Supercritical equilibrium states on a C*-algebra from number theory

Tyler Schulz, based on joint work with Marcelo Laca

University of Victoria

COSy 50th Anniversay May 31, 2022

Let A be a C*-algebra, σ_t a strongly-continuous \mathbb{R} -action, and $\beta \in \mathbb{R}$.

Definition

A KMS $_{\beta}$ state on (A, σ_t) is a state ϕ such that

$$\phi(xy) = \phi(y\sigma_{i\beta}(x))$$

for all x, y in a dense subalgebra of A.

 β is the inverse temperature. The set of KMS_{β} states is a Choquet simplex.

Example

$$A = M_n(\mathbb{C}), \quad \sigma_t(x) = e^{itH}xe^{-itH}, \quad H \ge 0,$$

$$\phi(x) = \frac{\operatorname{Tr}(xe^{-\beta H})}{\operatorname{Tr}(e^{-\beta H})}.$$

Example

$$A = M_n(\mathbb{C}), \quad \sigma_t(x) = e^{itH}xe^{-itH}, \quad H \ge 0,$$

$$\phi(x) = \frac{\operatorname{Tr}(xe^{-\beta H})}{\operatorname{Tr}(e^{-\beta H})}.$$

$$Tr(xy e^{-\beta H}) = Tr(y e^{-\beta H} x)$$

$$= Tr(y (e^{-\beta H} x e^{\beta H}) e^{-\beta H})$$

$$= Tr(y\sigma_{i\beta}(x) e^{-\beta H}).$$

ullet U a unitary, $\{V_a:a\in\mathbb{N}^ imes\}$ commuting isometries satisfying

$$UV_a = V_a U^a,$$
 $V_a V_b = V_{ab},$ $V_a^* V_b = V_b V_a^*$ when $\gcd(a,b) = 1.$

• U a unitary, $\{V_a:a\in\mathbb{N}^{ imes}\}$ commuting isometries satisfying

$$UV_a=V_aU^a,$$
 $V_aV_b=V_{ab},$ $V_a^*V_b=V_bV_a^*$ when $\gcd(a,b)=1.$

• Our algebra:

$$\mathcal{T}(\mathbb{N}^{\times} \ltimes \mathbb{Z}) = C_{univeral}^{*}(V_{a}, U : a \in \mathbb{N}^{\times})$$
$$= \overline{\operatorname{span}}\{V_{a}U^{n}V_{b}^{*} : a, b \in \mathbb{N}^{\times}, n \in \mathbb{Z}\}.$$

ullet U a unitary, $\{V_a:a\in\mathbb{N}^ imes\}$ commuting isometries satisfying

$$UV_a=V_aU^a,$$
 $V_aV_b=V_{ab},$ $V_a^*V_b=V_bV_a^*$ when $\gcd(a,b)=1.$

• Our algebra:

$$\mathcal{T}(\mathbb{N}^{\times} \ltimes \mathbb{Z}) = C_{univeral}^{*}(V_{a}, U : a \in \mathbb{N}^{\times})$$
$$= \overline{\operatorname{span}}\{V_{a}U^{n}V_{b}^{*} : a, b \in \mathbb{N}^{\times}, n \in \mathbb{Z}\}.$$

• R-action:

$$\sigma_t(V_a) = a^{it}V_a, \quad \sigma_t(U) = U.$$

Applying the Fourier transform to U allows us to substitute $\sum \lambda_n V_a U^n V_b^*$ with $V_a f V_b^*$, $f \in C(\mathbb{T})$.

The relation $UV_a=V_aU^a$ becomes $fV_a=V_af\circ\omega_a$, where

$$\omega_a: \mathbb{T} \to \mathbb{T}, \quad \omega_a(z) = z^a.$$

Low temperature equilibrium

Low temperature KMS_{β} states ($\beta > 1$) can all be computed using zeta functions as follows (an Huef-Laca-Raeburn):

• For η a probability measure on the circle \mathbb{T} , the function

$$\phi_{\eta,\beta}(V_aU^nV_b^*) = \delta_{a,b}\frac{a^{-\beta}}{\zeta(\beta)}\sum_{c=1}^{\infty}c^{-\beta}\int_{\mathbb{T}}z^{cn}d\eta$$

extends to a KMS_{β} state.

