Nuclearity for partial crossed products by exact discrete groups

Camila F. Sehnem

Joint with Alcides Buss and Damián Ferraro

Victoria University of Wellington

COSy - 2022

If A is nuclear, $\alpha \colon G \curvearrowright A$ is amenable iff $A \rtimes_{\alpha,r} G$ is nuclear (AD). We say that α has the *weak containment property* if $A \rtimes_{\alpha} G \cong A \rtimes_{\alpha,r} G$ via the left regular representation.

Theorem (Matsumura)

Let α be an action of an exact discrete group G on a unital commutative C^{*}-algebra A. If α has the weak containment property, then the reduced crossed product $A \rtimes_{\alpha,r} G$ is nuclear, or equiv., α is amenable.

If A is nuclear, $\alpha : G \curvearrowright A$ is amenable iff $A \rtimes_{\alpha,r} G$ is nuclear (AD).

We say that α has the *weak containment property* if $A \rtimes_{\alpha} G \cong A \rtimes_{\alpha,r} G$ via the left regular representation.

Theorem (Matsumura)

Let α be an action of an exact discrete group G on a unital commutative C^{*}-algebra A. If α has the weak containment property, then the reduced crossed product $A \rtimes_{\alpha,r} G$ is nuclear, or equiv., α is amenable.

• If A is nuclear, $\alpha : G \curvearrowright A$ is amenable iff $A \rtimes_{\alpha,r} G$ is nuclear (AD). We say that α has the *weak containment property* if $A \rtimes_{\alpha} G \cong A \rtimes_{\alpha,r} G$ via the left regular representation.

Theorem (Matsumura)

Let α be an action of an exact discrete group G on a unital commutative C^{*}-algebra A. If α has the weak containment property, then the reduced crossed product $A \rtimes_{\alpha,r} G$ is nuclear, or equiv., α is amenable.

• If A is nuclear, $\alpha : G \curvearrowright A$ is amenable iff $A \rtimes_{\alpha,r} G$ is nuclear (AD). We say that α has the *weak containment property* if $A \rtimes_{\alpha} G \cong A \rtimes_{\alpha,r} G$ via the left regular representation.

Theorem (Matsumura)

Let α be an action of an exact discrete group G on a unital commutative C^{*}-algebra A. If α has the weak containment property, then the reduced crossed product $A \rtimes_{\alpha,r} G$ is nuclear, or equiv., α is amenable.

Let *G* be a discrete group with unit element *e* and $\beta: G \curvearrowright B$ be an action. Let *A* be an ideal in *B*. For each $g \in G$, set $A_g := A \cap \beta_g(A)$ and $\alpha_g := \beta_g \upharpoonright_{A_{g^{-1}}}$. Then $\alpha_g: A_{g^{-1}} \rightarrow A_g$ is an isomorphism for each $g \in G$ and the pair $\alpha = (\{A_g\}_{g \in G}, \{\alpha_g\}_{g \in G})$ has the following properties:

(i)
$$A_e = A$$
 and $\alpha_e = id_A$;
(ii)

$$\alpha_{g}(A_{g^{-1}} \cap A_{h}) = \beta_{g}(A \cap \beta_{g^{-1}}(A) \cap \beta_{h}(A))$$
$$= \beta_{g}(A) \cap A \cap \beta_{gh}(A) \subset A_{gh};$$

(iii) $\alpha_g \circ \alpha_h = \alpha_{gh}$ on $A_{h^{-1}} \cap A_{h^{-1}g^{-1}} = A \cap \beta_{h^{-1}}(A) \cap \beta_{h^{-1}g^{-1}}(A)$; $\alpha = (\{A_g\}_{g \in G}, \{\alpha_g\}_{g \in G})$ is an example of a partial action. Let *G* be a discrete group with unit element *e* and $\beta: G \curvearrowright B$ be an action. Let *A* be an ideal in *B*. For each $g \in G$, set $A_g := A \cap \beta_g(A)$ and $\alpha_g := \beta_g \upharpoonright_{A_{g^{-1}}}$. Then $\alpha_g: A_{g^{-1}} \to A_g$ is an isomorphism for each $g \in G$ and the pair $\alpha = (\{A_g\}_{g \in G}, \{\alpha_g\}_{g \in G})$ has the following properties:

(i)
$$A_e = A$$
 and $\alpha_e = id_A$;
(ii) $\alpha_{\sigma}(A_{\sigma^{-1}} \cap A_b) = \beta_{\sigma}(A \cap \beta_{\sigma^{-1}}(A) \cap \beta_b)$

$$\begin{aligned} \chi_{g}(A_{g^{-1}} \cap A_{h}) &= \beta_{g}(A \cap \beta_{g^{-1}}(A) \cap \beta_{h}(A)) \\ &= \beta_{g}(A) \cap A \cap \beta_{gh}(A) \subset A_{gh}; \end{aligned}$$

