Structures of crossed product C*-algebras

Zhuang Niu

University of Wyoming

Canadian Operator Symposium, 50th anniversary Ottawa, June 2, 2022 Consider a free and minimal topological dynamical system (X, Γ) , where

► X: compact metric space

 \triangleright Γ : a countable discrete amenable group acting on X.

The crossed product C*-algebra

 $\mathrm{C}(X) \rtimes \Gamma$

is simple unital separable stably finite $\mathsf{C}^*\mbox{-algebra}.$ Let us consider its structures such as

Classifiability, Comparison, and Stable Rank.

Uniform Rokhlin Property (URP)

Definition

A Rokhlin tower of (X, Γ) consists of a set B and a finite set $\Gamma_0 \subseteq \Gamma$ such that

$$B\gamma, \quad \gamma \in \Gamma_0,$$

are disjoint.

B is called the base set, and if *B* is open (closed), then (B, Γ_0) is called an open (closed) tower.

Remark

$$(B, \Gamma_0) \sim \operatorname{M}_{|\Gamma_0|}(\operatorname{C}_0(B))$$

Uniform Rohklin Property (URP)

A topological dynamical system (X, Γ) is said to have Uniform Rohklin Property (URP) if for any $\varepsilon > 0$ and any finite set $\mathcal{F} \subseteq \Gamma$, there are mutually disjoint open towers

 $(B_1, \Gamma_1), ..., (B_S, \Gamma_S)$

such that 1. Γ_s , s = 1, ..., S, are $(\mathcal{F}, \varepsilon)$ -invariant, 2. $\mu(X \setminus \bigcup_{s=1}^{S} \bigcup_{\gamma \in \Gamma_s} B_s \gamma) < \varepsilon, \quad \mu \in \mathcal{M}_1(X, \Gamma).$

Cuntz Comparison of Open sets (COS)

A topological dynamical system (X, Γ) is said to have (λ, m) -Cuntz-comparison of open sets, where $\lambda \in (0, 1]$ and $m \in \mathbb{N}$, if for any open sets $E, F \subseteq X$ with

$$\mu(E) < \lambda \mu(F), \quad \mu \in \mathcal{M}_1(X, \Gamma),$$

one has

$$[E] < m[F] \quad \text{in } \mathrm{C}(X) \rtimes \Gamma,$$

where [E] and [F] are the Cuntz class of the open sets E and F respectively.

The dynamical system (X, Γ) is said to have Cuntz Comparison of Open sets (COS) if it has (λ, m) -Cuntz-comparison of open sets for some λ and m.

Theorem

Any free and minimal dynamical system (X, \mathbb{Z}^d) has the (URP) and (COS).

Theorem

Any free and minimal dynamical system (X, Γ) has the (URP) and (COS) if Γ has subexponential growth and (X, Γ) has a Cantor factor.

Theorem

Let (X, Γ) be a free and minimal dynamical system with the (URP) and (COS). Then

1. if (X, Γ) has zero mean dimension (or, equivalently, Small Boundary Property), then

$$(\mathrm{C}(X) \rtimes \Gamma) \otimes \mathcal{Z} \cong \mathrm{C}(X) \rtimes \Gamma.$$

In particular, $C(X) \rtimes \Gamma$ is classifiable if (X, Γ) is uniquely ergodic.

2.

$$\operatorname{rc}(\operatorname{C}(X) \rtimes \Gamma) \leq \frac{1}{2} \operatorname{mdim}(X, \Gamma).$$

 (Li-N) The stable rank of C(X) ⋊ Γ, classifiable or not, is always one. And C(X) ⋊ Γ is Z-stable if, and only if, C(X) ⋊ Γ has strict comparison of positive elements (so it satisfies the Toms-Winter conjecture).

Corollary

 If (X, Z^d) has zero mean dimension (or, equivalently, Small Boundary Property), then

$$(\mathrm{C}(X) \rtimes \mathbb{Z}^d) \otimes \mathcal{Z} \cong \mathrm{C}(X) \rtimes \mathbb{Z}^d.$$

2.

$$\operatorname{rc}(\operatorname{C}(X) \rtimes \mathbb{Z}^d) \leq \frac{1}{2} \operatorname{mdim}(X, \mathbb{Z}^d).$$

(Li-N) The stable rank of C(X) ⋊ Z^d, classifiable or not, is always one. And C(X) ⋊ Z^d is Z-stable if, and only if, C(X) ⋊ Z^d has strict comparison of positive elements (so C(X) ⋊ Z^d satisfies the Toms-Winter conjecture).

Proof: Tracial Approximation

Theorem

If (X, Γ) has the (URP), then, for any finite set $\mathcal{F} \subseteq C(X) \rtimes \Gamma$ and any $\varepsilon > 0$, there are $p : X \to [0, 1]$ and $C \subseteq C(X) \rtimes \Gamma$ such that

$$C \cong \bigoplus_{s=1}^{S} \mathrm{M}_{|\Gamma_{s}|}(\mathrm{C}_{0}(B_{s})),$$

and

1.
$$\|[p, f]\| < \varepsilon, f \in \mathcal{F},$$

2. $pfp \in_{\varepsilon} C, f \in \mathcal{F},$
3. $d_{\tau}(1-p) < \varepsilon, \tau \in T(C(X) \rtimes \Gamma),$
 \vdots

Remark

In general, the cutting function p is not a projection.

C*-dynamical systems

Definition

Let (A, Γ) be a C*-dynamical system, where A is a unital separable C*-algebra such that $T(A) \neq \emptyset$, and Γ is a countable discrete amenable group. Then (A, Γ) is said to have the weak Rokhlin property (WRP) if for any exact tiling \mathcal{T} of Γ with shapes K_1, \ldots, K_S , there are positive contractions $c_s \in A' \cap A_{\omega}, s = 1, ..., S$ such that

1. $\gamma(c_s), \gamma \in \Gamma_s, s = 1, 2, ..., S$, are mutually orthogonal, and 2.

$$1-\sum_{s=1}^{S}\sum_{\gamma\in\Gamma_s}\gamma(c_s)\in J_{\mathcal{M}_1(\mathcal{A},\Gamma)},$$

where $\mathcal{M}_1(A, \Gamma)$ is the simplex of invariant tracial states, and $J_{\mathcal{M}_1(A,\Gamma)}$ is the trace-kernel with respect to invariant traces $\mathcal{M}_1(A,\Gamma)$.

C*-dynamical systems

Definition

Let (A, Γ) be a C*-dynamical system, where Γ is discrete and amenable. It has the property (COS) if there exist $\gamma \in (0, 1]$ and $m \in \mathbb{N}$ such that for any $a, b \in A^+$ satisfying

$$d_{\tau}(a) < \gamma d_{\tau}(b), \quad \tau \in \mathcal{M}_1(A, \Gamma),$$

one has

$$a \stackrel{\scriptstyle \prec}{\underset{m}{\sim}} \underbrace{b \oplus \cdots \oplus b}_{m} \quad \text{in } A \rtimes \Gamma.$$

Theorem (Li-N-Wang)

Assume (A, Γ) has the (WRP) and (COS). Then $A \rtimes \Gamma$ can be weakly tracially approximated by algebras $M_n(hAh)$.

Theorem (LNW)

Let (A, Γ) be a C*-dynamical system with the (WRP), where A is a unital simple C*-algebra which is tracially \mathcal{Z} -absorbing and Γ is a countable discrete amenable group. Then $A \rtimes \Gamma$ is tracially \mathcal{Z} -stable.

Theorem (LNW)

Let (A, Γ) be a minimal C*-dynamical system with (COS) and (WRP), where A is a unital C*-algebra with $T(A) \neq \emptyset$ and Γ is a discrete amenable group. Assume that $|\Gamma| = \infty$. Then $A \rtimes \Gamma$ has stable rank one.

Remark

The (URP) and (COS) can also be studied for groupoid C*-algebras (work in progress).

Thank you!