_e$, and same action of G as before. Consider $C(X) \rtimes_r G$, with canonical expectation $E : C(X) \rtimes_r G \to C(X)$, where $E(\sum_g f_g \lambda_g) = f_e$, and same action of G as before.

Theorem (Amrutam-U., 2021)

Assume $G \curvearrowright X$ is minimal. The following are equivalent.

•
$$C(X) \rtimes_r G$$
 is simple.

Siven $a \in C(X) \rtimes_r G$ with E(a) = 0, we have

 $0 \in \overline{C(X) - \operatorname{conv}} \{g \cdot a \mid g \in G\} = \overline{\{\mu a \mid \mu \in P(G, C(X))\}}.$

Solution $a \in C(X) \rtimes_r G$, we have $E(a) \in (...)$.

Given $a \in C(X) \rtimes_r G$ and $\nu \in P(X)$, we have $\nu(E(a)) \in (...)$.

く 白 ト く ヨ ト く ヨ ト

$$(\phi\mu)(a) = \phi(\mu a).$$

< 4 ₽ × <

э

$$(\phi\mu)(a) = \phi(\mu a).$$

We say that $\phi \in S(C_r^*(G))$ is μ -stationary if $\phi \mu = \phi$.

< (17) > < (27 >)

э

$$(\phi\mu)(a) = \phi(\mu a).$$

We say that $\phi \in S(C_r^*(G))$ is μ -stationary if $\phi \mu = \phi$.

NOTE: given a fixed $\mu \in P(G)$ and a G-C*-algebra A, at least one μ -stationary state on A always exists by your favourite fixed point theorem.

$$(\phi\mu)(a) = \phi(\mu a).$$

We say that $\phi \in S(C_r^*(G))$ is μ -stationary if $\phi \mu = \phi$.

NOTE: given a fixed $\mu \in P(G)$ and a G-C*-algebra A, at least one μ -stationary state on A always exists by your favourite fixed point theorem.

Theorem (Hartman-Kalantar, 2017)

 $C_r^*(G)$ is simple if and only if there is some measure $\mu \in P(G)$ with full support and the canonical trace $\tau \in S(C_r^*(G))$ being the unique stationary state.

Theorem (Amrutam-U., 2021)

Assume $C(X) \rtimes_r G$ is simple. Then there is some $\mu \in P(G, C(X))$ (optionally full support for an appropriate notion) such that **for all** $a \in C(X) \rtimes_r G$ with E(a) = 0, we have $\mu^n a \to 0$.

Theorem (Amrutam-U., 2021)

Assume $C(X) \rtimes_r G$ is simple. Then there is some $\mu \in P(G, C(X))$ (optionally full support for an appropriate notion) such that **for all** $a \in C(X) \rtimes_r G$ with E(a) = 0, we have $\mu^n a \to 0$.

Corollary (Amrutam-U., 2021)

Assume $G \curvearrowright X$ is minimal. Then $C(X) \rtimes_r G$ is simple if and only if there is some full support $\mu \in P(G, C(X))$ such that any μ -stationary state $\phi \in S(C(X) \rtimes_r G)$ is of the form $\nu \circ E$ for some $\nu \in P(X)$.

(日)

Application: Simplicity of intermediate subalgebras

Assume $C(X) \subseteq C(Y)$ inclusion of commutative G-C*-algebras.

Assume $C(X) \subseteq C(Y)$ inclusion of commutative G-C*-algebras. Assume both $C(X) \rtimes_r G$ and $C(Y) \rtimes_r G$ are simple. Assume $C(X) \subseteq C(Y)$ inclusion of commutative *G*-C*-algebras. Assume both $C(X) \rtimes_r G$ and $C(Y) \rtimes_r G$ are simple. Is everything $C(X) \rtimes_r G \subseteq A \subseteq C(Y) \rtimes_r G$ also simple? Assume $C(X) \subseteq C(Y)$ inclusion of commutative *G*-C*-algebras. Assume both $C(X) \rtimes_r G$ and $C(Y) \rtimes_r G$ are simple. Is everything $C(X) \rtimes_r G \subseteq A \subseteq C(Y) \rtimes_r G$ also simple?

Theorem (Amrutam-Kalantar, 2020)

Yes, when $C(X) = \mathbb{C}$.

Assume $C(X) \subseteq C(Y)$ inclusion of commutative *G*-C*-algebras. Assume both $C(X) \rtimes_r G$ and $C(Y) \rtimes_r G$ are simple. Is everything $C(X) \rtimes_r G \subseteq A \subseteq C(Y) \rtimes_r G$ also simple?

Theorem (Amrutam-Kalantar, 2020)

Yes, when $C(X) = \mathbb{C}$.

Theorem (Amrutam-U., 2021)

Yes, in general.

Sketch of proof.

Consider $C(X) \rtimes_r G \subseteq A \subseteq C(Y) \rtimes_r G$, where $C(X) \rtimes_r G$ and $C(Y) \rtimes_r G$ are simple.

Sketch of proof.

Consider $C(X) \rtimes_r G \subseteq A \subseteq C(Y) \rtimes_r G$, where $C(X) \rtimes_r G$ and $C(Y) \rtimes_r G$ are simple.

Let $\mu \in P(G, C(X))$, full support, be s.t. for $a \in C(X) \rtimes_r G$ with E(a) = 0, we have $\mu^n a \to 0$.

Sketch of proof.

Consider $C(X) \rtimes_r G \subseteq A \subseteq C(Y) \rtimes_r G$, where $C(X) \rtimes_r G$ and $C(Y) \rtimes_r G$ are simple.

