The real span of a dimension group

Aaron Tikuisis

aptikuis@math.toronto.edu

University of Toronto

Joint work with Greg Maloney

Canadian Operator Symposium 2011

ヘロト ヘ戸ト ヘヨト ヘヨト

Dimension groups

A dimension group is a directed ordered group $(G, G^+ := \{g \in G : g \ge 0\})$ satisfying:

(i) Unperforation: if $g + \cdots + g \ge 0$ then $g \ge 0$

(ii) Riesz interpolation: given *a*₁, *a*₂, *c*₁, *c*₂ satisfying

$$\begin{array}{ll} a_1\\ a_2 \end{array} \leq \begin{array}{l} c_1\\ c_2, \end{array}$$

∃*b* satisfying

$$\begin{array}{ll} a_1\\ a_2 \end{array} \leq b \leq \begin{array}{l} c_1\\ c_2. \end{array}$$

Examples: lattice ordered groups (use max $\{a_1, a_2\}$ or min $\{c_1, c_2\}$ as an interpolant), $C(X, \mathbb{R})$ with strict order, f < g if $f(x) < g(x) \forall x$.

<ロ> (四) (四) (三) (三) (三) (三)

- (i) Unperforation: if $g + \cdots + g \ge 0$ then $g \ge 0$
- (ii) Riesz interpolation: given a_1, a_2, c_1, c_2 satisfying

∃b satisfying

$$\begin{array}{ll} a_1 \\ a_2 \end{array} \leq b \leq \begin{array}{l} c_1 \\ c_2. \end{array}$$

Examples: lattice ordered groups (use max{ a_1, a_2 } or min{ c_1, c_2 } as an interpolant), $C(X, \mathbb{R})$ with strict order, f < g if $f(x) < g(x) \forall x$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

Dimension groups

A dimension group is a directed ordered group $(G, G^+ := \{g \in G : g \ge 0\})$ satisfying:

(i) Unperforation: if $g + \cdots + g \ge 0$ then $g \ge 0$

(ii) Riesz interpolation: given a_1, a_2, c_1, c_2 satisfying

$$\begin{array}{l} a_1\\ a_2 \end{array} \leq b \leq \begin{array}{c} c_1\\ c_2. \end{array}$$

Examples: lattice ordered groups (use max $\{a_1, a_2\}$ or min $\{c_1, c_2\}$ as an interpolant), $C(X, \mathbb{R})$ with strict order, f < g if $f(x) < g(x) \forall x$.

◆□▶ ◆□▶ ★ □▶ ★ □▶ → □ → の Q ()

(i) Unperforation: if $g + \cdots + g \ge 0$ then $g \ge 0$

(ii) Riesz interpolation: given a_1, a_2, c_1, c_2 satisfying

$$\begin{array}{ll} a_1\\ a_2 \end{array} \leq \begin{array}{l} c_1\\ c_2, \end{array}$$

∃b satisfying

ples: lattice ordered groups (use max
$$\{a_1, a_2, c_2\}$$
 as an interpolant),

 $C(X, \mathbb{R})$ with strict order, f < g if $f(x) < g(x) \ \forall x$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

(i) Unperforation: if $g + \cdots + g \ge 0$ then $g \ge 0$

(ii) Riesz interpolation: given a_1, a_2, c_1, c_2 satisfying

$$\begin{array}{l} a_1\\ a_2 \end{array} \leq \begin{array}{l} c_1\\ c_2, \end{array}$$

∃*b* satisfying

$$\begin{array}{ll} a_1\\ a_2 \end{array} \leq b \leq \begin{array}{l} c_1\\ c_2. \end{array}$$

Examples: lattice ordered groups (use max $\{a_1, a_2\}$ or min $\{c_1, c_2\}$ as an interpolant), $C(X, \mathbb{R})$ with strict order, f < g if $f(x) < g(x) \forall x$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(i) Unperforation: if $g + \cdots + g \ge 0$ then $g \ge 0$

