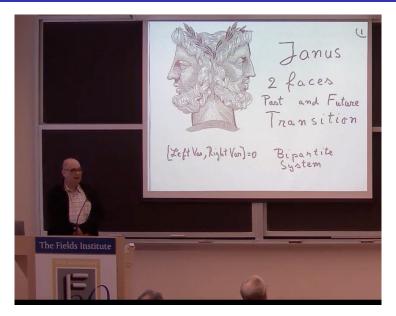
Non-Commutative Stochastic Processes and Bi-Free Probability

Paul Skoufranis

York University

May 31, 2022

Janus



Non-Commutative Stochastic Processes

Definition

Let (\mathcal{A}, φ) be a non-commutative probability space (NCPS); that is, \mathcal{A} is a unital C*-algebra and $\varphi: \mathcal{A} \to \mathbb{C}$ is a unital positive linear functional. A self-adjoint non-commutative stochastic process (SA-NC-SP) is a collection $(X_t)_{t\in \mathcal{T}}$ of self-adjoint elements in \mathcal{A} . The index set \mathcal{T} is considered a time parameter.

Example, (Bożejko, Kummerer, Speicher; 1997)

- ullet ${\mathcal H}$ a real Hilbert space, ${\mathcal H}_{\mathbb C}$ the complexification of ${\mathcal H}.$
- $\mathcal{F}(\mathcal{H}_{\mathbb{C}})$ the Fock space associated to $\mathcal{H}_{\mathbb{C}}$.
- $\tau: \mathcal{B}(\mathcal{F}(\mathcal{H}_{\mathbb{C}})) \to \mathbb{C}$ the vacuum vector state.

Example, (Bożejko, Kummerer, Speicher; 1997)

- ullet ${\mathcal H}$ a real Hilbert space, ${\mathcal H}_{\mathbb C}$ the complexification of ${\mathcal H}.$
- $\mathcal{F}(\mathcal{H}_{\mathbb{C}})$ the Fock space associated to $\mathcal{H}_{\mathbb{C}}$.
- $\tau: \mathcal{B}(\mathcal{F}(\mathcal{H}_{\mathbb{C}})) \to \mathbb{C}$ the vacuum vector state.
- $(f_t)_{t \in T}$ a set of vectors in \mathcal{H} with index set T.
- ullet A free (centred) Gaussian Markov process is $(X_t)_{t\in\mathcal{T}}$ where

$$X_t = I(f_t) + I^*(f_t)$$

where I and I^* are the left creation and annihilation operators.

Example, (Bożejko, Kummerer, Speicher; 1997)

- ullet ${\mathcal H}$ a real Hilbert space, ${\mathcal H}_{\mathbb C}$ the complexification of ${\mathcal H}.$
- $\mathcal{F}(\mathcal{H}_{\mathbb{C}})$ the Fock space associated to $\mathcal{H}_{\mathbb{C}}$.
- $\tau: \mathcal{B}(\mathcal{F}(\mathcal{H}_{\mathbb{C}})) \to \mathbb{C}$ the vacuum vector state.
- $(f_t)_{t \in T}$ a set of vectors in \mathcal{H} with index set T.
- ullet A free (centred) Gaussian Markov process is $(X_t)_{t\in\mathcal{T}}$ where

$$X_t = I(f_t) + I^*(f_t)$$

where I and I^* are the left creation and annihilation operators.

• Depends only on the covariance function $c: T \times T \to \mathbb{R}$ where $c(\ell, r) = \langle f_{\ell}, f_{r} \rangle$.

Example, (Bożejko, Kummerer, Speicher; 1997)

- ullet ${\mathcal H}$ a real Hilbert space, ${\mathcal H}_{\mathbb C}$ the complexification of ${\mathcal H}.$
- $\mathcal{F}(\mathcal{H}_{\mathbb{C}})$ the Fock space associated to $\mathcal{H}_{\mathbb{C}}$.
- $\tau: \mathcal{B}(\mathcal{F}(\mathcal{H}_{\mathbb{C}})) \to \mathbb{C}$ the vacuum vector state.
- $(f_t)_{t \in T}$ a set of vectors in \mathcal{H} with index set T.
- ullet A free (centred) Gaussian Markov process is $(X_t)_{t\in\mathcal{T}}$ where

$$X_t = I(f_t) + I^*(f_t)$$

where I and I^* are the left creation and annihilation operators.