Low temperature equilibrium

Low temperature KMS_{β} states ($\beta > 1$) can all be computed using zeta functions as follows (an Huef-Laca-Raeburn):

• For η a probability measure on the circle \mathbb{T} , the function

$$\phi_{\eta,\beta}(V_aU^nV_b^*) = \delta_{a,b}rac{a^{-eta}}{\zeta(eta)}\sum_{c=1}^{\infty}c^{-eta}\int_{\mathbb{T}}z^{cn}d\eta$$

extends to a KMS_{β} state.

Equivalently,

$$\psi_{\nu,\beta}(V_aU^nV_b^*)=\delta_{a,b}a^{-\beta}\int_{\mathbb{T}}z^nd\nu,$$

where

$$\nu = T_{\beta} \eta = \frac{1}{\zeta(\beta)} \sum_{c=1}^{\infty} c^{-\beta} \omega_{c*} \eta.$$

→□→ →□→ → □→ □ → ○○○

Subconformal measures

The formula for $\psi_{\nu,\beta}$ is well-defined for all $\beta > 0$, but may not extend to a state.

Theorem

The map $\nu \mapsto \psi_{\nu,\beta}$ is an affine isomorphism between the KMS_{β} states on $(\mathcal{T}(\mathbb{N}^{\times} \ltimes \mathbb{Z}), \sigma_t)$ and probability measures ν on \mathbb{T} satisfying

$$\sum_{d|n} \mu(d) d^{-\beta} \omega_{d*} \nu \ge 0 \tag{1}$$

for all $n \in \mathbb{N}^{\times}$, where μ is the Möbius function.

Subconformal measures

The formula for $\psi_{\nu,\beta}$ is well-defined for all $\beta > 0$, but may not extend to a state.

Theorem

The map $\nu \mapsto \psi_{\nu,\beta}$ is an affine isomorphism between the KMS_{β} states on $(\mathcal{T}(\mathbb{N}^{\times} \ltimes \mathbb{Z}), \sigma_t)$ and probability measures ν on \mathbb{T} satisfying

$$\sum_{d|n} \mu(d) d^{-\beta} \omega_{d*} \nu \ge 0 \tag{1}$$

for all $n \in \mathbb{N}^{\times}$, where μ is the Möbius function.

We call a measure satisfying condition (1) β -subconformal. A more general form of this was investigated by Afsar, Larsen, and Neshveyev.

Subconformal measures

When $\beta > 1$, ν is β -subconformal if and only if $\nu = T_{\beta}\eta$ for some probability measure η .

$$egin{aligned} \mathcal{T}_{eta}\eta &= rac{1}{\zeta(eta)}\sum_{c=1}^{\infty}c^{-eta}\omega_{c*}\eta = rac{1}{\zeta(eta)}\left(\prod_{p ext{ prime}}rac{1}{1-p^{-eta}\omega_{p*}}
ight)\eta \ &\sum_{d|n}\mu(d)d^{-eta}\omega_{d*}
u &= \left(\prod_{p|n}1-p^{-eta}\omega_{p*}
ight)
u. \end{aligned}$$

These are inverse operations, up to scaling.

