Relative Cohomology for Operator Modules

joint work with Martin Mathieu

COSy 2022 Michael Rosbotham

Queen's University Belfast & Carleton University

2022 MAY 31

This is joint work with Martin Mathieu at Queen's University Belfast.

Exact structures for operator modules. Canadian Journal of Mathematics (2022).

I have been able to work at Carleton University thanks to a London Mathematical Society Early Career Fellowship with support from Heilbronn Institute for Mathematical Research.

Definitions

Let A (unital, Banach algebra) be equipped with an operator space structure (an assignment of norms $\|\cdot\|_n$ on $M_n(A)$ satisfying Ruan's axioms)

- A is a (unital) operator algebra if

 $\|ab\|_n \le \|a\|_n \|b\|_n$

 $\forall a, b \in M_n(A) \text{ and } n \in \mathbb{N}.$ (Equivalently, $m: A \times A \to A, (a, b) \mapsto ab$ induces a completely contractive linear map $A \otimes_h A \to A$).

- A is a (unital) completely contractive Banach algebra if

 $\|[a_{ij}b_{k\ell}]_{(ij)(k\ell)}\|_{nm} \le \|[a_{ij}]\|_n \|[b_{k\ell}]\|_m$

 $\forall [a_{ij}] \in M_n(A), [b_{k\ell}] \in M_m(A) \text{ and } n, m \in \mathbb{N}.$ (Equivalently, $m: A \times A \to A, (a, b) \mapsto ab$ induces a completely contractive linear map $A \otimes A \to A$).

Operator (space) modules

- A completely contractive Banach algebra;
- E unital right A-module equipped with (complete) operator space structure;
- *E* is a (right, unital) *hA*-module if

$$m: E \times A \rightarrow E, \quad (x, a) \mapsto x \cdot a$$

induces a completely contractive linear map $E \otimes_h A \to E$.

 $hMod_A^{\infty}$: category of right (unital) hA-modules with completely bounded A-module maps.

E is a (right, unital) matrix normed (m.n.) A-module over A if

$$m: E \times A \rightarrow E, \quad (x, a) \mapsto x \cdot a$$

induces a completely contractive linear map $E \otimes A \to E$.

*mnMod*_A^{∞}: category of right *m.n.A*-modules with completely bounded *A*-module maps.

Examples: right unital hA-modules

For A unital operator algebra, E operator space.

- A with $a \cdot a' = aa'$.
- $E \otimes_h A$ with $(x \otimes a) \cdot a' := x \otimes (aa')$.

Examples: right unital m.n.A-modules

For A unital completely contractive Banach algebra, E operator space.

• A with
$$a \cdot a' = aa'$$
.

•
$$E \otimes A$$
 with $(x \otimes a) \cdot a' := x \otimes (aa')$.

•
$$CB(A, E)$$
 with $(T \cdot a)(b) = T(ab)$.

Examples: right unital hA-modules

For A unital operator algebra, E operator space.

- A with $a \cdot a' = aa'$.
- $E \otimes_h A$ with $(x \otimes a) \cdot a' := x \otimes (aa')$.

Examples: right unital m.n.A-modules

For A unital completely contractive Banach algebra, E operator space.

• A with
$$a \cdot a' = aa'$$
.

$$\blacktriangleright \ E \widehat{\otimes} A \text{ with } (x \otimes a) \cdot a' := x \otimes (aa').$$

•
$$CB(A, E)$$
 with $(T \cdot a)(b) = T(ab)$.

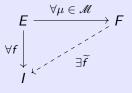
CES Representation Theorem [Christensen-Effros-Sinclair (1987)]

Let A be a unital operator algebra, E and operator space and $E \in Mod_A$. If $E \in Mod_A^{\infty}$, there exist Hilbert space H, a complete isometry $\phi \colon E \to B(H)$ and a completely isometric unital algebra homomorphism $\pi \colon A \to B(H)$ such that

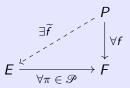
$$\phi(x \cdot a) = \phi(x)\pi(a), \quad \forall a \in A, x \in E.$$

Let $\mathscr A$ be a category, $\mathscr M$ a class of monomorphisms, and $\mathscr P$ a class of epimorphisms.

 $I \in \mathcal{A}$ is \mathcal{M} -injective if any morphism whose codomain is I, can be extended along morphisms in \mathcal{M}



 $P \in \mathscr{A}$ is \mathscr{P} -projective if if any morphism whose domain is P, can be lifted over morphisms in \mathscr{P}



Relative Homological Algebra

Idea: Focus on extensions along (and liftings over) morphisms that behave well under a forgetful functor.

Algebraic Module Categories: Hochschild 1950s

Additive Categories: Eilenberg-Moore 1960s

Banach and Topological Algebras: Taylor 1970s, Johnson, Helemskii, Selivanov, ...

Operator Algebras: Paulsen 1990s, Aristov, Wood, ...

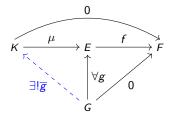
Theorem [Helemskii, 1980s]

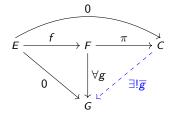
Let A be a unital C^* -algebra.

Every right Banach A-module is relatively projective if and only if A is classically semisimple.

In additive category \mathscr{A} , $E \xrightarrow{\mu} F \xrightarrow{\pi} G$ is a kernel-cokernel pair if μ is a kernel of π , and π is a cokernel of μ .

