Structure and Classification of Real C*-algebras (A brief survey and some open questions) Andrew Dean

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Real C*-algebras

The natural definition for a real C*-algebra is that it a real Banach *-algebra that is isomorphic to a norm closed self adjoint algebra of operators on a real Hilbert space. (By *-algebra we mean that it has an involution * that is real linear and satisfies $(ab)^*=b^*a^*$.) This is then analogous to the definition of complex C*-algebra. One would then like to find an abstract set of axioms, like in the complex case. It turns out that one requires one more axiom: One must assume that $x^*x + 1$ is always invertible in the unitisation. One can then form the complexification $A \otimes \mathbb{C}$ of a real C^* -algebra A and extend the norm of A to a C^* -norm on $A \otimes \mathbb{C}$. On the complexification we then get a map $\varphi : A \otimes \mathbb{C} \to A \otimes \mathbb{C}$ defined by $\varphi(x + iy) = x^* + iy^*$ (note the +, which makes it different from just the adjoint).

This map satisfies $\varphi(a + \lambda b) = \varphi(a) + \lambda \varphi(b)$ for all $a, b \in A \otimes \mathbb{C}$ and $\lambda \in \mathbb{C}$, $\varphi(ab) = \varphi(b)\varphi(a)$, $\varphi(a^*) = \varphi(a)^*$, and $\varphi^2 = identity$. In words, it is an involutive *-antiautomorphism. We can identify A inside of $A \otimes \mathbb{C}$ as $\{a \in A \otimes \mathbb{C} \mid \varphi(a) = a^*\}$. Conversely, if we are given a complex C^* -algebra, and an involutive *-antiautomorphism φ on it, the subset above is a real C^{*}-algebra whose complexification is the given one. We thus have two ways of viewing real C^* -algebras, as real Banach algebras themselves, or via involutive *-antiautomorphisms (henceforth called real structures) on complex C^{*}-algebras. We shall write (A, τ) for a complex C^* -algebra with real structure τ .

If G is a finite group, we get a real structure on $C^*(G)$ defined by $\tau(\sum_{g \in G} a_g g) = \sum_{g \in G} a_g g^{-1}$. The real form may give additional information. For example, for the dihedral group D_8 and quaternion group Q_8 we have $C^*(D_8) \cong C^*(Q_8) \cong \mathbb{C}^4 \oplus M_2(\mathbb{C})$ but the real form for D_8 is $\mathbb{R}^4 \oplus M_2(\mathbb{R})$ and the real form for Q_8 is $\mathbb{R}^4 \oplus \mathbb{H}$.

If A is a commutative real C*-algebra, then there exists a locally compact Hausdorff space X and a homeomorphism τ of X with $\tau^2 = id$ such that

$$A \cong C_0(X,\tau) = \{ f \in C_0(C) \mid f(\tau(x)) = \overline{f(x)} \text{ for all } x \in X \}.$$

Finite Dimensional Real C*-algebras

The most familiar non-trivial real structure on a C^* -algebra is probably the transpose operation on $M_n(\mathbb{C})$. In this case, $\{a \in A \otimes \mathbb{C} \mid \varphi(a) = a^*\}$ is just $M_n(\mathbb{R})$. On the 2 × 2 matrices there is another real structure, usually denoted with a #:

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix}^{\#} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

In this case, $\{a \in A \otimes \mathbb{C} \mid \varphi(a) = a^*\}$ is \mathbb{H} . On $M_{2n}(\mathbb{C})$, we get an extension of # by $(x \otimes y)^{\#} = x^{tr} \otimes y^{\#}$.

Up to unitary equivalence, these are the only real structures on $M_q(\mathbb{C})$. On $M_q(\mathbb{C}) \oplus M_q(\mathbb{C})$ we also have $\varphi(x, y) = (y^{tr}, x^{tr})$. In this case,

 $\{a \in A \otimes \mathbb{C} \mid \varphi(a) = a^*\} = \{(x, \bar{x}) \mid a \in M_q(\mathbb{C})\} \cong M_q(\mathbb{C}).$ Any finite dimensional real C^* -algebra is isomorphic to a finite direct sum of full matrix algebras, each of which is of the form $M_n(\mathbb{C}), M_n(\mathbb{R})$ or $M_n(\mathbb{H})$.

