Aaron Tikuisis

University of Ottawa

COSy 2020

Overview

- New concept: tracially complete C*-algebras.
- Origins in tracial ultrapowers, Matui–Sato.
- Many unanswered questions.

Plan:

- Tracial ultrapowers
- Their use in structure and classification of C*-algebras
- Tracial completions of C*-algebras
- Tracially complete C*-algebras
- Property Γ
- Questions
- Questions

Let *A* be a C*-algebra, and let T(A) denote its set of traces. Assume $T(A) \neq \emptyset$.

Define the *uniform* 2-seminorm $\|\cdot\|_{2,u}$ on A by $\|a\|_{2,u} := \sup_{\tau \in T(A)} \tau(a^*a)^{1/2}.$

For a free ultrafilter ω , define the *tracial ultrapower* of A by $A^{\omega} := l^{\infty}(\mathbb{N}, A) / \{(a_n)_{n=1}^{\infty} : \lim_{n \to \omega} ||a_n||_{2,u} = 0\}.$

For a free ultrafilter ω , define the *tracial ultrapower* of A by $A^{\omega} := l^{\infty}(\mathbb{N}, A) / \{(a_n)_{n=1}^{\infty} : \lim_{n \to \omega} ||a_n||_{2,u} = 0\}.$

E.g. Unique trace case, with $T(A) = \{\tau\}$. Set $M := \pi_{\tau}(A)''$ where π_{τ} is the GNS representation associated to τ .

Then $M^{\omega} := l^{\infty}(\mathbb{N}, M) / \{(a_n)_{n=1}^{\infty} : \lim_{n \to \omega} ||a_n||_{2,u} = 0\}$ is a vN algebra, and using the Kaplansky Density Theorem, $A^{\omega} \cong M^{\omega}$.

Conclusion:

- A^{ω} is very tractable (a vN algebra).
- A^{ω} forgets a lot about *A*.

Tracial ultrapowers

For a free ultrafilter ω , define the *tracial ultrapower* of A by $A^{\omega} := l^{\infty}(\mathbb{N}, A) / \{(a_n)_{n=1}^{\infty} : \lim_{n \to \omega} ||a_n||_{2,u} = 0\}.$

A more common ultrapower in C*-algebras is the *norm ultrapower*,

$$A_{\omega} := l^{\infty}(\mathbb{N}, A) / \{(a_n)_{n=1}^{\infty} : \lim_{n \to \omega} ||a_n|| = 0\}.$$

I won't talk much about this in this talk.

Buzzword: A^{ω} is a quotient of A_{ω} , and the kernel is called the *trace kernel ideal*.

Tracial ultrapowers: origins and applications

Origins in Matui-Sato's work on Toms-Winter conjecture:

Theorem (Matui–Sato, '12)

If *A* is a simple nuclear C*-algebra with unique trace, which has strict comparison of positive elements, then *A* is \mathcal{Z} -stable.

- (i) Unique trace gives structural properties of A^{ω} (property Γ we'll come back to this).
- (ii) Strict comparison leads to "property (SI)", used to relate properties of $A^{\omega} \cap A'$ to properties of $A_{\omega} \cap A'$.

This framework:

- (i) Establish structural properties of A^{ω} , and
- (ii) Use extra information to transfer results to A_{ω}

was used many times.

Tracial ultrapowers: origins and applications

Theorem (Matui-Sato, '12)

If *A* is a simple nuclear C*-algebra with unique trace, which has strict comparison of positive elements, then *A* is \mathcal{Z} -stable.

This framework was used many times, e.g.:

- Generalizing to the case that *T*(*A*) has compact, finite dimensional boundary (KR, S, TWW).
- If *A* is simple, unital, nuclear, quasidiagonal C*-algebra with unique trace which is *Z*-stable, then dr(*A*) < ∞ (MS).
- If *A* is simple, nuclear, and \mathcal{Z} -stable, then dim_{nuc}(*A*) < ∞ (SWW, BBSTWW, CETWW, CE).
- A new proof that every faithful trace on a nuclear UCT C*-algebra is quasidiagonal (Schafhauser).
- Every exact UCT C*-algebra with a faithful trace is AF-embeddable (Schafhauser).
- A new proof of classification (CGSTW, work in progress see Chris' talk).

Recall: when *A* has unique trace, can describe A^{ω} via $\pi_{\tau}(A)''$. Beyond the unique trace case, the *tracial completion* $\overline{A}^{T(A)}$ plays the role of $\pi_{\tau}(A)''$.

Definition

Given a C*-algebra *A* and a nonempty subset $X \subseteq T(A)$, define $\|a\|_{2,X} := \sup_{\tau \in X} \sqrt{\tau(a^*a)}, \quad a \in A.$ Define $\overline{A}^X :=$ the C*-algebra formed by making $\|\cdot\|_{2,X}$ a norm and adding limit points of bounded, $\|\cdot\|_{2,X}$ -Cauchy sequences.