- Depends only on the covariance function $c: T \times T \to \mathbb{R}$ where $c(\ell, r) = \langle f_{\ell}, f_{r} \rangle$.
 - free Brownian motion: $c(\ell, r) = \min(\ell, r)$ with $T = [0, \infty)$.

Example, (Bożejko, Kummerer, Speicher; 1997)

- ullet ${\mathcal H}$ a real Hilbert space, ${\mathcal H}_{\mathbb C}$ the complexification of ${\mathcal H}.$
- $\mathcal{F}(\mathcal{H}_{\mathbb{C}})$ the Fock space associated to $\mathcal{H}_{\mathbb{C}}$.
- $\tau: \mathcal{B}(\mathcal{F}(\mathcal{H}_{\mathbb{C}})) \to \mathbb{C}$ the vacuum vector state.
- $(f_t)_{t \in T}$ a set of vectors in \mathcal{H} with index set T.
- ullet A free (centred) Gaussian Markov process is $(X_t)_{t\in\mathcal{T}}$ where

$$X_t = I(f_t) + I^*(f_t)$$

where I and I^* are the left creation and annihilation operators.

- Depends only on the covariance function $c: T \times T \to \mathbb{R}$ where $c(\ell, r) = \langle f_{\ell}, f_{r} \rangle$.
 - free Brownian motion: $c(\ell, r) = \min(\ell, r)$ with $T = [0, \infty)$.
 - free Brownian bridge: $c(\ell, r) = \ell(1 r)$ for $\ell \le r$ with T = [0, 1].
 - free Ornstein-Uhlenbeck process: $c(\ell,r)=e^{-|\ell-r|}$ with $T=\mathbb{R}$.

Transition Operators

Bożejko, Kummerer, and Speicher compute the *transition operators* of such processes.

Definition

Let $(X_t)_{t\in T}$ be a SA-NC-SP in a tracial von Neumann algebra (\mathfrak{M},τ) . For $t\in T$, let μ_t be the distribution of X_t . Note $W^*(X_t)$ is isomorphic to $L_{\infty}(\mu_t)$.

For $\ell,r\in\mathcal{T}$ with $\ell\leq r$, an operator $\mathcal{K}_{\ell,r}:L_{\infty}(\mu_r)\to L_{\infty}(\mu_{\ell})$ where

$$E_{W^*(X_{\ell})}(h(X_r)) = (K_{\ell,r}(h))(X_{\ell})$$

for all Borel $h \in L_{\infty}(\mu_r)$ is called a *transition operator* of the process $(X_t)_{t \in T}$.

A Comparison

With $\lambda_t = \sqrt{c(t,t)}$ for $t \in \{\ell,r\}$ and $\lambda_{\ell,r} = \frac{c(\ell,r)}{\lambda_\ell \lambda_r}$, the transition operators of free Gaussian Markov processes are integration against

$$\frac{\frac{1}{2\pi\lambda_r^2}(1-\lambda_{\ell,r}^2)\sqrt{4\lambda_r^2-y^2}\,dy}{(1-\lambda_{\ell,r}^2)^2-\lambda_{\ell,r}(1+\lambda_{\ell,r}^2)\left(\frac{x}{\lambda_\ell}\right)\left(\frac{y}{\lambda_r}\right)+\lambda_{\ell,r}^2\left(\left(\frac{x}{\lambda_\ell}\right)^2+\left(\frac{y}{\lambda_r}\right)^2\right)}.$$

A Comparison

With $\lambda_t = \sqrt{c(t,t)}$ for $t \in \{\ell,r\}$ and $\lambda_{\ell,r} = \frac{c(\ell,r)}{\lambda_\ell \lambda_r}$, the transition operators of free Gaussian Markov processes are integration against

$$\frac{\frac{1}{2\pi\lambda_r^2}(1-\lambda_{\ell,r}^2)\sqrt{4\lambda_r^2-y^2}\,dy}{(1-\lambda_{\ell,r}^2)^2-\lambda_{\ell,r}(1+\lambda_{\ell,r}^2)\left(\frac{x}{\lambda_\ell}\right)\left(\frac{y}{\lambda_r}\right)+\lambda_{\ell,r}^2\left(\left(\frac{x}{\lambda_\ell}\right)^2+\left(\frac{y}{\lambda_r}\right)^2\right)}.$$