(iii) $\alpha_g \circ \alpha_h = \alpha_{gh}$ on $A_{h^{-1}} \cap A_{h^{-1}g^{-1}} = A \cap \beta_{h^{-1}}(A) \cap \beta_{h^{-1}g^{-1}}(A)$; $\alpha = (\{A_g\}_{g \in G}, \{\alpha_g\}_{g \in G})$ is an example of a partial action. Let *G* be a discrete group with unit element *e* and $\beta: G \curvearrowright B$ be an action. Let *A* be an ideal in *B*. For each $g \in G$, set $A_g := A \cap \beta_g(A)$ and $\alpha_g := \beta_g \restriction_{A_{g^{-1}}}$. Then $\alpha_g: A_{g^{-1}} \rightarrow A_g$ is an isomorphism for each $g \in G$ and the pair $\alpha = (\{A_g\}_{g \in G}, \{\alpha_g\}_{g \in G})$ has the following properties:

(i)
$$A_e = A$$
 and $\alpha_e = id_A$;
(ii)
 $\alpha_g(A_{g^{-1}} \cap A_h) = \beta_g(A \cap \beta_{g^{-1}}(A) \cap \beta_h(A))$
 $= \beta_g(A) \cap A \cap \beta_{gh}(A) \subset A_{gh}$;
(iii) $\alpha_g \circ \alpha_h = \alpha_{gh}$ on $A_{h^{-1}} \cap A_{h^{-1}g^{-1}} = A \cap \beta_{h^{-1}}(A) \cap \beta_{h^{-1}g^{-1}}(A)$;
 $\alpha = (\{A_g\}_{g \in G}, \{\alpha_g\}_{g \in G})$ is an example of a partial action.

A partial action of G on a C*-algebra A is a pair $\alpha = (\{A_g\}_{g \in G}, \{\alpha_g\}_{g \in G})$, where $\{A_g\}_{g \in G}$ is a family of closed two-sided ideals of A and $\alpha_g : A_{g^{-1}} \to A_g$ is an isomorphism for each $g \in G$, such that for all $g, h \in G$

- Ex1 Let $I, J \triangleleft A$ and $\alpha: I \rightarrow J$ a *-isomorphism. Then α induces a partial action $\alpha = (\{A_n\}_{n \in \mathbb{Z}}, \{\alpha_n\}_{n \in \mathbb{Z}})$; here $A_1 = J$ and $A_{-1} = I$; A_n is the domain of α^{-n} .
- Ex2 Let X be a LCH space. A partial action $\gamma = (\{C_0(U_g)\}_{g \in G}, \{\gamma_g\}_{g \in G})$ on $C_0(X)$ corresponds to a topological partial action $\hat{\gamma} = (\{U_g\}_{g \in G}, \{\hat{\gamma}_g\}_{g \in G})$ on X, that is, $\hat{\gamma}_g \colon U_{g^{-1}} \to U_g$ is a homeomorphism and $\hat{\gamma}_{gh}$ extends $\hat{\gamma}_g \circ \hat{\gamma}_h$. The *-isomorphism γ_g is then

$$f \in \mathcal{C}_0(U_{g^{-1}}) \mapsto f \circ \hat{\gamma}_{g^{-1}} \in \mathcal{C}_0(U_g).$$

- Ex1 Let $I, J \triangleleft A$ and $\alpha \colon I \to J$ a *-isomorphism. Then α induces a partial action $\alpha = (\{A_n\}_{n \in \mathbb{Z}}, \{\alpha_n\}_{n \in \mathbb{Z}})$; here $A_1 = J$ and $A_{-1} = I$; A_n is the domain of α^{-n} .
- Ex2 Let X be a LCH space. A partial action $\gamma = (\{C_0(U_g)\}_{g \in G}, \{\gamma_g\}_{g \in G})$ on $C_0(X)$ corresponds to a topological partial action $\hat{\gamma} = (\{U_g\}_{g \in G}, \{\hat{\gamma}_g\}_{g \in G})$ on X, that is, $\hat{\gamma}_g \colon U_{g^{-1}} \to U_g$ is a homeomorphism and $\hat{\gamma}_{gh}$ extends $\hat{\gamma}_g \circ \hat{\gamma}_h$. The *-isomorphism γ_g is then

$$f \in \mathrm{C}_0(U_{g^{-1}}) \mapsto f \circ \hat{\gamma}_{g^{-1}} \in \mathrm{C}_0(U_g).$$