We say a real C^* -algebra is AF if it is an inductive limit of finite dimensional real C^* -algebras. Real AF algebras were classified by Giordano using an invariant consisting of $K_0(A_{\varphi})$, $K_2(A_{\varphi})$, $K_4(A_{\varphi})$, and an order structure on $K_0(A_{\varphi}) \oplus K_2(A_{\varphi})$, and by Stacey using a diagram

$$K_0(A_{\varphi}) \to K_0(A) \to K_0(A_{\varphi} \otimes \mathbb{H}).$$

The range of invariant problem for this invariant has also been solved. What other kinds of real structures a complex AF algebra can have is open.

The Real Structure on the CAR Algebra

It was shown by Blackadar, in his paper on symmetries on the CAR algebra, that the K-theory of any real structure on the CAR algebra is completely determined by homological considerations. Stacey has since shown that up to isomorphism there is a unique real structure on the CAR algebra, so the obvious AF one is the only one. (Very different from the case of \mathbb{Z}_2 actions.)

Inductive limit type actions on AF algebras

Handelman and Rossmann showed that locally representable actions of a compact group G on an AF algebra A could be classified by $K_0(A \rtimes_{\alpha} G)$ viewed as an ordered module over $K_0(C^*(G))$, with distinguished elements. An analogous classification for inductive limit type actions on real C^* -algebras can be given using as invariant a diagram:

$$K_0(A_{\varphi} \rtimes^{\mathbb{R}}_{\alpha} G) o K_0(A \rtimes_{\alpha} G) o K_0((A_{\varphi} \rtimes^{\mathbb{R}}_{\alpha} G) \otimes_{\mathbb{R}} \mathbb{H})$$

Elliott and Su showed that inductive limit type actions of \mathbb{Z}_2 could be classified by K-theory invariants without the local representability assumption. This result also has a real AF analogue.

It was shown by Størmer, and independently by Giordano and Jones, that there is a unique real structure, up to conjugacy, on the hyperfinite II_1 factor R. There is also a unique real structure on the injective II_{∞} factor. (This in spite of there being two distinct real structures on B(H). Notice that $R_{\mathbb{R}} \otimes \mathbb{H} \cong R_{\mathbb{R}}$.)

Theorem (Boersema, Ruiz, Stacey)

Two real stable Kirchberg algebras A and B are isomorphic if, and only if, $K^{CRT}(A) \cong K^{CRT}(B)$. Two real unital Kirchberg algebras A and B are isomorphic if, and only if, $(K^{CRT}(A), [1_A]) \cong (K^{CRT}(B), [1_B])$.

(Here a real Kirchberg algebra is one whose complexification is a Kirchberg algebra)

Real Structures on the Jiang-Su Algebra

Theorem (P. J. Stacey)

There is a real structure ρ on the Jiang-Su algebra Z such that $\mathcal{K}^{CRT}(Z_{\rho}) \cong \mathcal{K}^{CRT}(\mathbb{R})$, and $Z_{\rho} \otimes Z_{\rho} \cong Z_{\rho}$.

It is not known if the real structure with these properties is unique.

There are the following five basic real forms for interval algebras:

 $A(n, \mathbb{R}) = \{ f \in C([0, 1], M_n(\mathbb{C})) \mid f(1) \in M_n(\mathbb{R}) \}$ $A(n, \mathbb{H}) = \{ f \in C([0, 1], M_{2n}(\mathbb{C})) \mid f(1) \in M_n(\mathbb{H}) \}$ $M_n(C_{\mathbb{F}}[0, 1]) = M_n(\{ f : [0, 1] \to \mathbb{F} \mid f \text{ is continuous} \})$ for $\mathbb{F} = \mathbb{R}, \mathbb{C}$, or \mathbb{H} .

