Tracial oscillation zero and stable rank one

Xuanlong Fu

University of Toronto

(joint with Huaxin Lin)

May 31, 2022 at University of Ottawa. COSy 50th anniversary

The Jiang-Su algebra \mathcal{Z} is an infinite dimensional separable simple unital nuclear C^* -algebra which shares the same Elliott invariant (K-groups and trace simplex) with \mathbb{C} . Being \mathcal{Z} -stable (i.e., $A \otimes \mathcal{Z} \cong A$) is an important condition in the classification of C^* -algebras.

Theorem (By many people's work, including Kirchberg-Phillips, Elliott-Gong, Gong-Lin-Niu, Elliott-Gong-Lin-Niu, Tikuisis-White-Winter, Castillejos-Evington-Tikuisis-White-Winter,...) Unital simple separable nuclear \mathcal{Z} -stable UCT C^* -algebras can be classified by their Elliott invariant.

イロト 不得 トイヨト イヨト 二日

Picture for elements in \mathcal{Z} -stable algebras

Let A be a \mathcal{Z} -stable algebra (or a tracially approximately divisible algebra, or a tracially \mathcal{Z} -absorbing algebra). For any finite subset $\mathcal{F} \subset A$, any $\epsilon > 0$, any $n \in \mathbb{N}$,

$$x \approx_{\epsilon} \begin{pmatrix} \alpha(x) & 0 & \cdots & 0 \\ 0 & \alpha(x) & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \alpha(x) \end{pmatrix}_{n \times n} + (small \ \beta(x)),$$

where $x \in \mathcal{F}$.

Note that these two parts may not be orthogonal.

Being \mathcal{Z} -stable implies many regularity properties. One of them is the dichotomy of finiteness:

Theorem (Rørdam, 2004)

Let A be a unital simple \mathcal{Z} -stable C^* -algebra. Then A is either purely infinite or has stable rank one.

• C^* -algebra A is said to be has stable rank one, if $\widetilde{A} = GL(\widetilde{A})$,

Nonunital case?

Theorem (Robert, 2015)

Let A be a simple \mathcal{Z} -stable projectionless C^* -algebra. Then A almost has stable rank one. In fact, every x in A can be approximated by products of two nilpotents in Her(x).

- A is said to be almost has stable rank one, if for all hereditary subalgebra $B \subset A$, $B \subset \overline{GL(\widetilde{B})}$.
- The subtle difference between stable rank one and almost stable rank one is, $A \subset \overline{GL(\widetilde{A})}$ may not imply $\widetilde{A} = \overline{GL(\widetilde{A})}$.
- When A is simple and has a projection, A almost has stable rank one is equivalent to A has stable rank one.

Xuanlong Fu (University of Toronto)

Theorem (F.-Li-Lin, 2021)

Let A be a simple \mathcal{Z} -stable (not necessary unital) C^* -algebra. Then A is either purely infinite or has stable rank one.

Above theorem was obtained by combining Robert's theorem and the following:

Theorem (F.-Li-Lin, 2021)

Let A be a σ -unital projectionless simple C^* -algebra with continuous scale. Suppose that, for any σ -unital hereditary subalgebra $B \subset A$, any non-invertible element in B can be approximated (in norm) by products of two nilpotent elements in B. Then A has stable rank one.

3

A (10) N (10)

Further Development: Oscillation Zero & Tracial Matricial Property

Xuanlong Fu (University of Toronto)

Oscillation & SR1

 • There are examples show that, in general (not assuming simplicity), almost stable rank one may not imply stable rank one.

Question: When does almost stable rank one implies stable rank one?

Theorem (F.-Lin, 2021)

Let A be a separable simple C^* -algebra with $\widetilde{QT}(A) \setminus \{0\} \neq \emptyset$, has strict comparison and $\Gamma : \operatorname{Cu}(A) \to \operatorname{LAff}_+(\widetilde{QT}(A))$ is surjective. Then A has stable rank one if and only if A has almost stable rank one.

• $\widetilde{QT}(A)$ is the set of densely defined 2-quasitrace on $A \otimes \mathcal{K}$.

イロト 不得 トイラト イラト 一日

Notations and terminologies

- Let τ be a 2-quasitrace on A. The dimension function induced by
 τ is given by d_τ(a) := lim_n τ(a^{1/n}) for all a ∈ A₊.
- A is said to be has strict comparison, if d_τ(a) < d_τ(b) for all
 2-quasitrace τ implies a ≤ b.
- $\Gamma : \operatorname{Cu}(A) \to \operatorname{LAff}_+(\widetilde{QT}(A)), \ \Gamma([a])(\tau) = d_\tau(a).$
- Suppose that A is a σ -unital C^* -algebra with $QT(A) \setminus \{0\} \neq \emptyset$. Let $T \subset \widetilde{QT}(A)$ is compact subset with $T \neq \{0\}$. Define

$$I_{\tau} = \{\{x_n\} \in l^{\infty}(A) : \lim_{n \to \infty} \sup\{\tau(x_n^* x_n) : \tau \in T\} = 0\}.$$

Then I_T is a (closed two-sided) ideal of $l^{\infty}(A)$.

• Let $\Pi_T: l^{\infty}(A) \to l^{\infty}(A)/I_T$ be the quotient map.