The density of the bi-free central limit distribution with left covariance $c(\ell,\ell)$, right covariance c(r,r), and mixed covariance $c(\ell,r)$ is

$$\frac{\frac{1}{4\pi^2\lambda_\ell^2\lambda_\ell^2}\left(1-\lambda_{\ell,r}^2\right)\sqrt{4\lambda_\ell^2-x^2}\sqrt{4\lambda_r^2-y^2}\,\mathrm{d}x\,\mathrm{d}y}{\left(1-\lambda_{\ell,r}^2\right)^2-\lambda_{\ell,r}\left(1+\lambda_{\ell,r}^2\right)\left(\frac{x}{\lambda_\ell}\right)\left(\frac{y}{\lambda_r}\right)+\lambda_{\ell,r}^2\left(\left(\frac{x}{\lambda_\ell}\right)^2+\left(\frac{y}{\lambda_r}\right)^2\right)}.$$

- R-Transform: $R_X(z) = \sum_{n>0} \kappa_{n+1}(X)z^n$.
- K-Transform: $K_X(z) = \frac{1}{z} + R_X(z)$.
- R-Transform for a Semicircular Operator: $R_S(z) = \varphi(S^2)z$.

- R-Transform: $R_X(z) = \sum_{n \ge 0} \kappa_{n+1}(X) z^n$.
- K-Transform: $K_X(z) = \frac{1}{z} + R_X(z)$.
- R-Transform for a Semicircular Operator: $R_S(z) = \varphi(S^2)z$.
- Inversion Property: $G_X(K_X(z)) = z = K_X(G_X(z))$.

- R-Transform: $R_X(z) = \sum_{n \ge 0} \kappa_{n+1}(X) z^n$.
- K-Transform: $K_X(z) = \frac{1}{z} + R_X(z)$.
- R-Transform for a Semicircular Operator: $R_S(z) = \varphi(S^2)z$.
- Inversion Property: $G_X(K_X(z)) = z = K_X(G_X(z))$.
- Cauchy Transform: $G_X(z) = \varphi((z-X)^{-1}) = \int_{\mathbb{R}} \frac{1}{z-x} d\mu_X(x)$.
- Cauchy Inversion: $d\mu_X(x) = \lim_{\epsilon \searrow 0} -\frac{1}{\pi} \Im \left(G_X(x+i\epsilon) \right)$.

- R-Transform: $R_X(z) = \sum_{n>0} \kappa_{n+1}(X)z^n$.
- K-Transform: $K_X(z) = \frac{1}{z} + R_X(z)$.
- R-Transform for a Semicircular Operator: $R_S(z) = \varphi(S^2)z$.
- Inversion Property: $G_X(K_X(z)) = z = K_X(G_X(z))$.
- Cauchy Transform: $G_X(z) = \varphi((z-X)^{-1}) = \int_{\mathbb{R}} \frac{1}{z-x} d\mu_X(x)$.
- Cauchy Inversion: $d\mu_X(x) = \lim_{\epsilon \searrow 0} -\frac{1}{\pi} \Im \left(G_X(x+i\epsilon) \right)$.
- Additivity of R-Transforms: If X and X' are freely independent, $R_{X+X'}(z) = R_X(z) + R_{X'}(z)$.

[(Voiculescu; 2016), (S; 2016), (Huang, Wang; 2016)]

- Reduced Bi-Free Partial R-Transform:
 - $\tilde{R}_{X,Y}(z,w) = \sum_{n,m>1} \kappa_{n,m}(X,Y) z^n w^m.$
- Reduced Bi-Free Partial R-Transform for a Semicircular Pair: $\tilde{R}_{S_{\ell},S_{r}}(z,w) = \varphi(S_{\ell}S_{r})zw$.