 π a cokernel:

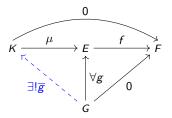


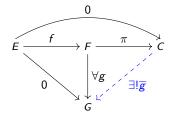


In additive category \mathscr{A} , $E \xrightarrow{\mu} F \xrightarrow{\pi} G$ is a kernel-cokernel pair if μ is a kernel of π , and π is a cokernel of μ .

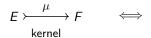
 μ a kernel:

 π a cokernel:





In $hMod_A^\infty$ and $mnMod_A^\infty$:



 μ has closed range and completely bounded inverse $\mu^{-1}\colon \mu(E)\to E$

 $F \xrightarrow{\pi} G \iff \pi$ is a completely open mapping cokernel

For \mathscr{A} an additive category and $(\mathscr{M}, \mathscr{P})$ a class of kernel-cokernel pairs:

 $\mathscr{E}x = (\mathscr{M}, \mathscr{P})$ is an exact structure (in the sense of Quillen) if:

- [E0] For all $E \in \mathcal{A}$, $\mathrm{id}_E \in \mathcal{M}$.
- [E0^{op}] For all $E \in \mathscr{A}$, $id_E \in \mathscr{P}$.
- [E1] \mathcal{M} is closed under composition.
- $[E1^{op}]$ \mathscr{P} is closed under composition.
- [E2^{op}] The pullback of a morphism in *P* along an arbitrary morphism exists and yields a morphism in *P*.

In this case we say $(\mathscr{A}, \mathscr{E}x)$ is an exact category.

T. Bühler. Exact categories. Expo. Math., 28(1) 1-69, 2010.

Theorem [Ara-Mathieu], [Mathieu-R. 2022]

Let A be an operator algebra. The class $\mathscr{E}x_{\max}$ of **all** kernel-cokernel pairs forms an exact structure on $hMod_A^{\infty}$ and $mnMod_A^{\infty}$.

Exact categories: $(\hbar Mod_A^{\infty}, \mathcal{E}x_{\max}), (mnMod_A^{\infty}, \mathcal{E}x_{\max})$

Every additive category has the minimal exact structure $\mathscr{E}x_{\min}$ of the split kernel-cokernel pairs.

Split:
$$E \xrightarrow{\mu} F \xrightarrow{\pi} G$$

such that $\nu \mu = id_E$, $\pi \theta = id_G$ and $\mu \nu + \theta \pi = id_F$.

Exact categories: $(\hbar Mod_A^{\infty}, \mathcal{E}x_{\min}), (m \ell Mod_A^{\infty}, \mathcal{E}x_{\min})$

Proposition

Let F: $(\mathscr{A}, \mathscr{E}x) \longrightarrow \mathscr{B}$ be the forgetful functor. The class of kernel-cokernel pairs

$$\mathscr{E}\!\!x_{\mathsf{rel}} \mathrel{\mathop:}= \{(\mu,\pi) \in \mathscr{E}\!\!x \,|\, (\mathsf{F}\mu,\mathsf{F}\pi) \in \mathscr{E}\!\!x_{\mathsf{min}}\}$$

forms an exact structure on \mathscr{B} . The relative exact structure. We write $\mathscr{E}x_{rel} = (\mathscr{M}_{rel}, \mathscr{P}_{rel})$.

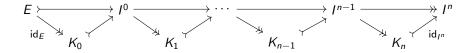
 $\mathsf{F}_{\hbar}: (\hbar \mathcal{M}od_{A}^{\infty}, \mathscr{E}x_{\max}) \to \mathscr{O}p^{\infty} \quad \text{and} \quad \mathsf{F}_{mn}: (mn\mathcal{M}od_{A}^{\infty}, \mathscr{E}x_{\max}) \to \mathscr{O}p^{\infty}$ yield exact categories ($\hbar \mathcal{M}od_{A}^{\infty}, \mathscr{E}x_{\mathsf{rel}}$) and ($mn\mathcal{M}od_{A}^{\infty}, \mathscr{E}x_{\mathsf{rel}}$).

An object I in an exact category with the relative exact structure is relatively injective if I is \mathcal{M}_{rel} -injective.

An object P in an exact category with the relative exact structure is relatively projective if P is \mathcal{P}_{rel} -projective.

Cohomological dimension in an Exact Category

 $(\mathscr{A}, \mathscr{E}x)$ be an exact category with $\mathscr{E}x = (\mathscr{M}, \mathscr{P})$. Let $E \in \mathscr{A}$. $\operatorname{Inj}_{\mathscr{M}}$ -dim(E) is the smallest $n \geq 0$ such that there exists:



where I^m all \mathcal{M} -injective and

$$K_m \rightarrow I^m \longrightarrow K_{m+1}$$
 in $\mathscr{E}x$.

cohomological dimension of $(\mathscr{A}, \mathscr{E}x)$ is

 $\operatorname{cohomdim}(\mathscr{A},\mathscr{E}x) := \sup \{\operatorname{Inj}_{\mathscr{M}} \operatorname{-dim}(E) \mid E \in \mathscr{M} \operatorname{od}_A\}$

Theorem [Mathieu-R. 2022]

Let A be a unital operator algebra. The following are equivalent:

- ► A is classically semisimple;
- cohomdim($\hbar Mod_A^{\infty}, \mathcal{E}x_{rel}$) = 0;
- cohomdim $(mnMod_A^{\infty}, \mathcal{E}x_{rel}) = 0.$

Theorem [Mathieu-R. 2022]

Let A be a unital operator algebra. The following are equivalent:

- A is classically semisimple;
- cohomdim($\hbar Mod_A^{\infty}, \mathcal{E}x_{rel}$) = 0;
- cohomdim $(mn\mathcal{M}od_A^{\infty}, \mathcal{E}x_{rel}) = 0.$