Formulas

Some functions from number theory:

$$arphi(n) = ext{ of integers } 1 \leq k < n ext{ with } \gcd(k,n) = 1$$

$$= n \prod_{p \mid n} 1 - p^{-1},$$

$$\varphi_{\beta}(n) = n^{\beta} \prod_{p|n} 1 - p^{-\beta},$$

$$\operatorname{ord}(z) = \inf\{n: \ z^n = 1\}.$$

Supercritical equilibrium

Theorem

For $\beta \leq 1$, the simplex of β -subconformal measures is affinely isomorphic to the simplex of probability measures on $\mathbb{N}^{\times} \cup \{\infty\}$. This isomorphism sends δ_{∞} to Haar measure and δ_n to the finitely-supported measure defined by

$$\nu_{n,\beta}(\{z\}) = \begin{cases} n^{-\beta} \frac{\varphi_{\beta}(\operatorname{ord}(z))}{\varphi(\operatorname{ord}(z))} & \text{if } \operatorname{ord}(z) \text{ divides } n, \\ 0 & \text{otherwise.} \end{cases}$$

Supercritical equilibrium

Theorem

For $\beta < 1$, the simplex of β -subconformal measures is affinely isomorphic to the simplex of probability measures on $\mathbb{N}^{\times} \cup \{\infty\}$. This isomorphism sends δ_{∞} to Haar measure and δ_n to the finitely-supported measure defined by

$$\nu_{n,\beta}(\{z\}) = \begin{cases} n^{-\beta} \frac{\varphi_{\beta}(\operatorname{ord}(z))}{\varphi(\operatorname{ord}(z))} & \text{if } \operatorname{ord}(z) \text{ divides } n, \\ 0 & \text{otherwise.} \end{cases}$$

Corollary

Haar measure is the unique non-atomic β -subconformal measure for $\beta < 1$.

The extremal β -subconformal measures are parameterized by \mathbb{T} for $\beta > 1$ and by $\mathbb{N}^{\times} \cup \{\infty\}$ for $\beta \leq 1$.

How do we transition from a connected space to one which is disconnected?

If $\operatorname{ord}(z) = \infty$, then integrating:

$$\int_{\mathbb{T}} z^n d\left(T_{\beta} \delta_z\right) = \frac{\mathsf{Li}_{\beta}(z^n)}{\zeta(\beta)}, \quad \text{where } \mathsf{Li}_{\beta}(z) = \sum_{c=1}^{\infty} z^c c^{-\beta}.$$

This tends to $\delta_{n,0}$ as $\beta \to 1^+$, which is the integral with Haar measure.

If
$$\operatorname{ord}(z) = n < \infty$$
, then

$$T_{eta}\delta_z = \sum_{k=1}^n n^{-eta} \cdot rac{\zeta(eta,rac{k}{n})}{\zeta(eta)}\delta_{z^k}, \quad ext{where } \zeta(eta,s) = \sum_{c=0}^{\infty} (c+s)^{-eta}.$$

If $\operatorname{ord}(z) = n < \infty$, then

$$T_{\beta}\delta_{\mathbf{z}} = \sum_{k=1}^{n} n^{-\beta} \cdot \frac{\zeta(\beta, \frac{k}{n})}{\zeta(\beta)} \delta_{\mathbf{z}^{k}}, \quad \text{where } \zeta(\beta, s) = \sum_{c=0}^{\infty} (c+s)^{-\beta}.$$

Compare this to the formula

$$\nu_{n,\beta} = \sum_{k=1}^{n} n^{-\beta} \cdot \frac{\varphi_{\beta}\left(\operatorname{ord}(z^{k})\right)}{\varphi\left(\operatorname{ord}(z^{k})\right)} \delta_{z^{k}} \quad (\operatorname{ord}(z^{k}) = n/\gcd(n,k)).$$

These agree in the limit $\beta \to 1$.

Putting this together, we can now describe the phase-transition:

$$\lim_{eta o 1^+} \mathcal{T}_{eta} \delta_z = \left\{ egin{array}{ll}
u_{n,1} & ext{if } \operatorname{ord}(z) = n \in \mathbb{N}^{ imes},
onumber \\
\operatorname{Haar measure} & ext{if } \operatorname{ord}(z) = \infty.
onumber \end{array}
ight.$$

The topology of ${\mathbb T}$ is completely forgotten in the phase transition!

Future work

This is the first non-trivial example of phase transition with non-unique supercritical equilibrium from number theory that we are aware of.

Future work will examine the phase transitions for more general number fields than \mathbb{Q} , where we expect similar behaviour.

