Phase transitions of C*-dynamical systems from number theory

Marcelo Laca Victoria

50th Canadian Operator Symposium Ottawa, 30 May - 3 June 2022

C*-dynamical systems and states

*C**-*dynamical system* = pair (A, σ)

- $A = C^*$ -algebra

- A^{sa} = observables
- $\sigma : \mathbb{R} \to \text{Aut}(A)$ = time evolution, or *dynamics* on *A*:

 $\sigma_0 = id$, $\sigma_s \circ \sigma_t = \sigma_{s+t}$, and $t \mapsto \sigma_t(a)$ norm continuous

states of A = linear functionals $\varphi : A \rightarrow \mathbb{C}$ such that

 $\varphi(a^*a) \ge 0$ and $\|\varphi\| = \varphi(1) = 1$

 $\varphi(\sigma_t(a)) = expectation value of a \in A^{sa}$ at $t \in \mathbb{R}$ in state φ .

These systems model the evolution of quantum physical systems (Heisenberg picture: states are fixed, observables evolve)

Example 0: finite quantum systems

Take $A = \operatorname{Mat}_n(\mathbb{C})$ $\sigma_t(a) = e^{itH}ae^{-itH}$ $\phi(\cdot) = \operatorname{Tr}(\cdot Q_{\phi}),$ Hamiltonian $H \in A^{sa}$,density matrix $Q_{\phi} \in A_1^+$ TFAE

1) $Q_{\varphi} = \frac{1}{\operatorname{Tr}(e^{-\beta H})} e^{-\beta H} =: Q_{Gibbs}$ 2) $\operatorname{Tr}(abQ_{\varphi}) = \operatorname{Tr}(be^{-\beta H}ae^{\beta H}Q_{\varphi}) \quad \forall a, b \in \operatorname{Mat}_{n}(\mathbb{C})$

 $(1 \implies 2)$ obvious, $(2 \implies 1)$ by linear algebra

Rewrite 2) as

2') $\varphi(ab) = \varphi(b\sigma_{i\beta}(a)) \quad \forall a, b \in Mat_n(\mathbb{C}).$

This characterization of Gibbs (equilibrium) states for finite systems becomes the definition for general C*-algebraic systems

KMS equilibrium condition

$(A, \sigma) = C^*$ -algebraic dynamical system

Definition [Haag-Hugenholtz-Winnink, 1967]: A state φ on A is a σ - KMS $_{\beta}$ state (equiv. satisfies the KMS condition with respect to σ at inverse temperature $\beta \neq 0$) if

 $\varphi(ab) = \varphi(b\sigma_{i\beta}(a)) \quad \forall a, b \in A, a \sigma$ -analytic

twisted-tracial condition, 'twisted by σ along imaginary time'
a ∈ A is σ-analytic if t → σt(a) extends to an entire function
σ-analytic elements form a dense *-subalgebra.

Phase transition with spontaneous symmetry-breaking

Phase transition = abrupt change of physical properties e.g. think of water and magnets as temperature increases.

often the symmetry group of a pure phase becomes smaller as temperature decreases.

- a snowflake is less symmetric than a spherical drop of water.
- a ferromagnet exhibits spontaneous magnetization

In C*-algebraic terms:

the group of automorphisms of A that commute with σ acts on KMS_{β}-states with β -dependent action.

Example I: The Bost–Connes system $(\mathcal{C}_{\mathbb{Q}}, \sigma)$

Algebra $\mathcal{C}_{\mathbb{Q}} \cong C^*(\mathbb{Q}/\mathbb{Z}) \rtimes \mathbb{N}^{\times} (\cong C(\prod_{\rho} \mathbb{Z}_{\rho}) \rtimes \mathbb{N}^{\times})$

generated by $\begin{cases} \text{semigroup of isometries} & \{\mu_n : n \in \mathbb{N}^\times\} \\ \text{group of unitaries} & \{e(r) : r \in \mathbb{Q}/\mathbb{Z}\} \end{cases}$

subject to

$$\mu_n \boldsymbol{e}(r) \mu_n^* = \frac{1}{n} \sum_{n \mathbf{s} = r} \boldsymbol{e}(s)$$

Dynamics σ_t , $\begin{cases} \sigma_t \\ \sigma_t \end{cases}$

$$egin{aligned} & \mathbf{h}_t(\mathbf{\mu}_n) = \mathbf{n}^{it}\mathbf{\mu}_n & \mathbf{n}\in\mathbb{N}^{ imes} \ & \mathbf{h}_t(\mathbf{e}(r)) = \mathbf{e}(r) & \mathbf{r}\in\mathbb{Q}/\mathbb{Z} \end{aligned}$$

 $t \in \mathbb{R}$

 $\begin{array}{ll} \text{Symmetries } \theta_{\chi}, & \begin{cases} \theta_{\chi}(\mu_n) = \mu_n & n \in \mathbb{N}^{\times} \\ \theta_{\chi}(\boldsymbol{e}(r)) = \boldsymbol{e}(\chi(r)) & r \in \mathbb{Q}/\mathbb{Z} \end{cases} & \chi \in \operatorname{Aut} \mathbb{Q}/\mathbb{Z} \end{cases}$

Fact: Aut $\mathbb{Q}/\mathbb{Z} \cong \prod_{\text{primes}} \mathbb{Z}_{\rho}^* \cong \text{Gal}(\mathbb{Q}^{cycl}/\mathbb{Q}) \cong \text{Gal}(\mathbb{Q}^{ab}/\mathbb{Q})$

Bost-Connes phase transition for $(\mathcal{C}_{\mathbb{Q}}, \sigma)$

Theorem [Bost-Connes '95]

- 1. $0 < \beta \leq 1 \implies \exists! \text{ KMS}_{\beta} \text{ state; injective type III}_{1} \text{ factor,}$ invariant under $\text{Gal}(\mathbb{Q}^{ab}/\mathbb{Q}) \cong \text{Aut } \mathbb{Q}/\mathbb{Z} \cong \prod_{p} \mathbb{Z}_{p}^{*}.$
- 1 < β ≤ ∞ ⇒ extremal KMS_β states φ_{β,χ} parametrized by embeddings χ : Q^{ab} → C of the maximal abelian extension of Q type I factor states with free transitive action of Gal(Q^{ab}/Q)
- 3. partition function = Riemann zeta function.

Remarks

The B-C system exhibits a **phase transition with spontaneous** symmetry breaking of a $Gal(\mathbb{Q}^{ab}/\mathbb{Q})$ action.

 $\mathcal{C}_{\mathbb{Q}}$ has an "arithmetic \mathbb{Q} -subalgebra" on which the extremal KMS_{∞} states give the **explicit embeddings** $\mathbb{Q}^{ab} \hookrightarrow \mathbb{C}$.

Explicit class field theory: Hilbert's 12th problem asks for the explicit embeddings of $K^{ab} \hookrightarrow \mathbb{C}$ for an algebraic number field K.

Example II: "b + ax" systems

K = algebraic number field, \mathcal{O}_{K} = ring of algebraic integers

semigroup $\mathcal{O}_{\mathcal{K}} \rtimes \mathcal{O}_{\mathcal{K}}^{\times} = "b + ax"$ semigroup of the ring $\mathcal{O}_{\mathcal{K}}$ formally: $\mathcal{O}_{\mathcal{K}} \times \mathcal{O}_{\mathcal{K}}^{\times}$ with (b, a)(d, c) := (b + ad, ac).

C*-algebra $A = C_r^*(\mathcal{O}_K \rtimes \mathcal{O}_K^{\times})$ (Toeplitz-type C*-algebra) generated by the l. r. r.

$$\mathcal{T}_{(b,a)}\xi_{(y,x)} = \xi_{(b+ay,ax)}$$
 on $\ell^2(\mathcal{O}_{\mathcal{K}} \rtimes \mathcal{O}_{\mathcal{K}}^{\times})$

Dynamics σ given by $\sigma_t(T_{(b,a)}) = [\mathcal{O}_{\mathcal{K}} : a\mathcal{O}_{\mathcal{K}}]^{it} T_{(b,a)}$ $t \in \mathbb{R}$

Notation: $S^b := T_{(b,1)}$ ($B \in \mathcal{O}_K$, add.) $V_a := T_{(0,a)}$ ($a \in \mathcal{O}_K^{\times}$, mult.)

Phase transition for $(\mathcal{O}_{\mathcal{K}}^* \otimes \mathcal{O}_{\mathcal{K}}^{\times}), \sigma)$

Theorem [Cuntz-Deninger-L.] cf. [L.-Raeburn ($K = \mathbb{Q}$)]

1. $0 \leq \beta < 1 \implies \nexists \text{ KMS}_{\beta}$ states

2. $1 \leq \beta \leq 2 \implies \exists! \text{ KMS}_{\beta} \text{ state, type III}_1 \text{ factor}$

3. $\beta > 2 \implies$ simplex of KMS $_{\beta}$ states is affinely isomorphic to tracial states of

$$\mathfrak{A} := \bigoplus_{\gamma \in \mathcal{C}\ell_{\mathcal{K}}} C^*(J_{\gamma} \rtimes U_{\mathcal{K}})$$

 J_{γ} = integral ideal representing the ideal class $\gamma \in \mathcal{C}\ell_{\mathcal{K}}$

 $U_{\mathcal{K}} = \text{group of units in } \mathcal{O}_{\mathcal{K}} \cong \mathbb{Z}^n \times W$ (free abelian × finite)

Remarks:

 $C^*(J_{\gamma} \rtimes U_{\mathcal{K}}) \cong C(\widehat{J}_{\gamma}) \rtimes U_{\mathcal{K}} \cong C(\mathbb{T}^d) \rtimes (\mathbb{Z}^n \times W)$

 \mathfrak{A} also gives the K-theory of A [Cuntz-Echterhoff-Li]

Invariant measures for linear toral automorphisms

extremal traces correspond to ergodic invariant measures for $\mathbb{Z}^n \times W \subset \mathbb{T}^d$ by automorphisms.

multiplication by $\rho(u) \in \operatorname{GL}_d(\mathbb{Z})$ for each $u \in U_K$ does not increase denominators, so rational points in $\mathbb{R}^d/\mathbb{Z}^d$ have finite \mathbb{Z}^n -orbits not so obviously, the converse also holds (cf. cat maps)

when $\mathbb{Z}^n \oplus \mathbb{T}^d$ contains a partially hyperbolic element the obvious ergodic invariant probability measures on \mathbb{T}^d are

- equidistributions on finite orbits
- Haar measure

Furstenberg's question: Are these all? (open)

Furstenberg's original question is about ergodic invariant measures on \mathbb{T} for the transformations $z \mapsto z^2$ and $z \mapsto z^3$ Generalized Furstenberg question for number fields *K* has *r* real embeddings, and 2*s* complex embeddings, then

 $n := \operatorname{rank} U_{K} = r + s - 1$ $d := \deg K = r + 2s$

[L-Warren, '20] 4 cases according to unit rank and degree:

- 1. rank $U_{\mathcal{K}} = 0$, ($\mathcal{K} = \mathbb{Q}$ or quadratic imaginary) then $U_{\mathcal{K}} = W$: {ergodic invariant measures} $\longleftrightarrow \widehat{\mathcal{O}}_{\mathcal{K}}/W$ (no F) (boring)
- 2. rank $U_K = 1$, (real quadr., mixed cubic, complex quartic): $U_K \subset \hat{O}_K \iff$ Bernoulli [Katznelson] (F? = no) (hopeless)
- 3. CM fields of degree > 4:

 $U_K \subset \hat{\mathcal{O}}_K$ has proper invariant subtori (F? = no, but...) (intriguing) [Katok-Spatzier](extra assumptions) zero-entropy measures on invariant sub-tori extended by Haar conditional measures on the fibers.

4. $K \neq CM$, rank $U_K \ge 2$ (ID fields) (F?) (hopeful)

topological version: yes [Berend]

another semigroup from + and \times on \mathbb{N}

Recall: $\mathbb{N} = (\{0, 1, 2, ...\}, +)$ and $\mathbb{N}^{\times} = (\{1, 2, ...\}, \times)$ have seen: $\mathbb{N} \rtimes \mathbb{N}^{\times} = \mathbb{N} \times \mathbb{N}^{\times}$ with operation (r, a)(s, b) = (r + as, ab)but there is another way of combining + and \times :

 $\mathbb{N}^{\times} \ltimes \mathbb{N} = \mathbb{N}^{\times} \times \mathbb{N}$ (as a set) with operation (a, r)(b, s) = (ab, br + s)

both have the quasi-lattice property:

$$xP \cap yP = \begin{cases} zP & \text{for some } z \in P \\ \emptyset & \text{otherwise} \end{cases}$$

the " \varnothing " can occur for $\mathbb{N} \times \mathbb{N}^{\times}$ but never for $\mathbb{N}^{\times} \ltimes \mathbb{N}$ i.e. every left-quotient is a right-quotient (Ore condition), so these are very different semigroups.

 $(r, a)(\mathbb{N} \rtimes \mathbb{N}^{\times}) = \{(r + ay, ax) \mid y \in \mathbb{N}, x \in \mathbb{N}^{\times}\}$ so for instance

 $(m,a)(\mathbb{N}\rtimes\mathbb{N}^{\times})\cap(n,a)(\mathbb{N}\rtimes\mathbb{N}^{\times})=\varnothing\quad\text{if }m\neq n\pmod{a}$

 $(a, r)(\mathbb{N}^{\times} \ltimes \mathbb{N}) = \{(ax, xr + y) \mid y \in \mathbb{N}, x \in \mathbb{N}^{\times}\}$

 $(a,m)(\mathbb{N}^{\times}\ltimes\mathbb{N})\cap(b,n)(\mathbb{N}^{\times}\ltimes\mathbb{N})=(\alpha,\rho)(\mathbb{N}^{\times}\ltimes\mathbb{N})\neq\emptyset$

 $\alpha = [a, b] := \operatorname{lcm}(a, b) \qquad \qquad \rho = [a, b] \max(\frac{m}{a}, \frac{n}{b})$

Fact:

 $\mathbb{N}^{\times} \ltimes \mathbb{N} \cong (\mathbb{N} \rtimes \mathbb{N}^{\times})^{opp}$

What about $\mathcal{T}_{left}(\mathbb{N}^{\times} \ltimes \mathbb{N})$? [an Huef-L-Raeburn '21]

Proposition [aH-L-R]: $\mathcal{T}_{left}(\mathbb{N}^{\times \ltimes} \mathbb{N})$ is universal with generators s and $\{v_a : a \in \mathbb{N}^{\times}\}$ subject to relations

(T0) $s^*s = 1 = v_a^* v_a$ (T1) $sv_a = v_a s^a$ (T2) $v_a v_b = v_{ab}$ (T3) $v_a^* v_b = v_b v_a^*$ when gcd(a, b) = 1(T4) $s^* v_a = v_a s^{*a}$

Note: s = "plus 1" and $v_a =$ "times a" so, e.g. (T1) 'means' a(x + 1) = ax + a or $R_{(1,1)}R_{(0,a)} = R_{(0,a)}R_{(1,a)}$ Additive boundary quotient Let $\partial_{add} \mathcal{T}(\mathbb{N}^{\times} \ltimes \mathbb{N}) := \mathcal{T}(\mathbb{N}^{\times} \ltimes \mathbb{N}) / \langle 1 - SS^* \rangle$

Turns *S* into a unitary *U*, alternatively, consider $\mathbb{N}^{\times} \ltimes \mathbb{Z}$

Proposition [aHLR 2021] $\partial_{add} \mathcal{T}(\mathbb{N}^{\times} \ltimes \mathbb{N})$ is the universal C*-algebra generated by *U* and {*V_a* : *a* $\in \mathbb{N}^{\times}$ } subject to

(A1) $UV_a = V_a U^a$,

(A2) $a \mapsto V_a$ is a Nica-covariant isometric representation of \mathbb{N}^{\times} , (this means $V_a V_a^* V_b V_b^* = V_{[a,b]} V_{[a,b]}^*$)

(A3) $UU^* = 1 = U^*U$.

We consider

$$\boldsymbol{A} = \partial_{\textit{add}} \mathcal{T}(\mathbb{N}^{\times} \ltimes \mathbb{N}) \cong \mathcal{T}_{\textit{left}}(\mathbb{N}^{\times} \ltimes \mathbb{Z})$$

with σ given by

 $\sigma_t(U) = U$ and $\sigma_t(V_a) = a^{it}V_a$ $(t \in \mathbb{R})$

A characterisation of KMS states of $(\mathcal{T}(\mathbb{N}^{\times_{\mathsf{K}}}\mathbb{Z}), \sigma)$

'Easy' fact: KMS_{β} states factor through the additive boundary quotient, so we may replace *S* (isometry) by *U* (unitary)

 $\begin{array}{l} \mbox{Proposition [aHLR, 2021]: } \underline{A \mbox{ state } \phi \mbox{ of } \mathcal{T}(\mathbb{N}^{\times}\ltimes \mathbb{Z}) \mbox{ is a KMS}_{\beta} \mbox{ state } if \mbox{ and only if } \end{array}$

 $\overline{\phi(V_a U^{m-n} V_b^*)} = \delta_{a,b} a^{-\beta} \phi(U^{m-n}) \quad \text{for all } (a,m), \ (b,n) \text{ in } \mathbb{N}^{\times} \ltimes \mathbb{N}.$

Note: such a state is determined by its restriction to $C^*(U) \cong C(\mathbb{T})$.

So KMS states are determined by probability measures on the circle.

But not all probability measures on the circle arise as restrictions of KMS_{β} states, because of the underlined assumption i.e. **positivity**.

low-temperature equilibrium

Theorem [aHLR, 2021]

 $1 < \beta < \infty \implies KMS_{\beta}$ states parametrized by prob. meas. on $\mathbb T$

$$\psi_{\mu,\beta} \leftrightarrow \mu$$

$$\psi_{\mu,\beta}(V_{a}U^{k}V_{b}^{*}) = \delta_{a,b}\frac{a^{-\beta}}{\zeta(\beta)}\sum_{c\in\mathbb{N}^{\times}}c^{-\beta}\mu(U^{ck})$$

Note: The formula

$$\frac{1}{\zeta(\beta)}\sum_{\boldsymbol{c}\in\mathbb{N}^{\times}}\boldsymbol{c}^{-\beta}\boldsymbol{\mu}(\boldsymbol{S}^{\boldsymbol{c}(\boldsymbol{m}-\boldsymbol{n})})$$

parametrizes the probability measures on \mathbb{T} that extend to a positive linear functional (hence KMS state) as in the Proposition.

what about $\beta \leq 1$?

For the 'left system' of [L-R '10] the circle of extremal KMS_{β} states of $(\mathbb{T}(\mathbb{N} \rtimes \mathbb{N}^{\times}), \sigma)$ collapses to a point as $\beta \searrow 2^+$

[aH-L-R '21]: Things are different for the 'right system' ($\mathcal{T}(\mathbb{N}^{\times_{\mathsf{K}}}\mathbb{N}), \sigma$).

Here are three critical ($\beta = 1$) examples, arising from three measures on \mathbb{T} :

1. Lebesgue measure μ :

$$\psi_{1,\mu}(V_a S^m S^{*n} V_b^*) = \delta_{a,b} \delta_{m,n} a^{-1}$$

2. unit point mass at 1:

$$\psi_{1,\delta_1}(V_a S^m S^{*n} V_b^*) = \delta_{a,b} a^{-1} \qquad (m, n \in N)$$

3. unit point mass at -1:

$$\psi_{1,\delta_{-1}}(V_aS^mS^{*n}V_b^*) = egin{cases} a^{-1} & ext{if } a = b ext{ and } m-n ext{ is even} \ 0 & ext{otherwise} \end{cases}$$

Supercritical equilibrium $T \ge 1$

Current joint work with Tyler Schulz:

Full description of the supercritical phase transition ($\beta \le 1$) Problem: find all the probability measures μ on \mathbb{T} for which

$$\varphi(V_{a}U^{k}V_{b}^{*}) = \delta_{a,b}a^{-\beta}\int_{\mathbb{T}} z^{k}d\mu(z)$$

extends to a state of $\mathcal{T}(\mathbb{N}^{\times} \ltimes \mathbb{Z})$ (automatically KMS_{β})

Preview: \exists two types of extremal solutions As $T = \frac{1}{\beta}$ increases past $T_{critical} = 1$, the irrational points 'melt' very differently from the rational points 1) irrationals \rightsquigarrow unique non nonatomic

2) rationals \rightsquigarrow many atomic ones.

That's it for now.

Thanks!