Finite dimensional approximations in operator algebras

Michael Hartz COSy 2022

Saarland University

Non-selfadjoint operator algebras

A unital operator algebra is a norm closed subalgebra \mathcal{A} of $\mathcal{B}(\mathcal{K})$ for some Hilbert space \mathcal{K} such that $id_{\mathcal{K}} \in \mathcal{A}$.

A representation of \mathcal{A} is a completely contractive homomorphism $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ for some Hilbert space \mathcal{H} .

Example

Let $\mathbb{D} = \{z \in \mathbb{C} : |z| < 1\}$ and $A(\mathbb{D}) = \{f \in C(\overline{\mathbb{D}}) : f|_{\mathbb{D}} \text{ is holomorphic}\}.$

Theorem (von Neumann, Sz.-Nagy)

If $T \in B(\mathcal{H})$ with $\|T\| \leq 1$, then there exists a unital representation

$$\pi: A(\mathbb{D}) \to B(\mathcal{H}), \quad p \mapsto p(T) \quad (p \in \mathbb{C}[z]).$$

This gives 1-1 correspondence between unital representations of $A(\mathbb{D})$ and contractions on Hilbert space.

Residual finite dimensionality (RFD)

Definition

An operator algebra \mathcal{A} is residually finite dimensional (RFD) if for all $n \in \mathbb{N}$ and all $a \in M_n(\mathcal{A})$, we have

$$\|a\| = \sup\{\|\pi^{(n)}(a)\| : \pi : A o B(\mathcal{H}) \text{ rep. with } \dim(\mathcal{H}) < \infty\}.$$

Equivalently, there exist a family $\{H_{\lambda} : \lambda \in \Lambda\}$ of finite dimensional Hilbert spaces and a completely isometric homomorphism

$$\pi: \mathcal{A} \to \prod_{\lambda \in \Lambda} B(\mathcal{H}_{\lambda}).$$

Introduced by Mittal–Paulsen. Systematically studied by Clouâtre–Marcoux, Clouâtre–Ramsey, Clouâtre–Dor-On, Thompson, ...

- A C*-algebra is RFD in the C*-sense iff it is RFD in the non-selfadjoint sense.
- Every finite dimensional operator algebra is RFD.
- Every uniform algebra (subalgebra of commutative C*-algebra) is RFD. In particular, A(D) is RFD.
- $\{T \in B(\ell^2) : T \text{ is upper triangular}\}$ is RFD.
- Multiplier algebras of reproducing kernel Hilbert spaces are RFD (Mittal-Paulsen).
- The universal operator algebra generated by *d* commuting contractions is RFD (Agler, Mittal–Paulsen).

The Exel-Loring theorem

A state φ on a unital C^* -algebra \mathfrak{A} is finite dimensional if the GNS representation associated with φ acts on a finite dimensional Hilbert space.

A representation $\pi : \mathfrak{A} \to B(\mathcal{H})$ is finite dimensional if $\dim(\pi(\mathfrak{A})\mathcal{H}) < \infty$.

Theorem (Exel-Loring)

The following assertions are equivalent for a unital C^* -algebra \mathfrak{A} : (i) \mathfrak{A} is RFD;

- (ii) the finite dimensional states are weak-* dense in the state space of \mathfrak{A} ;
- (iii) for every representation π : A → B(H), there exists a net (π_λ) of finite dimensional representations such that π_λ(a) → π(a) in SOT for all a ∈ A.

Question (Clouâtre–Dor-On)

Is there a non-selfadjoint version of this result?

A non-selfadjoint Exel-Loring theorem

Let \mathcal{A} be a unital operator algebra. For $n \in \mathbb{N}$, let

 $X_n = \{ \varphi : \mathcal{A} \to M_n : \varphi \text{ is linear and } u.c.c. \}.$

The matrix state space of \mathcal{A} is $S(\mathcal{A}) = (X_n)_{n=1}^{\infty}$. (matrix convex set)

Theorem (Arveson, Stinespring)

If $\varphi : \mathcal{A} \to M_n$ is a matrix state, then there exist a Hilbert space \mathcal{H} , an isometry $w : \mathbb{C}^n \to \mathcal{H}$ and a u.c.c. homomorphism $\pi : \mathcal{A} \to B(\mathcal{H})$ with

$$\varphi(a) = w^* \pi(a) w$$
 for all $a \in \mathcal{A}$.

Definition

A matrix state $\varphi : \mathcal{A} \to M_n$ is finite dimensional if \mathcal{H} can be chosen to be finite dimensional.