[(Voiculescu; 2016), (S; 2016), (Huang, Wang; 2016)]

- Reduced Bi-Free Partial R-Transform:
 - $\tilde{R}_{X,Y}(z,w) = \sum_{n,m\geq 1} \kappa_{n,m}(X,Y) z^n w^m.$
- Reduced Bi-Free Partial R-Transform for a Semicircular Pair: $\tilde{R}_{S_{\ell},S_{r}}(z,w) = \varphi(S_{\ell}S_{r})zw$.
- Inversion Property: $\tilde{R}_{X,Y}(z,w) = 1 \frac{zw}{G_{X,Y}(K_X(z),K_Y(w))}$

[(Voiculescu; 2016), (S; 2016), (Huang, Wang; 2016)]

- Reduced Bi-Free Partial R-Transform:
 - $\tilde{R}_{X,Y}(z,w) = \sum_{n,m\geq 1} \kappa_{n,m}(X,Y) z^n w^m.$
- Reduced Bi-Free Partial R-Transform for a Semicircular Pair: $\tilde{R}_{S_{\ell},S_{\ell}}(z,w) = \varphi(S_{\ell}S_r)zw$.
- Inversion Property: $\tilde{R}_{X,Y}(z,w) = 1 \frac{zw}{G_{X,Y}(K_X(z),K_Y(w))}$
- Green's Function:

$$G_{X,Y}(z,w) = \varphi((z-X)^{-1}(w-Y)^{-1}) = \int_{\mathbb{R}^2} \frac{1}{z-x} \frac{1}{w-y} d\mu_{X,Y}(x,y).$$

Cauchy Inversion:

$$d\mu_{X,Y}(x,y) = \lim_{\epsilon \searrow 0} \frac{1}{\pi^2} \Im\left(\frac{G_{X,Y}(x+i\epsilon,y+i\epsilon) - G_{X,Y}(x+i\epsilon,y-i\epsilon)}{2i}\right).$$

[(Voiculescu; 2016), (S; 2016), (Huang, Wang; 2016)]

- Reduced Bi-Free Partial R-Transform:
 - $\tilde{R}_{X,Y}(z,w) = \sum_{n,m>1} \kappa_{n,m}(X,Y) z^n w^m.$
- Reduced Bi-Free Partial R-Transform for a Semicircular Pair: $\tilde{R}_{S_{\ell},S_{\ell}}(z,w) = \varphi(S_{\ell}S_r)zw$.
- Inversion Property: $\tilde{R}_{X,Y}(z,w) = 1 \frac{zw}{G_{X,Y}(K_X(z),K_Y(w))}$
- Green's Function:

$$G_{X,Y}(z,w) = \varphi((z-X)^{-1}(w-Y)^{-1}) = \int_{\mathbb{R}^2} \frac{1}{z-x} \frac{1}{w-y} d\mu_{X,Y}(x,y).$$

- Cauchy Inversion:
 - $d\mu_{X,Y}(x,y) = \lim_{\epsilon \searrow 0} \frac{1}{\pi^2} \Im \left(\frac{G_{X,Y}(x+i\epsilon,y+i\epsilon) G_{X,Y}(x+i\epsilon,y-i\epsilon)}{2i} \right).$
- Additivity of R-Transforms: If (X, Y) and (X', Y') are bi-freely independent, $\tilde{R}_{X+X',Y+Y'}(z,w) = \tilde{R}_{X,Y}(z,w) + \tilde{R}_{X',Y'}(z,w)$.

- (\mathfrak{M}, τ) a tracial von Neumann algebra and $X_{\ell}, X_r \in \mathfrak{M}$ self-adjoint.
- $E: \mathfrak{M} \to W^*(X_\ell)$ trace-preserving conditional expectation.

- (\mathfrak{M}, τ) a tracial von Neumann algebra and $X_{\ell}, X_r \in \mathfrak{M}$ self-adjoint.
- $E: \mathfrak{M} \to W^*(X_\ell)$ trace-preserving conditional expectation.
- $S \in \mathfrak{M}$ the value of E(S) is determined by the values of $\tau(E(S)X_{\ell}^{n}) = \tau(SX_{\ell}^{n}) = \tau(X_{\ell}^{n}S)$.

- (\mathfrak{M}, τ) a tracial von Neumann algebra and $X_{\ell}, X_r \in \mathfrak{M}$ self-adjoint.
- $E: \mathfrak{M} \to W^*(X_\ell)$ trace-preserving conditional expectation.
- $S \in \mathfrak{M}$ the value of E(S) is determined by the values of $\tau(E(S)X_{\ell}^n) = \tau(SX_{\ell}^n) = \tau(X_{\ell}^nS)$.
- $L_2(\mathfrak{M}, \tau)$ GNS Hilbert space, $\xi = 1_{\mathfrak{M}} \in L_2(\mathfrak{M}, \tau)$.
- For $S \in \mathfrak{M}$ let L(S) and R(S) denote the left and right actions of S on $L_2(\mathfrak{M}, \tau)$ respectively.

