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Real C*-algebras

The natural definition for a real C*-algebra is that it a real Banach
*-algebra that is isomorphic to a norm closed self adjoint algebra
of operators on a real Hilbert space. (By *-algebra we mean that it
has an involution * that is real linear and satisfies (ab)*=b*a*.)
This is then analogous to the definition of complex C*-algebra.
One would then like to find an abstract set of axioms, like in the
complex case. It turns out that one requires one more axiom: One
must assume that x∗x + 1 is always invertible in the unitisation.
One can then form the complexification A⊗C of a real C ∗-algebra
A and extend the norm of A to a C ∗-norm on A⊗ C. On the
complexification we then get a map ϕ : A⊗ C→ A⊗ C defined by
ϕ(x + iy) = x∗ + iy∗ (note the +, which makes it different from
just the adjoint).



This map satisfies ϕ(a + λb) = ϕ(a) + λϕ(b) for all a, b ∈ A⊗ C
and λ ∈ C, ϕ(ab) = ϕ(b)ϕ(a), ϕ(a∗) = ϕ(a)∗, and ϕ2 = identity .
In words, it is an involutive *-antiautomorphism. We can identify
A inside of A⊗C as {a ∈ A⊗C |ϕ(a) = a∗}. Conversely, if we are
given a complex C ∗-algebra, and an involutive *-antiautomorphism
ϕ on it, the subset above is a real C ∗-algebra whose
complexification is the given one. We thus have two ways of
viewing real C ∗-algebras, as real Banach algebras themselves, or
via involutive *-antiautomorphisms (henceforth called real
structures) on complex C ∗-algebras. We shall write (A, τ) for a
complex C ∗-algebra with real structure τ.



Example: Group C ∗-algebras

If G is a finite group, we get a real structure on C ∗(G ) defined by
τ(
∑

g∈G agg) =
∑

g∈G agg
−1. The real form may give additional

information. For example, for the dihedral group D8 and quaternion
group Q8 we have C ∗(D8) ∼= C ∗(Q8) ∼= C4 ⊕M2(C) but the real
form for D8 is R4 ⊕M2(R) and the real form for Q8 is R4 ⊕H.



Commutative Real C ∗-algebras

If A is a commutative real C ∗-algebra, then there exists a locally
compact Hausdorff space X and a homeomorphism τ of X with
τ2 = id such that

A ∼= C0(X , τ) = {f ∈ C0(C ) | f (τ(x)) = f (x) for all x ∈ X}.



Finite Dimensional Real C ∗-algebras

The most familiar non-trivial real structure on a C ∗-algebra is
probably the transpose operation on Mn(C). In this case,
{a ∈ A⊗ C |ϕ(a) = a∗} is just Mn(R).
On the 2× 2 matrices there is another real structure, usually
denoted with a #: (

a b
c d

)#

=

(
d −b
−c a

)
In this case, {a ∈ A⊗ C |ϕ(a) = a∗} is H. On M2n(C), we get an
extension of # by (x ⊗ y)# = x tr ⊗ y#.



Up to unitary equivalence, these are the only real structures on
Mq(C). On Mq(C)⊕Mq(C) we also have ϕ(x , y) = (y tr , x tr ). In
this case,
{a ∈ A⊗ C |ϕ(a) = a∗} = {(x , x̄) | a ∈ Mq(C)} ∼= Mq(C).
Any finite dimensional real C ∗-algebra is isomorphic to a finite
direct sum of full matrix algebras, each of which is of the form
Mn(C), Mn(R) or Mn(H).



Real AF Algebras

We say a real C ∗-algebra is AF if it is an inductive limit of finite
dimensional real C ∗-algebras. Real AF algebras were classified by
Giordano using an invariant consisting of K0(Aϕ), K2(Aϕ),K4(Aϕ),
and an order structure on K0(Aϕ)⊕K2(Aϕ), and by Stacey using a
diagram

K0(Aϕ)→ K0(A)→ K0(Aϕ ⊗H).

The range of invariant problem for this invariant has also been
solved. What other kinds of real structures a complex AF algebra
can have is open.



The Real Structure on the CAR Algebra

It was shown by Blackadar, in his paper on symmetries on the CAR
algebra, that the K-theory of any real structure on the CAR
algebra is completely determined by homological considerations.
Stacey has since shown that up to isomorphism there is a unique
real structure on the CAR algebra, so the obvious AF one is the
only one. (Very different from the case of Z2 actions.)



Inductive limit type actions on AF algebras

Handelman and Rossmann showed that locally representable
actions of a compact group G on an AF algebra A could be
classified by K0(Aoα G ) viewed as an ordered module over
K0(C ∗(G )), with distinguished elements. An analogous
classification for inductive limit type actions on real C ∗-algebras
can be given using as invariant a diagram:

K0(Aϕ oR
α G )→ K0(Aoα G )→ K0((Aϕ oR

α G )⊗R H)

Elliott and Su showed that inductive limit type actions of Z2 could
be classified by K-theory invariants without the local
representability assumption. This result also has a real AF
analogue.



Real Structures on Factors

It was shown by Størmer, and independently by Giordano and
Jones, that there is a unique real structure, up to conjugacy, on
the hyperfinite II1 factor R. There is also a unique real structure
on the injective II∞ factor. (This in spite of there being two
distinct real structures on B(H). Notice that RR ⊗H ∼= RR.)



Purely Infinite Real C ∗-algebras

Theorem (Boersema, Ruiz, Stacey)

Two real stable Kirchberg algebras A and B are isomorphic if, and
only if, KCRT (A) ∼= KCRT (B). Two real unital Kirchberg algebras
A and B are isomorphic if, and only if,
(KCRT (A), [1A]) ∼= (KCRT (B), [1B ]).