Simple Real AI algebras

Theorem (P. J. Stacey)

Let A and B be two unital real C*-algebras each arising as an inductive limit of finite direct sums of real interval algebras. Suppose there exist isomorphisms $\phi_T : T(B \otimes_{\mathbb{R}} \mathbb{C}) \to T(A \otimes_{\mathbb{R}} \mathbb{C})$ and $(\phi_K^1, \phi_K^2, \phi_K^3)$ of $(K_0(A), [1]) \to (K_0(A \otimes_{\mathbb{R}} \mathbb{C}), [1]) \to (K_0(A \otimes_{\mathbb{R}} \mathbb{H}), [1])$ with $(K_0(B), [1]) \to (K_0(B \otimes_{\mathbb{R}} \mathbb{C}), [1]) \to (K_0(B \otimes_{\mathbb{R}} \mathbb{H}), [1])$ such that ϕ_T is compatible with ϕ_K^2 in the usual way. Then there exists a *-isomorphism $\varphi : A \to B$ giving rise to these maps on the invariant.

Cuntz Equivalence

Definition

Let A be a C*-algebra, either real or complex, and let a, b be positive elements of A. We say that a is Cuntz sub-equivalent to b, and write $a \preccurlyeq b$ if there exists a sequence $d_n \in A$ such that $d_n b d_n^* \rightarrow a$. We write $a \sim b$ if $a \preccurlyeq b$ and $b \preccurlyeq a$. Then \sim is an equivalence relation on the set of positive elements of A, called Cuntz equivalence.

The Cuntz Semigroup

Definition

Let A be a separable C^* -algebra, either real or complex. Let Cu(A)denote the set of Cuntz equivalence classes of positive elements of $A \otimes_{\mathbb{R}} K_{\mathbb{R}}$, where $K_{\mathbb{R}}$ is the real C*-algebra of compact operators on a separable real Hilbert space. Fix an isomorphism of $K_{\mathbb{R}}$ with $M_2(K_{\mathbb{R}})$, and define addition on Cu(A) by $[a] + [b] = \begin{bmatrix} a & 0 \\ o & b \end{bmatrix}$ (this does not depend on the choice of isomorphism). Define a partial order on Cu(A) by $[a] \leq [b]$ if, and only if, $a \preccurlyeq b$ (this does not depend on choice of representatives). With these definitions, Cu(A) becomes a partially ordered abelian semigroup with neutral element.

・ロト・4週ト・モート・モー・シュル

An Invariant for Nonsimple Real AI algebras

Given a unital real C^* -algebra A, our invariant, denoted Inv(A), consists of the triple $(Cu(A), [1]) \rightarrow (Cu(A \otimes_{\mathbb{R}} \mathbb{C}), [1]) \rightarrow (Cu(A \otimes_{\mathbb{R}} \mathbb{H}), [1])$ of Cuntz semigroups with distinguished elements, where the connecting maps are induced by the inclusions. A morphism of invariants $\eta : Inv(A) \rightarrow Inv(B)$ consists of a triple (η_r, η_c, η_h) of unital homomorphisms of ordered abelian partial semigroups preserving suprema of increasing sequences, zero elements, and compact containment such that the following diagram commutes:

Existence and Uniqueness for Interval Algebras

Theorem (A.D. and Luis Santiago)

Let A be a real interval algebra and let B be a unital real AI algebra. Then if η is a morphism of invariants from Inv(A) to Inv(B), there exists a unital *-homomorphism $\varphi : A \to B$ such that $\eta = Inv(\varphi)$.

Theorem (A.D. and Luis Santiago)

Let A be a real interval algebra and let B be a real AI algebra. If $\varphi, \psi : A \to B$ are two unital *-homomorphisms with $Inv(\varphi) = Inv(\psi)$, then φ and ψ are approximately unitarily equivalent (via unitaries in the real C*-algebra B).