- (\mathfrak{M}, τ) a tracial von Neumann algebra and $X_{\ell}, X_r \in \mathfrak{M}$ self-adjoint.
- $E: \mathfrak{M} \to W^*(X_\ell)$ trace-preserving conditional expectation.
- $S \in \mathfrak{M}$ the value of E(S) is determined by the values of $\tau(E(S)X_{\ell}^n) = \tau(SX_{\ell}^n) = \tau(X_{\ell}^nS)$.
- $L_2(\mathfrak{M}, \tau)$ GNS Hilbert space, $\xi = 1_{\mathfrak{M}} \in L_2(\mathfrak{M}, \tau)$.
- For $S \in \mathfrak{M}$ let L(S) and R(S) denote the left and right actions of S on $L_2(\mathfrak{M}, \tau)$ respectively.
- Then $\tau(X_{\ell}^n X_r^m) = \langle L(X_{\ell})^n R(X_r)^m \xi, \xi \rangle$.

- (\mathfrak{M}, τ) a tracial von Neumann algebra and $X_{\ell}, X_r \in \mathfrak{M}$ self-adjoint.
- $E: \mathfrak{M} \to W^*(X_\ell)$ trace-preserving conditional expectation.
- $S \in \mathfrak{M}$ the value of E(S) is determined by the values of $\tau(E(S)X_{\ell}^{n}) = \tau(SX_{\ell}^{n}) = \tau(X_{\ell}^{n}S)$.
- $L_2(\mathfrak{M}, \tau)$ GNS Hilbert space, $\xi = 1_{\mathfrak{M}} \in L_2(\mathfrak{M}, \tau)$.
- For $S \in \mathfrak{M}$ let L(S) and R(S) denote the left and right actions of S on $L_2(\mathfrak{M}, \tau)$ respectively.
- Then $\tau(X_{\ell}^n X_r^m) = \langle L(X_{\ell})^n R(X_r)^m \xi, \xi \rangle$.
- Hence if $d\mu(x,y) = f_{\ell,r}(x,y) dx dy$, then the transition operator $K_{\ell,r}: L_{\infty}(\mu_r) \to L_{\infty}(\mu_{\ell})$ is obtained via

$$(K_{\ell,r}(h))(x) = \int_{\Omega} h(y)k_{\ell,r}(x,dy)$$

where

$$k_{\ell,r}(x,dy) = \frac{f_{\ell,r}(x,y)}{f_{\ell}(x)} dy.$$

- (\mathfrak{M}, τ) be a tracial von Neumann algebra.
- $I\mapsto P_I$ a projection valued process; that is, this map is normal, projection valued, if $I,J\subseteq [0,1]$ are disjoint then $P_IP_J=0$ and $P_I+P_J=P_{I\cup J}$, and $\tau(P_I)=|I|$ for all $I\subseteq [0,1]$ where |I| denotes the Lebesgue measure of I.

- (\mathfrak{M}, τ) be a tracial von Neumann algebra.
- $I\mapsto P_I$ a projection valued process; that is, this map is normal, projection valued, if $I,J\subseteq [0,1]$ are disjoint then $P_IP_J=0$ and $P_I+P_J=P_{I\cup J}$, and $\tau(P_I)=|I|$ for all $I\subseteq [0,1]$ where |I| denotes the Lebesgue measure of I.
- *S* centred semicircular free from $\{P_I \mid I \subseteq [0,1]\}$.

- (\mathfrak{M}, τ) be a tracial von Neumann algebra.
- $I\mapsto P_I$ a projection valued process; that is, this map is normal, projection valued, if $I,J\subseteq [0,1]$ are disjoint then $P_IP_J=0$ and $P_I+P_J=P_{I\cup J}$, and $\tau(P_I)=|I|$ for all $I\subseteq [0,1]$ where |I| denotes the Lebesgue measure of I.
- *S* centred semicircular free from $\{P_I \mid I \subseteq [0,1]\}$.
- $X_t = SP_{[0,t)}S$ is called a *free Poisson process*.