A partial action $\alpha = (\{A_g\}_{g \in G}, \{\alpha_g\}_{g \in G})$ gives rise to a *-algebra as follows. Let \mathcal{B}_{α} be the set of all finite formal linear combinations

$$\sum_{g\in G} a_g \delta_g \quad (a_g \in A_g).$$

Define multiplication and involution operations on \mathcal{B}_{α} by setting

$$(\mathbf{a}\delta_{\mathbf{g}}) \cdot (\mathbf{b}\delta_{\mathbf{h}}) \coloneqq \alpha_{\mathbf{g}}(\alpha_{\mathbf{g}^{-1}}(\mathbf{a})\mathbf{b})\delta_{\mathbf{g}\mathbf{h}} \qquad (\mathbf{a}\delta_{\mathbf{g}})^* \coloneqq \alpha_{\mathbf{g}^{-1}}(\mathbf{a}^*)\delta_{\mathbf{g}^{-1}}.$$

The partial crossed product of A by G under α , denoted by $A \rtimes_{\alpha} G$, is the enveloping C*-algebra of \mathcal{B}_{α} .

A partial action $\alpha = (\{A_g\}_{g \in G}, \{\alpha_g\}_{g \in G})$ gives rise to a *-algebra as follows. Let \mathcal{B}_{α} be the set of all finite formal linear combinations

$$\sum_{g\in G} a_g \delta_g \quad (a_g \in A_g).$$

Define multiplication and involution operations on \mathcal{B}_{α} by setting

$$(\mathbf{a}\delta_{\mathbf{g}}) \cdot (\mathbf{b}\delta_{\mathbf{h}}) \coloneqq \alpha_{\mathbf{g}}(\alpha_{\mathbf{g}^{-1}}(\mathbf{a})\mathbf{b})\delta_{\mathbf{g}\mathbf{h}} \qquad (\mathbf{a}\delta_{\mathbf{g}})^* \coloneqq \alpha_{\mathbf{g}^{-1}}(\mathbf{a}^*)\delta_{\mathbf{g}^{-1}}.$$

The partial crossed product of A by G under α , denoted by $A \rtimes_{\alpha} G$, is the enveloping C*-algebra of \mathcal{B}_{α} .

The *reduced partial crossed product* $A \rtimes_{\alpha,r} G$ is the C*-algebra generated by a certain concrete representation \mathcal{B}_{α} . The induced *-homomorphism $\Lambda: A \rtimes_{\alpha} G \to A \rtimes_{\alpha,r} G$ is called the *regular representation* of $A \rtimes_{\alpha} G$.

We say that the partial action α has the weak containment property if Λ is an isomorphism.

Theorem (Ara-Exel-Katsura)

If the reduced partial crossed product $A \rtimes_{\alpha,r} G$ is nuclear, then α satisfies the weak containment property.

The *reduced partial crossed product* $A \rtimes_{\alpha,r} G$ is the C*-algebra generated by a certain concrete representation \mathcal{B}_{α} . The induced *-homomorphism $\Lambda: A \rtimes_{\alpha} G \to A \rtimes_{\alpha,r} G$ is called the *regular representation* of $A \rtimes_{\alpha} G$.

We say that the partial action α has the weak containment property if Λ is an isomorphism.

Theorem (Ara-Exel-Katsura)

If the reduced partial crossed product $A \rtimes_{\alpha,r} G$ is nuclear, then α satisfies the weak containment property.

A partial action $\alpha = (\{A_g\}_{g \in G}, \{\alpha_g\}_{g \in G})$ has the approximation property if there exists a net of functions $(\xi_i : G \to A)_{i \in I}$ with finite support satisfying (i) $\sup_{i \in I} \|\sum_{g \in G} \xi_i(g)^* \xi_i(g)\| < \infty$; (ii) $\lim_i \sum_{h \in G} \xi_i(gh)^* \alpha_g(\alpha_{g^{-1}}(a)\xi_i(h)) = a$, for all $g \in G$ and $a \in A_g$.

Theorem (Exel)

If α has the approximation property, then it satisfies the weak containment property. If, in addition, A is nuclear, then A $\rtimes_{\alpha,r}$ G is nuclear, too.