Theorem (A.D. and Luis Santiago)

Let A and B be unital real AI algebras. Then if $(\eta_r, \eta_c, \eta_h) : Inv(A) \rightarrow Inv(B)$ is a morphism of invariants, there exists a unital *-homomorphism $\varphi : A \rightarrow B$ such that $Cu(\varphi) = \eta_r$, $Cu(\varphi \otimes_{\mathbb{R}} id_{\mathbb{C}}) = \eta_c$, and $Cu(\varphi \otimes_{\mathbb{R}} id_{\mathbb{H}}) = \eta_h$. Moreover, if $\varphi, \psi : A \rightarrow B$ are two unital *-homomorphisms with $Inv(\varphi) = Inv(\psi)$, then φ and ψ are approximately unitarily equivalent.

Stable Rank for Real C*-Algebras

For the real interval algebras we have $tsr(A(n, \mathbb{R})) = tsr(A(n, \mathbb{H})) = tst(M_n(C_{\mathbb{C}}[0, 1]) = tsr(M_n(C_{\mathbb{H}}[0, 1]) = 1, but tsr((M_n(C_{\mathbb{R}}[0, 1])) = 2.$ In the commutative case, we have the familiar formulas

$$tsr(C_{\mathbb{C}}(X)) = \lfloor dim(X)/2 \rfloor + 1$$

and

$$tsr(C_{\mathbb{R}}(X)) = dim(X) + 1.$$

Question: What pairs (n, m) arise as $(tsr(A), tsr(A \otimes \mathbb{C}))$ for a simple real C^* -algebra A?

References

[1] J. L. Boersema, *Real C*-algebras, united K-theory, and the Künneth formula,* K-Theory (4) **26** (2002), 345–402.

[2] J. L. Boersema, *Real C*-algebras, united KK-theory, and the universal coefficient theorem,* K-Theory (2) **33** (2004), 107–149.

[3] J. L. Boersema, T. A. Loring, *K-Theory for real C*-algebras via unitary elements with symmetries*, New York J. Math. **22** (2016) 1139–1220.

[4] J. L. Boersema, E. Ruiz, P. J. Stacey, *The classification of real purely infinite simple C*^{*}*-algebras* Doc. Math. **16** (2011), 619–655.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

[5] A. K. Bousfield, *A classification of K-local spectra*, J. Pure and App. Algebra **66** (1990), 121–163.

[6] A. J. Dean, Classification of actions of compact groups on real approximately finite dimensional C*-algebras, Houston J. of Math.
(4) 42 (2016), 1227–1243.

[7] A. J. Dean, Classification of inductive limits of actions of Z_2 on real AF C^{*}-algebras, J. Ramanujan Math. Soc. (2) **30** (2015), 161–178.

 [8] A. J. Dean, D. Kucerovsky, and A. Sarraf, On the classification of certain inductive limits of real circle algebras, New York J.
 Math. 22 (2016), 1393–1438.

[9] A. J. Dean and Luis Santigo Moreno, *Classification of real approximate interval C*-algebras*, to appear.

[10] T. Giordanno, A classification of approximately finite real C^* -algebras J. Reine Angew. Math. **385** (1988), 161–194.

[11] K. R. Goodearl and D. E. Handelman, *Classification of ring* and C^* -algebra direct limits of finite dimensional semi-simple real algebras, Memoirs Amer. Math. Soc. **69** (1987) # 372, 147pp.

[12] T. Schick, *Real versus complex K-theory using Kasparov's bivariant KK-theory*, Algebraic and Geometric Toploogy, **4** (2004) 333–346.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

[17] P. J. Stacey, Real structure in direct limits of finite dimensional C^* -algebras, J. London Math. Soc. (2) **35** (1987), 339–352.

[18] P. J. Stacey, A classification result for simple real approximate interval algebras, New York J. Math. **10** (2004), 209–229.

[19] P. J. Stacey, (appendix by J.L. Boersema, N.C. Phillips)
Antisymmetries of the CAR algebra, Trans. Am. Math. Soc. (12) **363** (2011), 6439–6452.

[20] P.J. Stacey, *A real Jiang-Su algebra*, Münster J. Math. **10** (2017), no. 2, 383–407.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <