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C*-dynamical systems and states

C*-dynamical system = pair pA, σq
- A “ C˚-algebra
- Asa = observables
- σ : RÑ AutpAq “ time evolution, or dynamics on A:

σ0 “ id, σs ˝ σt “ σs`t , and t ÞÑ σtpaq norm continuous

states of A = linear functionals ϕ : A Ñ C such that

ϕpa˚aq ě 0 and }ϕ} “ ϕp1q “ 1

ϕpσtpaqq “ expectation value of a P Asa at t P R in state ϕ.

These systems model the evolution of quantum physical systems
(Heisenberg picture: states are fixed, observables evolve)



Example 0: finite quantum systems

Take A “ MatnpCq σtpaq “ eitHae´itH ϕp¨q “ Trp¨Qϕq,

Hamiltonian H P Asa, density matrix Qϕ P A`1
TFAE

1) Qϕ “ 1
Trpe´βHq

e´βH “: QGibbs

2) TrpabQϕq “ Trpbe´βHaeβHQϕq @ a,b P MatnpCq

(1 ùñ 2) obvious,
(2 ùñ 1) by linear algebra

Rewrite 2) as

2’) ϕpabq “ ϕpbσiβpaqq @a,b P MatnpCq.

This characterization of Gibbs (equilibrium) states for finite systems
becomes the definition for general C*-algebraic systems



KMS equilibrium condition

pA, σq “ C*-algebraic dynamical system

Definition [Haag-Hugenholtz-Winnink, 1967]:
A state ϕ on A is a σ- KMSβ state (equiv. satisfies the KMS condition
with respect to σ at inverse temperature β ‰ 0) if

ϕpabq “ ϕpbσiβpaqq @a,b P A, a σ-analytic

1) twisted-tracial condition, ‘twisted by σ along imaginary time’

2) a P A is σ-analytic if t Ñ σtpaq extends to an entire function

3) σ-analytic elements form a dense *-subalgebra.



Phase transition with spontaneous symmetry-breaking

Phase transition “ abrupt change of physical properties

e.g. think of water and magnets as temperature increases.

often the symmetry group of a pure phase becomes smaller as
temperature decreases.

- a snowflake is less symmetric than a spherical drop of water.
- a ferromagnet exhibits spontaneous magnetization

In C*-algebraic terms:
the group of automorphisms of A that commute with σ
acts on KMSβ-states with β-dependent action.



Example I: The Bost–Connes system pCQ, σq

Algebra CQ – C˚pQ{Zq ¸ Nˆ
`

– Cp
ś

p Zpq ¸ Nˆ
˘

generated by

#

semigroup of isometries tµn : n P Nˆu
group of unitaries teprq : r P Q{Zu

subject to µneprqµ˚n “
1
n

ÿ

ns“r

epsq

Dynamics σt ,

#

σtpµnq “ nitµn n P Nˆ

σtpeprqq “ eprq r P Q{Z
t P R

Symmetries θχ,

#

θχpµnq “ µn n P Nˆ

θχpeprqq “ epχprqq r P Q{Z
χ P AutQ{Z

Fact: AutQ{Z –
ź

primes

Z˚p – GalpQcycl{Qq – GalpQab{Qq



Bost-Connes phase transition for pCQ, σq

Theorem [Bost-Connes ’95]

1. 0 ă β ď 1 ùñ D! KMSβ state; injective type III1 factor,
invariant under GalpQab{Qq – AutQ{Z –

ś

p Z˚p .

2. 1 ă β ď 8 ùñ extremal KMSβ states φβ,χ parametrized by
embeddings χ : Qab Ñ C of the maximal abelian extension of Q
type I factor states with free transitive action of GalpQab{Qq

3. partition function “ Riemann zeta function.

Remarks

The B-C system exhibits a phase transition with spontaneous
symmetry breaking of a GalpQab{Qq action.

CQ has an “arithmetic Q-subalgebra" on which the extremal KMS8
states give the explicit embeddings Qab ãÑ C.

Explicit class field theory: Hilbert’s 12th problem asks for the
explicit embeddings of K ab ãÑ C for an algebraic number field K .



Example II: “b ` ax" systems

K “ algebraic number field, OK “ ring of algebraic integers

semigroup OK ¸OˆK “ “b ` ax" semigroup of the ring OK

formally: OK ˆOˆK with pb,aqpd , cq :“ pb ` ad ,acq.