Tracial Approximate Oscillation Zero

Definition (F.-Lin, 2021)

Let A be a C^* -algebra with $\widetilde{QT}(A) \neq \emptyset$. For each $a \in \operatorname{Ped}(A \otimes \mathcal{K})_+$,

 $\omega(a) := \inf\{\sup\{d_{\tau}(a) - \tau(c) : \tau \in \widetilde{QT}(A)\} : c \in (\overline{a(A \otimes \mathcal{K})a})^{1}_{+}\}.$

The number $\omega(a)$ is called the (tracial) oscillation of a.

Also define

$$\Omega^{T}(a) = \inf\{\|\Pi_{T}(\iota(a) - \{b_{n}\})\| : \{b_{n}\} \in l^{\infty}(\operatorname{Her}(a))_{+}, \\ \|b_{n}\| \leq \|a\|, \lim_{n \to \infty} \omega(b_{n}) = 0\}.$$

Definition (F.-Lin, 2021)

Let A be a σ -unital C^{*}-algebra with $QT(A) \neq \emptyset$. Define

$$\mathbb{O}(A) = \sup_{n \in \mathbb{N}} \{ \sup \{ \Omega^T(a) : a \in \operatorname{Ped}(M_n(A))^{\mathbf{1}}_+ \} \}.$$

If $\mathbb{O}(A) = 0$, then we say A has T-tracial approximate oscillation zero.

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ □ 臣 ■ の Q @

Proposition

If A is a simple C^* -algebra which has T-tracial approximate oscillation zero, then every hereditary C^* -subalgebras also has T-tracial approximate oscillation zero.

Proposition

Let A be a C^* -algebra of real rank zero. Then A has T-tracial approximate oscillation zero.

An example for C^* -algebras that has T-tracial approximate oscillation zero.

Theorem (F.-Lin, 2021)

Let A be a C^* -algebra with countable $\partial_e(T_b)$ (for some

 $b \in \text{Ped}(A)_+ \setminus \{0\}$), where $\partial_e(T_b)$ is the set of extremal points of T_b . Then

$$\Omega^T(a) = 0$$
 for all $a \in \operatorname{Ped}(A \otimes \mathcal{K})_+$.

In particular, A has T-tracial approximate oscillation zero.

Theorem (F.-Lin, 2021)

Let A be an algebraically simple C^* -algebra with $QT(A) \neq \emptyset$. If A has T-tracial approximate oscillation zero, then $l^{\infty}(A)/I_{\overline{QT(A)}^w}$ has real rank zero.

Theorem (F.-Lin, 2021)

Let A be an algebraically simple C^* -algebra with $T(A) \neq \emptyset$. Suppose that A has strict comparison and T-tracial approximate oscillation zero. Then $l^{\infty}(A)/I_{\overline{QT(A)}^w}$ has stable rank one.

Theorem (F.-Lin, 2021)

Let A be a non-elementary and σ -unital simple C^* -algebra with $\widetilde{QT}(A) \setminus \{0\} \neq \emptyset$ and strict comparison. Suppose that A has T-tracial approximate oscillation zero. Then Γ is surjective.

Definition (F.-Lin, 2021)

Let A be a C^* -algebra and $S \subset \widetilde{QT}(A) \setminus \{0\} \neq \emptyset$. A is said to have property (TM), if for any $a \in \operatorname{Ped}(A \otimes \mathcal{K})_+$, any $\epsilon > 0$, any $n \in \mathbb{N}$, there is a c.p.c. order zero map $\phi : M_n \to \operatorname{Her}(a)$ such that $\|a - \phi(1_n)a\|_{2,S} < \epsilon$.

Recall that a c.p.c. order zero map $\phi : M_n \to A$ brings a matricial structure. Hence the name Tracially Matricial Property.

Proposition

Let A be a C^* -algebra, $n \in \mathbb{N}$, and $\phi : M_n \to A$ be a c.p.c. order zero map. Then $\operatorname{Her}(\phi(1_n)) \cong \operatorname{Her}(\phi(e_{1,1})) \otimes M_n$.

ヘロマ ヘヨマ ヘロマ

Theorem (F.-Lin, 2021)

Let A be a separable simple C^* -algebra which admits at least one

non-trivial 2-quasitrace and has strict comparison.

Then the following are equivalent:

(1) A has tracial approximate oscillation zero;

(2) A has stable rank one;

(3) Γ is surjective and A has almost stable rank one;

(4) A has property (TM).

$$a = \begin{pmatrix} 0 & 0 & \cdots & 0 \\ 0 & a_{11} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ 0 & a_{n1} & \cdots & a_{nn} \end{pmatrix} \approx_{\epsilon} \begin{pmatrix} 0 & 0 & \cdots & 0 \\ x_{11} & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ x_{n1} & x_{n2} & \cdots & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & y_{11} & \cdots & y_{1n} \\ 0 & 0 & \cdots & y_{2n} \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{pmatrix}$$

Let $a \in A \subset l^{\infty}(A)/I_T$ which is not invertible. By Rørdam's method, we may assume $\{a\}^{\perp} \neq \{0\}$. Then the facts that A has property (TM) and $l^{\infty}(A)/I_T$ is stable rank one imply the above in $l^{\infty}(A)/I_T$. Then lift nilpotents and handle a tracially small part. If A is non-unital, need to use a theorem above.

May 31, 2022. uOttawa. COSy 17 / 18

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ ののの

Thank you!

Xuanlong Fu (University of Toronto)

Oscillation & SR1

May 31, 2022. uOttawa. COSy 18 / 18

æ

<ロト <問ト < 目と < 目と