- (\mathfrak{M}, τ) be a tracial von Neumann algebra.
- $I\mapsto P_I$ a projection valued process; that is, this map is normal, projection valued, if $I,J\subseteq [0,1]$ are disjoint then $P_IP_J=0$ and $P_I+P_J=P_{I\cup J}$, and $\tau(P_I)=|I|$ for all $I\subseteq [0,1]$ where |I| denotes the Lebesgue measure of I.
- *S* centred semicircular free from $\{P_I \mid I \subseteq [0,1]\}$.
- $X_t = SP_{[0,t)}S$ is called a *free Poisson process*.
- The transition operator is determined via the bi-free compound Poisson distribution (Gu, Huang, Mingo; 2016) with rate $\lambda=r$ and jump size $\nu=\frac{\ell}{r}\delta_{(1,0)}+\frac{r-\ell}{r}\delta_{(1,1)}$.

Freely Additive Increments

Definition

A SA-NC-SP $(X_t)_{t \in \mathcal{T}}$ in a NCPS (\mathcal{A}, φ) is said to have *freely additive* increments if for all $t_1 < t_2 < \cdots < t_n$ in \mathcal{T} , the operators $X_{t_1}, X_{t_2} - X_{t_1}, \ldots, X_{t_n} - X_{t_{n-1}}$ are freely independent.

Freely Additive Increments

Definition

A SA-NC-SP $(X_t)_{t \in \mathcal{T}}$ in a NCPS (\mathcal{A}, φ) is said to have *freely additive* increments if for all $t_1 < t_2 < \cdots < t_n$ in \mathcal{T} , the operators $X_{t_1}, X_{t_2} - X_{t_1}, \ldots, X_{t_n} - X_{t_{n-1}}$ are freely independent.

Theorem (S; 2022)

Let X and Y be freely independent self-adjoint operators in a tracial von Neumann algebra (\mathfrak{M},τ) . Then

$$G_{L(X),R(X+Y)}(z,w) = -\frac{G_X(z) - G_{X+Y}(w)}{z - K_X(G_{X+Y}(w))}.$$

In particular if $(X_t)_{t \in T}$ is a self-adjoint non-commutative stochastic process with freely additive increments, the above holds for $X = X_\ell$ and $Y = X_r - X_\ell$ for all $\ell < r$.

Free Cauchy Process

Example (Biane; 1998)

The *free Cauchy process* is the SA-NC-SP with freely additive increments where

$$d\mu_t(x) = \frac{1}{\pi} \frac{t}{x^2 + t^2} dx.$$

One can use the above to compute the joint density of $(L(X_{\ell}), R(X_r))$ to be

$$f_{\ell,r}(x,y) = \frac{1}{\pi^2} \frac{\ell}{x^2 + \ell^2} \frac{r - \ell}{(x - y)^2 + (r - \ell)^2}$$

and thus

$$k_{\ell,r}(x,dy) = \frac{f_{\ell,r}(x,y)}{f_{\ell}(x)} dy = \frac{1}{\pi} \frac{r-\ell}{(x-y)^2+(r-\ell)^2} dy.$$

Freely Adding NC-SP

Theorem (S; 2022)

Let X_1, X_2, Y_1, Y_2 be self-adjoint operators in a tracial von Neumann algebra (\mathfrak{M}, τ) such that $\operatorname{alg}(\{X_1, Y_1\})$ and $\operatorname{alg}(\{X_2, Y_2\})$ are freely independent. Thus $G_{X_1+X_2}(z)$ and $G_{Y_1+Y_2}(w)$ can be computed. With

$$\omega_{X_k}(z) = K_{X_k}(G_{X_1 + X_2}(z))$$
 and $\omega_{Y_k}(w) = K_{Y_k}(G_{Y_1 + Y_2}(w))$

for k = 1, 2, we have

$$\begin{split} \frac{1}{G_{X_1+X_2,Y_1+Y_2}(z,w)} + \frac{1}{G_{X_1+X_2}(z)G_{Y_1+Y_2}(w)} \\ &= \frac{1}{G_{X_1,Y_1}(\omega_{X_1}(z),\omega_{Y_1}(w))} + \frac{1}{G_{X_2,Y_2}(\omega_{X_2}(z),\omega_{Y_2}(w))}. \end{split}$$

Thus the transition operator of $Y_1 + Y_2$ onto $X_1 + X_2$ can be computed.

Thanks for Listening!