(Here a real Kirchberg algebra is one whose complexification is a
Kirchberg algebra)



Real Structures on the Jiang-Su Algebra

Theorem (P. J. Stacey)

There is a real structure ρ on the Jiang-Su algebra Z such that
KCRT (Zρ) ∼= KCRT (R), and Zρ ⊗ Zρ ∼= Zρ.

It is not known if the real structure with these properties is unique.



Real Interval Algebras

There are the following five basic real forms for interval algebras:

A(n,R) = {f ∈ C ([0, 1],Mn(C)) | f (1) ∈ Mn(R)}

A(n,H) = {f ∈ C ([0, 1],M2n(C)) | f (1) ∈ Mn(H)}

Mn(CF[0, 1]) = Mn({f : [0, 1]→ F | f is continuous})

for F = R,C, or H.



Simple Real AI algebras

Theorem (P. J. Stacey)

Let A and B be two unital real C ∗-algebras each arising as an
inductive limit of finite direct sums of real interval algebras.
Suppose there exist isomorphisms φT : T (B ⊗R C)→ T (A⊗R C)
and (φ1K , φ

2
K , φ

3
K ) of

(K0(A), [1])→ (K0(A⊗R C), [1])→ (K0(A⊗R H), [1]) with
(K0(B), [1])→ (K0(B ⊗R C), [1])→ (K0(B ⊗R H), [1]) such that
φT is compatible with φ2K in the usual way. Then there exists a
*-isomorphism ϕ : A→ B giving rise to these maps on the
invariant.



Cuntz Equivalence

Definition
Let A be a C ∗-algebra, either real or complex, and let a, b be
positive elements of A. We say that a is Cuntz sub-equivalent to b,
and write a 4 b if there exists a sequence dn ∈ A such that
dnbd

∗
n → a. We write a ∼ b if a 4 b and b 4 a. Then ∼ is an

equivalence relation on the set of positive elements of A, called
Cuntz equivalence.



The Cuntz Semigroup

Definition
Let A be a separable C ∗-algebra, either real or complex. Let Cu(A)
denote the set of Cuntz equivalence classes of positive elements of
A⊗R KR, where KR is the real C ∗-algebra of compact operators on
a separable real Hilbert space. Fix an isomorphism of KR with

M2(KR), and define addition on Cu(A) by [a] + [b] = [

(
a 0
o b

)
]

(this does not depend on the choice of isomorphism). Define a
partial order on Cu(A) by [a] ≤ [b] if, and only if, a 4 b (this does
not depend on choice of representatives). With these definitions,
Cu(A) becomes a partially ordered abelian semigroup with neutral
element.



An Invariant for Nonsimple Real AI algebras

Given a unital real C ∗-algebra A, our invariant, denoted Inv(A),
consists of the triple
(Cu(A), [1])→ (Cu(A⊗R C), [1])→ (Cu(A⊗R H), [1]) of Cuntz
semigroups with distinguished elements, where the connecting
maps are induced by the inclusions. A morphism of invariants
η : Inv(A)→ Inv(B) consists of a triple (ηr , ηc , ηh) of unital
homomorphisms of ordered abelian partial semigroups preserving
suprema of increasing sequences, zero elements, and compact
containment such that the following diagram commutes:

(Cu(A), [1])

ηr

��

// (Cu(A⊗R C), [1])

ηc

��

// (Cu(A⊗R H), [1])

ηh
��

(Cu(B), [1]) // (Cu(B ⊗R C), [1]) // (Cu(B ⊗R H), [1]).



Existence and Uniqueness for Interval Algebras

Theorem (A.D. and Luis Santiago)

Let A be a real interval algebra and let B be a unital real AI
algebra. Then if η is a morphism of invariants from Inv(A) to
Inv(B), there exists a unital *-homomorphism ϕ : A→ B such
that η = Inv(ϕ).

Theorem (A.D. and Luis Santiago)

Let A be a real interval algebra and let B be a real AI algebra. If
ϕ,ψ : A→ B are two unital ∗-homomorphisms with
Inv(ϕ) = Inv(ψ), then ϕ and ψ are approximately unitarily
equivalent (via unitaries in the real C ∗-algebra B).



Classification of Real AI Algebras

Theorem (A.D. and Luis Santiago)

Let A and B be unital real AI algebras. Then if
(ηr , ηc , ηh) : Inv(A)→ Inv(B) is a morphism of invariants, there
exists a unital ∗-homomorphism ϕ : A→ B such that Cu(ϕ) = ηr ,
Cu(ϕ⊗R idC) = ηc , and Cu(ϕ⊗R idH) = ηh. Moreover, if
ϕ,ψ : A→ B are two unital ∗-homomorphisms with
Inv(ϕ) = Inv(ψ), then ϕ and ψ are approximately unitarily
equivalent.



Stable Rank for Real C ∗-Algebras

For the real interval algebras we have tsr(A(n,R)) =
tsr(A(n,H)) = tst(Mn(CC[0, 1]) = tsr(Mn(CH[0, 1]) = 1, but
tsr((Mn(CR[0, 1])) = 2. In the commutative case, we have the

familiar formulas

tsr(CC(X )) = bdim(X )/2c+ 1

and
tsr(CR(X )) = dim(X ) + 1.

Question: What pairs (n,m) arise as (tsr(A), tsr(A⊗ C)) for a
simple real C ∗-algebra A?
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