Let \mathcal{A} be a unital operator algebra. A representation $\pi : \mathcal{A} \to B(\mathcal{H})$ is finite dimensional if dim $(C^*(\pi(\mathcal{A}))\mathcal{H}) < \infty$.

Theorem (H.)

The following assertions are equivalent for a unital operator algebra \mathcal{A} :

- (i) \mathcal{A} is RFD;
- (ii) the finite dimensional matrix states are weak-* dense in the matrix state space S(A);
- (iii) for every representation π : A → B(H), there exists a net (π_λ) of finite dimensional representations such that π_λ(a) → π(a) in WOT for all a ∈ A.
- If ${\cal A}$ and ${\cal H}$ are separable, the net in (iii) can be replaced with a sequence.

(i) RFD \Rightarrow (ii) density of finite dimensional matrix states:

Matrix convex adaptation of Exel-Loring proof; uses Hahn-Banach separation theorem of Effros-Winkler.

(ii) density of f.d. matrix states states \Rightarrow (iii) WOT-approximation by f.d. representations:

Let $\pi:\mathcal{A}\to\mathcal{B}(\mathcal{H})$ be unital representation. Let $M\subset\mathcal{H}$ be f.d. and

$$arphi:\mathcal{A} o B(M), \quad \mathsf{a}\mapsto \mathsf{P}_M\pi(\mathsf{a})ig|_M.$$

Approximate φ by f.d. matrix state ψ . Then dilate ψ to f.d. representation σ of \mathcal{A} .

Get $P_M \pi(a) P_M \approx P_M \sigma(a) P_M$.

WOT vs. SOT

Easy observation

If \mathfrak{A} is a C^* -algebra and $\pi_\lambda, \pi: \mathfrak{A} \to B(\mathcal{H})$ are representations, then

 $\pi_{\lambda}(a) \to \pi(a)$ WOT for all $a \in \mathfrak{A} \Leftrightarrow \pi_{\lambda}(a) \to \pi(a)$ SOT for all $a \in \mathfrak{A}$.

Proof: If (A_{λ}) is a net in $B(\mathcal{H})$ with $A_{\lambda} \to A$ and $A_{\lambda}^*A_{\lambda} \to A^*A$ in WOT, then $A_{\lambda} \to A$ in SOT.

Question (Clouâtre-Dor-On)

Let \mathcal{A} be an RFD operator algebra and let $\pi : \mathcal{A} \to \mathcal{B}(\mathcal{H})$ be a representation. Is there a net (π_{λ}) of f.d. representations such that

(a)
$$\pi_{\lambda}(a) \rightarrow \pi(a)$$
 in SOT for all $a \in \mathcal{A}$;

(b) $\pi_{\lambda}(a) \rightarrow \pi(a)$ in SOT-* for all $a \in \mathcal{A}$?

A counterexample

 $A(\mathbb{D}) = \{ f \in C(\overline{\mathbb{D}}) : f |_{\mathbb{D}} \text{ is holomorphic} \}.$ Let $\mathbb{T} = \partial \mathbb{D}$ and regard $A(\mathbb{D}) \subset C(\mathbb{T})$ by maximum modulus principle.

Theorem (H.)

Let

$$\mathcal{B} = \left\{ egin{bmatrix} f & 0 \ h & \overline{g} \end{bmatrix} : f,g \in A(\mathbb{D}), h \in C(\mathbb{T})
ight\} \subset M_2(C(\mathbb{T})).$$

Then:

- (a) \mathcal{B} is a unital operator algebra that is RFD;
- (b) there exists a representation $\pi : \mathcal{B} \to \mathcal{B}(\mathcal{H})$ that is not the point SOT-limit of a net of finite dimensional representations of \mathcal{B} .

A non-approximable representation

If $f \in L^2(\mathbb{T})$, let $\widehat{f}(n) = \int_{\mathbb{T}} f(z) z^{-n} dm(z)$ be the Fourier coefficients of f. The Hardy space is $H^2 = \{f \in L^2(\mathbb{T}) : \widehat{f}(n) = 0 \text{ for all } n < 0\}.$

If $h \in C(\mathbb{T})$, the Toeplitz operator with symbol h is

$$T_h: H^2 \to H^2, \quad f \mapsto P_{H^2}(h \cdot f).$$

Theorem

$$\pi:\left\{ \begin{bmatrix} f & 0 \\ h & \overline{g} \end{bmatrix} : \begin{array}{c} f,g \in \mathcal{A}(\mathbb{D}) \\ h \in \mathcal{C}(\mathbb{T}) \end{array} \right\} \to \mathcal{B}(\mathcal{H}^2 \oplus \mathcal{H}^2), \quad \begin{bmatrix} f & 0 \\ h & \overline{g} \end{bmatrix} \mapsto \begin{bmatrix} \mathcal{T}_f & 0 \\ \mathcal{T}_h & \mathcal{T}_{\overline{g}} \end{bmatrix}$$

is a representation that is not the point SOT-limit of a net of finite dimensional representations.