A partial action $\alpha = (\{A_g\}_{g \in G}, \{\alpha_g\}_{g \in G})$ has the approximation property if there exists a net of functions $(\xi_i : G \to A)_{i \in I}$ with finite support satisfying (i) $\sup_{i \in I} \|\sum_{g \in G} \xi_i(g)^* \xi_i(g)\| < \infty$; (ii) $\lim_i \sum_{h \in G} \xi_i(gh)^* \alpha_g(\alpha_{g^{-1}}(a)\xi_i(h)) = a$, for all $g \in G$ and $a \in A_g$.

Theorem (Exel)

If α has the approximation property, then it satisfies the weak containment property. If, in addition, A is nuclear, then $A \rtimes_{\alpha,r} G$ is nuclear, too.

A partial action $\alpha = (\{A_g\}_{g \in G}, \{\alpha_g\}_{g \in G})$ has the approximation property if there exists a net of functions $(\xi_i : G \to A)_{i \in I}$ with finite support satisfying (i) $\sup_{i \in I} \|\sum_{g \in G} \xi_i(g)^* \xi_i(g)\| < \infty$; (ii) $\lim_i \sum_{h \in G} \xi_i(gh)^* \alpha_g(\alpha_{g^{-1}}(a)\xi_i(h)) = a$, for all $g \in G$ and $a \in A_g$.

Theorem (Exel)

If α has the approximation property, then it satisfies the weak containment property. If, in addition, A is nuclear, then $A \rtimes_{\alpha,r} G$ is nuclear, too.

A partial action $\alpha = (\{A_g\}_{g \in G}, \{\alpha_g\}_{g \in G})$ has the approximation property if there exists a net of functions $(\xi_i : G \to A)_{i \in I}$ with finite support satisfying (i) $\sup_{i \in I} \|\sum_{g \in G} \xi_i(g)^* \xi_i(g)\| < \infty$; (ii) $\lim_i \sum_{h \in G} \xi_i(gh)^* \alpha_g(\alpha_{g^{-1}}(a)\xi_i(h)) = a$, for all $g \in G$ and $a \in A_g$.

Theorem (Exel)

If α has the approximation property, then it satisfies the weak containment property. If, in addition, A is nuclear, then $A \rtimes_{\alpha,r} G$ is nuclear, too.

Theorem (Buss–Echterhoff–Willett, Bearden-Crann, Ozawa-Suzuki) Let $\alpha = (\{A_g\}_{g \in G}, \{\alpha_g\}_{g \in G})$ be a partial action of G on a nuclear C^{*}-algebra A. If $A \rtimes_{\alpha,r} G$ is nuclear, then α has Exel's approximation property.

In particular, for a partial action lphaon a nuclear C^* -algebra A, we have:

 α has the approximation property $\Leftrightarrow A \rtimes_{\alpha} G$ is nuclear $\Rightarrow \alpha$ satisfies weak containment.

Theorem (Buss–Echterhoff–Willett, Bearden-Crann, Ozawa-Suzuki) Let $\alpha = (\{A_g\}_{g \in G}, \{\alpha_g\}_{g \in G})$ be a partial action of G on a nuclear C*-algebra A. If $A \rtimes_{\alpha,r} G$ is nuclear, then α has Exel's approximation property.

In particular, for a partial action α on a nuclear C*-algebra A, we have: α has the approximation property $\Leftrightarrow A \rtimes_{\alpha} G$ is nuclear $\Rightarrow \alpha$ satisfies weak containment. Theorem (Buss–Echterhoff–Willett, Bearden-Crann, Ozawa-Suzuki) Let $\alpha = (\{A_g\}_{g \in G}, \{\alpha_g\}_{g \in G})$ be a partial action of G on a nuclear C*-algebra A. If $A \rtimes_{\alpha,r} G$ is nuclear, then α has Exel's approximation property.

In particular, for a partial action α on a nuclear C*-algebra A, we have: α has the approximation property $\Leftrightarrow A \rtimes_{\alpha} G$ is nuclear $\Rightarrow \alpha$ satisfies weak containment.

Let α be a partial action of an exact discrete group G on a commutative C^* -algebra A. Suppose that α satisfies the weak containment property, that is, $A \rtimes_{\alpha} G \cong A \rtimes_{\alpha,r} G$ canonically. Then the reduced partial crossed product $A \rtimes_{\alpha,r} G$ is nuclear, or equivalently, α has the approximation property.

Idea: G is exact if and only if $\ell^{\infty}(G) \rtimes_{\tau,r} G$ is nuclear (Ozawa). Thus G exact $\Rightarrow (\ell^{\infty}(G) \otimes A'') \rtimes_{\tau \otimes \alpha'',r} G$ is nuclear. If α satisfies weak containment, we have a canonical inclusion $A \rtimes_{\alpha} G \hookrightarrow (\ell^{\infty}(G) \otimes A'') \rtimes_{\tau \otimes \alpha'',r} G$ and we get a ccp map $\varphi'' : (\ell^{\infty}(G) \otimes A'') \rtimes_{\tau \otimes \alpha'',r} G \to A'' \rtimes_{\alpha'',r} G$ extending the canonical inclusion. This implies nuclearity of $A'' \rtimes_{\alpha'',r} G$ and hence also of $A \rtimes_{\alpha,r} G$.

Let α be a partial action of an exact discrete group G on a commutative C^* -algebra A. Suppose that α satisfies the weak containment property, that is, $A \rtimes_{\alpha} G \cong A \rtimes_{\alpha,r} G$ canonically. Then the reduced partial crossed product $A \rtimes_{\alpha,r} G$ is nuclear, or equivalently, α has the approximation property.

Idea: G is exact if and only if $\ell^{\infty}(G) \rtimes_{\tau,r} G$ is nuclear (Ozawa). Thus G exact $\Rightarrow (\ell^{\infty}(G) \otimes A'') \rtimes_{\tau \otimes \alpha'',r} G$ is nuclear.

If α satisfies weak containment, we have a canonical inclusion $A \rtimes_{\alpha} G \hookrightarrow (\ell^{\infty}(G) \otimes A'') \rtimes_{\tau \otimes \alpha'', r} G$ and we get a ccp map $\varphi'' : (\ell^{\infty}(G) \otimes A'') \rtimes_{\tau \otimes \alpha'', r} G \to A'' \rtimes_{\alpha'', r} G$ extending the canonical inclusion. This implies nuclearity of $A'' \rtimes_{\alpha'', r} G$ and hence also of $A \rtimes_{\alpha, r} G$.

Let α be a partial action of an exact discrete group G on a commutative C^* -algebra A. Suppose that α satisfies the weak containment property, that is, $A \rtimes_{\alpha} G \cong A \rtimes_{\alpha,r} G$ canonically. Then the reduced partial crossed product $A \rtimes_{\alpha,r} G$ is nuclear, or equivalently, α has the approximation property.

Idea: G is exact if and only if $\ell^{\infty}(G) \rtimes_{\tau,r} G$ is nuclear (Ozawa). Thus G exact $\Rightarrow (\ell^{\infty}(G) \otimes A'') \rtimes_{\tau \otimes \alpha'',r} G$ is nuclear. If α satisfies weak containment, we have a canonical inclusion $A \rtimes_{\alpha} G \hookrightarrow (\ell^{\infty}(G) \otimes A'') \rtimes_{\tau \otimes \alpha'',r} G$ and we get a ccp map $\varphi'' : (\ell^{\infty}(G) \otimes A'') \rtimes_{\tau \otimes \alpha'',r} G \to A'' \rtimes_{\alpha'',r} G$ extending the canonical inclusion. This implies nuclearity of $A'' \rtimes_{\alpha'',r} G$ and hence also of $A \rtimes_{\alpha,r} G$.

Let G be an exact discrete group and let α be a partial action of G on a C^{*}-algebra A. Then the following are equivalent:

(i) α has the approximation property;

(ii) for every partial action β of G on a C^{*}-algebra B, we have

$$(A \otimes_{\max} B) \rtimes_{\alpha \otimes \beta} G = (A \otimes_{\max} B) \rtimes_{\alpha \otimes \beta, r} G.$$

 $\text{(iii)} \ (A \otimes_{\mathsf{max}} A^{\mathrm{op}}) \rtimes_{\alpha \otimes \alpha^{\mathrm{op}}} G = (A \otimes_{\mathsf{max}} A^{\mathrm{op}}) \rtimes_{\alpha \otimes \alpha^{\mathrm{op}}, r} G.$

Thank you!

Let G be an exact discrete group and let α be a partial action of G on a C^{*}-algebra A. Then the following are equivalent:

(i) α has the approximation property;

(ii) for every partial action β of G on a C^{*}-algebra B, we have

$$(A \otimes_{\max} B) \rtimes_{\alpha \otimes \beta} G = (A \otimes_{\max} B) \rtimes_{\alpha \otimes \beta, r} G.$$

 $\text{(iii)} \ (A \otimes_{\mathsf{max}} A^{\mathrm{op}}) \rtimes_{\alpha \otimes \alpha^{\mathrm{op}}} G = (A \otimes_{\mathsf{max}} A^{\mathrm{op}}) \rtimes_{\alpha \otimes \alpha^{\mathrm{op}}, r} G.$

Thank you!