Note: $\|\cdot\|_{2,u} = \|\cdot\|_{2,T(A)}$. E.g. When *A* has unique trace, $\overline{A}^{T(A)} \cong \pi_{\tau}(A)''$. In general, $A^{\omega} = (\overline{A}^{T(A)})^{\omega}$ (appropriately defined).

Definition

Given a C*-algebra *A* and a nonempty subset $X \subseteq T(A)$, define $\|a\|_{2,X} := \sup_{\tau \in X} \sqrt{\tau(a^*a)}, \quad a \in A.$ Define $\overline{A}^X :=$ the C*-algebra formed by making $\|\cdot\|_{2,X}$ a norm and adding limit points of bounded, $\|\cdot\|_{2,X}$ -Cauchy sequences.

Definition

A *tracially complete* C^* *-algebra* is a pair (M, X) where:

- (i) *M* is a unital C*-algebra,
- (ii) *X* is a nonempty closed convex subset of T(M), and
- (iii) $M = \overline{M}^X$.

(M, X) is *factorial* if X is a face. \leftarrow **case of interest.**

Definition

A *tracially complete* C^* *-algebra* is a pair (M, X) where:

(i) *M* is a unital C*-algebra,

(ii) *X* is a nonempty closed convex subset of *T*(*M*), and (iii) $M = \overline{M}^X$.

(M, X) is *factorial* if X is a face.

Condition (iii) says **both** that $\|\cdot\|_{2,X}$ is a norm and that *M* contains limits of bounded, $\|\cdot\|_{2,X}$ -Cauchy sequences.

Definition

A tracially complete C^* -algebra is a pair (M, X) where:

(i) *M* is a unital C*-algebra,

(ii) X is a nonempty closed convex subset of T(M), and (iii) $M = \overline{M}^X$.

(M, X) is factorial if X is a face.

Examples

E.g. $(\overline{A}^{T(A)}, T(A))$ is a factorial tracially complete C*-algebra, provided T(A) is nonempty and compact.

E.g. If *M* is a von Neumann algebra with faithful trace τ_M then $(M, \{\tau_M\})$ is a tracially complete C*-algebra. It is factorial when *M* is a factor.

Examples

E.g. (*trivial* W^* -*bundle*) Let N be a finite factor with trace τ_N and let X be a compact Hausdorff space. Define

 $C_{\sigma}(X,N) := \{f : X \to N \mid f \text{ is bounded and } \| \cdot \|_{2,\tau_N} \text{-continuous} \}.$

Then $\operatorname{Prob}(X) \cong T(C(X)) \subseteq T(C_{\sigma}(X, N))$ in a canonical way: for $\mu \in \operatorname{Prob}(X)$, define a trace τ_{μ} on $C_{\sigma}(X, N)$ by

$$\tau_{\mu}(f) := \int_{X} \tau_{N}(f(x)) \, d\mu(x).$$

 $(C_{\sigma}(X, N), \operatorname{Prob}(X))$ is a factorial tracially complete C*-algebra.

Buzzword: W*-bundles

Let (M, X) be a factorial tracially complete C*-algebra. $\partial_e X :=$ extreme boundary, i.e., the set of extreme points.

Theorem (Ozawa)

If $\partial_e X$ is compact, then there is:

(i) a canonical copy of $C(\partial_e X)$ inside $\mathcal{Z}(M)$, and

(ii) a canonical conditional expectation $E: M \to C(\partial_e X)$.

Moreover, $||a||_{2,X} = ||E(a)||$ for all $a \in M$.

This case gave rise to Ozawa's notion of a W*-bundle.

Examples

E.g. ("toy example")

Fix an isomorphism θ : $M_2(\mathcal{R}) \to \mathcal{R}$.

Define

$$M := \left\{ (a_n)_{n=1}^{\infty} \in l^{\infty}(\mathbb{N}, \mathcal{R}) : a_n \xrightarrow{\|\cdot\|_2} \theta \begin{pmatrix} a_1 & 0 \\ 0 & a_2 \end{pmatrix} \right\},\$$

 $X := \text{closed convex hull of } \{\tau_1, \tau_2, \dots\}$ where $\tau_i((a_n)_{n=1}^{\infty}) = \tau_{\mathcal{R}}(a_i).$

(M,X) is a factorial tracially complete C*-algebra.

$$\partial_e X$$
 is not compact. In fact, $\partial_e X = \{\tau_1, \tau_2, \dots\}$, but
 $\lim_{n \to \infty} \tau_n = \frac{1}{2}(\tau_1 + \tau_2) \notin \partial_e X.$

Examples

Others?

The *Poulsen simplex* is a Choquet simplex *X* in which $\partial_e X$ is dense in *X*.

One can construct an AF algebra *A* with $T(A) \cong X$, and from this a factorial tracially complete C*-algebra $(\overline{A}^{T(A)}, X)$. Is there any tractable way of understanding this object?

Given a tracially complete C*-algebra (M, X), form $M^{\omega} := l^{\infty}(\mathbb{N}, M) / \{(a_n)_{n=1}^{\infty} : \lim_{n \to \omega} ||a_n||_{2,X} = 0\}.$

Definition

A tracially complete C*-algebra (M, X) has *property* Γ if \exists a projection $p \in M^{\omega} \cap M'$ with $\tau(p) = \frac{1}{2}$ for all $\tau \in T(M^{\omega})$.

Unique trace: get Dixmier's characterization of Γ for II₁ factors.

E.g. If *N* is a finite factor then $(C_{\sigma}(X, N), \operatorname{Prob}(X))$ has property Γ iff *N* has property Γ .

E.g. $(\overline{A}^{T(A)}, T(A))$ has property Γ whenever A is \mathcal{Z} -stable.

Property Γ turns out to be a very powerful hypothesis.

Theorem (CCEGSTW)

Let (M, X), (N, Y) be separable factorial tracially complete C*-algebras with property Γ , such that every tracial GNS representation is hyperfinite. Then $(M, X) \cong (N, Y)$ iff $X \cong Y$.

Corollary

If *A* is a separable nuclear \mathbb{Z} -stable C*-algebra, then $(\overline{A}^{T(A)}, T(A))$ is approximately finite dimensional.

In the case that $\partial_e X$ is compact, this theorem is due to Ozawa, where he shows that $(M, X) \cong (C_{\sigma}(\partial_e X, \mathcal{R}), X)$.

Question

Is there a factorial tracially complete C*-algebra (M, X) where $X \subsetneq T(M)$?

This question is open (and interesting) even for:

- $M = \overline{A}^{T(A)}$ where *A* is a separable nuclear C*-algebra.
- $M = C_{\sigma}(X, \mathcal{R})$ where *X* is a compact Hausdorff space.
- $M = C_{\sigma}(\mathbb{N} \cup \{\infty\}, \mathcal{R}).$

Question

Is there a factorial tracially complete C*-algebra (M, X) with all tracial GNS representations hyperfinite, that does not have property Γ ?

This question is open (and interesting) even for:

- $M = \overline{A}^{T(A)}$ where *A* is a separable nuclear C*-algebra. A negative answer would resolve the last piece of the Toms–Winter conjecture.
- W*-bundles, i.e., the case that $\partial_e X$ is compact.

However, Ozawa showed the answer is yes in the case $\partial_e X$ is compact *and finite dimensional*.

Norm-regularity questions: does every factorial tracially complete C*-algebra have real rank zero? stable rank one? comparison of projections? ...

These questions are open (and interesting) even for:

- $M = \overline{A}^{T(A)}$ where *A* is a separable nuclear C*-algebra.
- $M = C_{\sigma}(X, \mathcal{R})$ where *X* is a compact Hausdorff space.
- $M = C_{\sigma}(\mathbb{N} \cup \{\infty\}, \mathcal{R}).$

Question

If (M, X) is a tracially complete C*-algebra, is (M^{ω}, X^{ω}) as well?

Question

Is there a tracially complete C*-algebra (M, X) such that M^{ω} does not have comparison of projections?

From slide 7

KR: Kirchberg, Rørdam, Central sequence C*-algebras and tensorial absorption of the Jiang–Su algebra, Crelle, 2014.

S: Sato, Trace spaces of simple nuclear C*-algebras with finite-dimensional extreme boundary, arXiv:1209.3000.

TWW: Toms, White, Winter, *Z*-stability and finite-dimensional *tracial boundaries*, IMRN, 2015.

MS: Matui, Sato, *Decomposition rank of UHF-absorbing C*-algebras*, Duke, 2014.

SWW: Sato, White, Winter, *Nuclear dimension and Z-stability*, Invent. Math., 2015.

BBSTWW: Bosa, Brown, Sato, T, White, Winter, *Covering dimension of C*-algebras and 2-coloured classification*, MAMS, 2019.

CETWW: Castillejos, Evington, T, White, Winter, *Nuclear dimension of simple C*-algebras*, arXiv:1901:05853.

CE: Castillejos, Evington, Nuclear dimension of simple stably projectionless C*-algebras, arXiv:1901.11441.

Schafhauser, A new proof of the Tikuisis–White–Winter theorem, Crelle, 2020.

Schafhauser, *Subalgebras of simple AF-algebras*, Ann. Math., to appear.

CGSTW: Carrión, Gabe, Schafhauser, T, White, *Classification of* *-*homomorphisms I: simple nuclear C*-algebras*, in preparation.

From slide 17

CCEGSTW: Carrión, Castillejos, Evington, Gabe, Schafhauser, T, White, *Tracially complete C*-algebras*, in preparation.