C*-algebra A “ C˚r pOK ¸OˆK q (Toeplitz-type C*-algebra) generated
by the l. r. r.

Tpb,aqξpy,xq “ ξpb`ay,axq on `2pOK ¸OˆK q

Dynamics σ given by σtpTpb,aqq “ rOK : aOK s
it Tpb,aq t P R

Notation: Sb :“ Tpb,1q (B P OK , add.) Va :“ Tp0,aq (a P OˆK , mult.)



Phase transition for pC˚
r pOK ¸Oˆ

K q, σq

Theorem [Cuntz-Deninger-L.] cf. [L.-Raeburn pK “ Qq]

1. 0 ď β ă 1 ùñ E KMSβ states

2. 1 ď β ď 2 ùñ D! KMSβ state, type III1 factor

3. β ą 2 ùñ simplex of KMSβ states is affinely isomorphic to
tracial states of

A :“
à

γPC`K

C˚pJγ ¸ UK q

Jγ “ integral ideal representing the ideal class γ P C`K
UK “ group of units in OK – Zn ˆW (free abelian ˆ finite)

Remarks:
C˚pJγ ¸ UK q – CpĴγq ¸ UK – CpTd q ¸ pZn ˆW q

A also gives the K-theory of A [Cuntz-Echterhoff-Li]



Invariant measures for linear toral automorphisms

extremal traces correspond to ergodic invariant measures for
Zn ˆW ýTd by automorphisms.

multiplication by ρpuq P GLd pZq for each u P UK does not increase
denominators, so rational points in Rd{Zd have finite Zn-orbits

not so obviously, the converse also holds (cf. cat maps)

when Zn ýTd contains a partially hyperbolic element the obvious
ergodic invariant probability measures on Td are

- equidistributions on finite orbits
- Haar measure

Furstenberg’s question: Are these all? (open)

Furstenberg’s original question is about ergodic invariant measures
on T for the transformations z ÞÑ z2 and z ÞÑ z3



Generalized Furstenberg question for number fields
K has r real embeddings, and 2s complex embeddings, then

n :“ rank UK “ r ` s ´ 1 d :“ deg K “ r ` 2s

[L-Warren, ’20] 4 cases according to unit rank and degree:

1. rank UK “ 0, (K “ Q or quadratic imaginary) then UK “ W :
tergodic invariant measuresu ÐÑ ÔK {W (no F) (boring)

2. rank UK “ 1, (real quadr., mixed cubic, complex quartic):
UK ý̂OK ú Bernoulli [Katznelson] (F? = no) (hopeless)

3. CM fields of degree ą 4:
UK ý̂OK has proper invariant subtori (F? = no, but...) (intriguing)
[Katok-Spatzier](extra assumptions) zero-entropy measures on invariant
sub-tori extended by Haar conditional measures on the fibers.

4. K ‰ CM, rank UK ě 2 (ID fields) (F? ) (hopeful)

topological version: yes [Berend]



another semigroup from ` and ˆ on N

Recall: N “ pt0,1,2, . . .u, `) and Nˆ “ pt1,2, . . .u, ˆ)

have seen: N¸ Nˆ “ NˆNˆ with operation pr ,aqps,bq “ pr ` as,abq

but there is another way of combining ` and ˆ:

Nˆ˙ N “ Nˆ ˆ N (as a set) with operation pa, rqpb, sq “ pab,br ` sq

both have the quasi-lattice property:

xP X yP “

#

zP for some z P P
H otherwise

the “H" can occur for N¸ Nˆ but never for Nˆ˙ N i.e. every
left-quotient is a right-quotient (Ore condition), so these are very
different semigroups.



pr ,aqpN¸ Nˆq “ tpr ` ay ,axq | y P N, x P Nˆu so for instance

pm,aqpN¸ Nˆq X pn,aqpN¸ Nˆq “ H if m ‰ n pmod aq

pa, rqpNˆ˙ Nq “ tpax , xr ` yq | y P N, x P Nˆu

pa,mqpNˆ˙ Nq X pb,nqpNˆ˙ Nq “ pα, ρqpNˆ˙ Nq ‰ H

α “ ra,bs :“ lcm pa,bq ρ “ ra,bsmaxpm
a ,

n
b q

Fact:

Nˆ˙ N – pN¸ Nˆqopp



What about TleftpNˆ˙ Nq ? [an Huef-L-Raeburn ’21]

Proposition [aH-L-R]: TleftpNˆ˙ Nq is universal with generators s and
tva : a P Nˆu subject to relations

(T0) s˚s “ 1 “ v˚a va

(T1) sva “ vasa

(T2) vavb “ vab

(T3) v˚a vb “ vbv˚a when gcdpa,bq “ 1
(T4) s˚va “ vas˚a

Note: s = “plus 1” and va = “times a” so, e.g.

(T1) ‘means’ apx ` 1q “ ax ` a or Rp1,1qRp0,aq “ Rp0,aqRp1,aq



Additive boundary quotient
Let BaddT pNˆ˙ Nq :“ T pNˆ˙ Nq{x1´ SS˚y

Turns S into a unitary U, alternatively, consider Nˆ˙ Z

Proposition [aHLR 2021] BaddT pNˆ˙ Nq is the universal C*-algebra
generated by U and tVa : a P Nˆu subject to

(A1) UVa “ VaUa,

(A2) a ÞÑ Va is a Nica-covariant isometric representation of Nˆ,
(this means VaV˚a VbV˚b “ Vra,bsV˚ra,bs)

(A3) UU˚ “ 1 “ U˚U.

We consider

A “ BaddT pNˆ˙ Nq – TleftpNˆ˙ Zq

with σ given by

σtpUq “ U and σtpVaq “ aitVa pt P Rq



A characterisation of KMS states of pT pNˆ˙ Zq, σq

‘Easy’ fact: KMSβstates factor through the additive boundary
quotient, so we may replace S (isometry) by U (unitary)

Proposition [aHLR, 2021]: A state ϕ of T pNˆ˙ Zq is a KMSβ state
if and only if

ϕ
`

VaUm´nV˚b
˘

“ δa,ba´βϕ
`

Um´n˘ for all pa,mq, pb,nq in Nˆ˙ N.

Note: such a state is determined by its restriction to C˚pUq – CpTq.

So KMS states are determined by probability measures on the circle.

But not all probability measures on the circle arise as restrictions of
KMSβstates, because of the underlined assumption i.e. positivity.



low-temperature equilibrium

Theorem [aHLR, 2021]

1 ă β ă 8 ùñ KMSβ states parametrized by prob. meas. on T

ψµ,β ÐÑ µ

ψµ,βpVaUk V˚b q “ δa,b
a´β

ζpβq

ÿ

cPNˆ

c´βµpUck q

Note: The formula

1
ζpβq

ÿ

cPNˆ

c´βµpScpm´nqq

parametrizes the probability measures on T that extend to a positive
linear functional (hence KMS state) as in the Proposition.



what about β ď 1 ?
For the ‘left system’ of [L-R ’10] the circle of extremal KMSβ states of
pTpN¸ Nˆq, σq collapses to a point as βŒ 2`

[aH-L-R ’21]: Things are different for the ‘right system’ pT pNˆ˙Nq, σq.

Here are three critical (β “ 1) examples,
arising from three measures on T:

1. Lebesgue measure µ:

ψ1,µpVaSmS˚nV˚b q “ δa,bδm,n a´1

2. unit point mass at 1:

ψ1,δ1pVaSmS˚nV˚b q “ δa,b a´1 pm,n P Nq

3. unit point mass at ´1:

ψ1,δ´1pVaSmS˚nV˚b q “

#

a´1 if a “ b and m ´ n is even
0 otherwise



Supercritical equilibrium T ě 1

Current joint work with Tyler Schulz:

Full description of the supercritical phase transition (β ď 1)

Problem: find all the probability measures µ on T for which

ϕpVaUk V˚b q “ δa,ba´β
ż

T
zk dµpzq

extends to a state of T pNˆ˙ Zq (automatically KMSβ)

Preview: D two types of extremal solutions

As T “ 1
β

increases past Tcritical “ 1, the irrational points ‘melt’ very
differently from the rational points

1) irrationals ; unique non nonatomic

2) rationals ; many atomic ones.



That’s it for now.

Thanks!