Let $\mu \in P(G, C(X))$, full support, be s.t. for $a \in C(X) \rtimes_r G$ with E(a) = 0, we have $\mu^n a \to 0$. Then this works for all $a \in C(Y) \rtimes_r G$ with E(a) = 0 (mildly nontrivial).

Sketch of proof.

Consider $C(X) \rtimes_r G \subseteq A \subseteq C(Y) \rtimes_r G$, where $C(X) \rtimes_r G$ and $C(Y) \rtimes_r G$ are simple.

Let $\mu \in P(G, C(X))$, full support, be s.t. for $a \in C(X) \rtimes_r G$ with E(a) = 0, we have $\mu^n a \to 0$. Then this works for all $a \in C(Y) \rtimes_r G$ with E(a) = 0 (mildly nontrivial). So all μ -stationary states on $C(Y) \rtimes_r G$ are of the form $\nu \circ E$, where $\nu \in P(Y)$. These are faithful by minimality of Y and full support of μ .

Sketch of proof.

Consider $C(X) \rtimes_r G \subseteq A \subseteq C(Y) \rtimes_r G$, where $C(X) \rtimes_r G$ and $C(Y) \rtimes_r G$ are simple.

Let $\mu \in P(G, C(X))$, full support, be s.t. for $a \in C(X) \rtimes_r G$ with E(a) = 0, we have $\mu^n a \to 0$. Then this works for all $a \in C(Y) \rtimes_r G$ with E(a) = 0 (mildly nontrivial). So all μ -stationary states on $C(Y) \rtimes_r G$ are of the form $\nu \circ E$, where $\nu \in P(Y)$. These are faithful by minimality of Y and full support of μ . Assume A is not simple, with nontrivial ideal I.

Sketch of proof.

Consider $C(X) \rtimes_r G \subseteq A \subseteq C(Y) \rtimes_r G$, where $C(X) \rtimes_r G$ and $C(Y) \rtimes_r G$ are simple.

Let $\mu \in P(G, C(X))$, full support, be s.t. for $a \in C(X) \rtimes_r G$ with E(a) = 0, we have $\mu^n a \to 0$. Then this works for all $a \in C(Y) \rtimes_r G$ with E(a) = 0 (mildly nontrivial). So all μ -stationary states on $C(Y) \rtimes_r G$ are of the form $\nu \circ E$, where $\nu \in P(Y)$. These are faithful by minimality of Y and full support of μ . Assume A is not simple, with nontrivial ideal I. There exists a μ -stationary state $\phi \in S(A/I)$ by your favourite fixed point theorem.

Sketch of proof.

Consider $C(X) \rtimes_r G \subseteq A \subseteq C(Y) \rtimes_r G$, where $C(X) \rtimes_r G$ and $C(Y) \rtimes_r G$ are simple.

Let $\mu \in P(G, C(X))$, full support, be s.t. for $a \in C(X) \rtimes_r G$ with E(a) = 0, we have $\mu^n a \to 0$. Then this works for all $a \in C(Y) \rtimes_r G$ with E(a) = 0 (mildly nontrivial). So all μ -stationary states on $C(Y) \rtimes_r G$ are of the form $\nu \circ E$, where $\nu \in P(Y)$. These are faithful by minimality of Y and full support of μ . Assume A is not simple, with nontrivial ideal I. There exists a μ -stationary state $\phi \in S(A/I)$ by your favourite fixed point theorem. Composing with $A \twoheadrightarrow A/I$, we get a non-faithful μ -stationary state $\psi \in S(A)$.

Sketch of proof.

Consider $C(X) \rtimes_r G \subseteq A \subseteq C(Y) \rtimes_r G$, where $C(X) \rtimes_r G$ and $C(Y) \rtimes_r G$ are simple.

Let $\mu \in P(G, C(X))$, full support, be s.t. for $a \in C(X) \rtimes_r G$ with E(a) = 0, we have $\mu^n a \to 0$. Then this works for all $a \in C(Y) \rtimes_r G$ with E(a) = 0 (mildly nontrivial). So all μ -stationary states on $C(Y) \rtimes_r G$ are of the form $\nu \circ E$, where $\nu \in P(Y)$. These are faithful by minimality of Y and full support of μ . Assume A is not simple, with nontrivial ideal I. There exists a μ -stationary state $\phi \in S(A/I)$ by your favourite fixed point theorem. Composing with $A \twoheadrightarrow A/I$, we get a non-faithful μ -stationary state $\psi \in S(A)$. Can extend to a μ -stationary state $\widetilde{\psi} \in S(C(Y) \rtimes_r G)$ by your favourite

fixed-point theorem again. Necessarily non-faithful.

Sketch of proof.

Consider $C(X) \rtimes_r G \subseteq A \subseteq C(Y) \rtimes_r G$, where $C(X) \rtimes_r G$ and $C(Y) \rtimes_r G$ are simple.

Let $\mu \in P(G, C(X))$, full support, be s.t. for $a \in C(X) \rtimes_r G$ with E(a) = 0, we have $\mu^n a \to 0$. Then this works for all $a \in C(Y) \rtimes_r G$ with E(a) = 0 (mildly nontrivial). So all μ -stationary states on $C(Y) \rtimes_r G$ are of the form $\nu \circ E$, where $\nu \in P(Y)$. These are faithful by minimality of Y and full support of μ . Assume A is not simple, with nontrivial ideal I. There exists a μ -stationary state $\phi \in S(A/I)$ by your favourite fixed point theorem. Composing with $A \twoheadrightarrow A/I$, we get a non-faithful μ -stationary state $\psi \in S(A)$. Can extend to a μ -stationary state $\widetilde{\psi} \in S(C(Y) \rtimes_r G)$ by your favourite

fixed-point theorem again. Necessarily non-faithful.