 π is multiplicative since $T_{\overline{g}}T_h = T_{\overline{g}h}$ and $T_hT_f = T_{hf}$.

RFD C*-covers

C^* -covers

Let \mathcal{A} be a unital operator algebra.

Definition

A C^* -cover of \mathcal{A} is a pair (\mathfrak{A}, ι) , where \mathfrak{A} is a unital C^* -algebra, $\iota : \mathcal{A} \to \mathfrak{A}$ is a unital completely isometric homomorphism and $\mathfrak{A} = C^*(\iota(\mathcal{A})).$

If $(\mathfrak{A}_1, \iota_1)$ and $(\mathfrak{A}_2, \iota_2)$ are two *C*^{*}-covers, say $(\mathfrak{A}_1, \iota_1) \leq (\mathfrak{A}_2, \iota_2)$ if there is a *-homomorphism $\pi : \mathfrak{A}_2 \to \mathfrak{A}_1$ such that $\pi \circ \iota_2 = \iota_1$.

Theorem (Harmana, Dritschel–McCullough, Arveson, Davidson– Kennedy)

There exists a smallest C^* -cover $C^*_e(\mathcal{A})$, called the C^* -envelope.

Proposition

There exists a largest C^* -cover $C^*_{max}(\mathcal{A})$.

 $A(\mathbb{D}) = \{ f \in C(\overline{\mathbb{D}}) : f |_{\mathbb{D}} \text{ holomorphic} \}.$

Example

Let $\mathcal{A} = \{T \in B(\ell^2) : T \text{ is upper triangular}\}$. Then \mathcal{A} is RFD, but $C_e^*(\mathcal{A}) = B(\ell^2)$ is not RFD.

Example

Arveson's algebra \mathcal{A}_d , i.e. the univeral operator algebra generated by a row contractive commuting *d*-tuple, is RFD. But $C_e^*(\mathcal{A}_d)$ is not RFD if $d \ge 2$ (it contains the compacts).

Theorem (Clouâtre-Ramsey)

There exists a finite dimensional operator algebra whose C^* -envelope is not RFD.

Theorem (Aleman–H.–M^cCarthy–Richter)

A unital operator algebra \mathcal{A} is *n*-subhomogeneous if and only if $C_e^*(\mathcal{A})$ is *n*-subhomogeneous.

Is C^*_{max} RFD?

Universal property of C^*_{max}

Every representation of \mathcal{A} extends to a *-representation of $C^*_{max}(\mathcal{A})$.

Question (Clouâtre-Dor-On)

Let \mathcal{A} be an RFD operator algebra. Is $C^*_{max}(\mathcal{A})$ RFD?

Positive answer for certain algebras, including Arveson's algebra \mathcal{A}_d .

Theorem (Thompson)

If \mathcal{A} is RFD, there is a maximal RFD C^* -cover $\mathfrak{R}(\mathcal{A})$ of \mathcal{A} . Every finite dimensional representation of \mathcal{A} extends to a *-representation of $\mathfrak{R}(\mathcal{A})$.

Theorem (Clouâtre-Dor-On)

 $C^*_{max}(\mathcal{A})$ is RFD if and only if every representation of \mathcal{A} is the point SOT-* limit of a net of finite dimensional representations of \mathcal{A} .

Necessity follows from universal property and Exel-Loring theorem.

$$C^*_{max}(\mathcal{B})$$
 is not RFD

Recall that

$$\mathcal{B}=\left\{egin{bmatrix} f&0\h&\overline{g}\end{bmatrix}:f,g\in\mathcal{A}(\mathbb{D}),h\in\mathcal{C}(\mathbb{T})
ight\}\subset\mathcal{M}_2(\mathcal{C}(\mathbb{T})).$$

Corollary

The algebra \mathcal{B} is RFD, but $C^*_{max}(\mathcal{B})$ is not RFD.

- RFD non-selfadjoint operator algebras can be characterized in terms of their matrix space.
- Every representation of an RFD algebra can be approximated point-WOT by finite dimensional ones.
- SOT-approximation is not possible in general. Hence C^*_{max} may fail to be RFD.

Thank you!