(ii) Riesz interpolation: given a_1, a_2, c_1, c_2 satisfying

$$\begin{array}{ll} a_1\\ a_2 \end{array} \leq \begin{array}{l} c_1\\ c_2, \end{array}$$

∃b satisfying

$$\begin{array}{ll} a_1\\ a_2 \end{array} \leq b \leq \begin{array}{l} c_1\\ c_2. \end{array}$$

Examples: lattice ordered groups (use max{ a_1, a_2 } or min{ c_1, c_2 } as an interpolant),

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

(i) Unperforation: if $g + \cdots + g \ge 0$ then $g \ge 0$

(ii) Riesz interpolation: given a_1, a_2, c_1, c_2 satisfying

$$\begin{array}{ll} a_1 \\ a_2 \end{array} \leq \begin{array}{l} c_1 \\ c_2, \end{array}$$

∃*b* satisfying

$$\begin{array}{ll} a_1\\ a_2 \end{array} \leq b \leq \begin{array}{l} c_1\\ c_2. \end{array}$$

Examples: lattice ordered groups (use max{ a_1, a_2 } or min{ c_1, c_2 } as an interpolant), $C(X, \mathbb{R})$ with strict order, f < g if $f(x) < g(x) \forall x$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

$$A_1 \rightarrow A_2 \rightarrow \cdots \rightarrow A.$$

Ordered K_0 -group computation:

Theorem (Elliott, Effros-Handelman-Shen)

The countable dimension groups are exactly the K_0 -groups of AF algebras.

ヘロン 人間 とくほ とくほ とう

$$A_1 \rightarrow A_2 \rightarrow \cdots \rightarrow A.$$

Ordered K_0 -group computation:

$$K_0(A_1) \rightarrow K_0(A_2) \rightarrow \cdots \rightarrow K_0(A)$$

Theorem (Elliott, Effros-Handelman-Shen)

The countable dimension groups are exactly the K_0 -groups of AF algebras.

イロト イポト イヨト イヨト 三日

$$A_1 \rightarrow A_2 \rightarrow \cdots \rightarrow A.$$

Ordered K_0 -group computation:

Theorem (Elliott, Effros-Handelman-Shen)

The countable dimension groups are exactly the K_0 -groups of AF algebras.

イロト イポト イヨト イヨト 三日

$$A_1 \rightarrow A_2 \rightarrow \cdots \rightarrow A.$$

Ordered K_0 -group computation:

Theorem (Elliott, Effros-Handelman-Shen)

The countable dimension groups are exactly the K_0 -groups of AF algebras.

Our goal: to understand dimension groups better by embedding them into real vector spaces.

Embed *G* into a real vector space *V* (s.t. *G* spans *V*). Set $V^+ = \mathbb{R}^+ \cdot G^+$

= the real cone generated by G^+ .

We want:

 (i) (V, V⁺) to be an ordered vector space (need V⁺ ∩ −V⁺ = 0, ie. not just preordered)

```
(ii) to recover G^+ from V^+:
G^+ - V^+ \cap G
```

```
(iii) (V, V^+) to be a dimension group
(need Riesz interpolation)
```

None of these are automatic.

イロト 不得 とくほ とくほ とう

Our goal: to understand dimension groups better by embedding them into real vector spaces.

Embed *G* into a real vector space *V* (s.t. *G* spans *V*). Set $V^+ = \mathbb{R}^+ \cdot G^+$

= the real cone generated by G^+ . We want:

 (i) (V, V⁺) to be an ordered vector space (need V⁺ ∩ −V⁺ = 0, ie. not just preordered)

```
(ii) to recover G^+ from V^+:

G^+ = V^+ \cap G
```

(iii) (V, V^+) to be a dimension group (need Riesz interpolation)

None of these are automatic.

<ロ> <四> <四> <四> <三</td>

Our goal: to understand dimension groups better by embedding them into real vector spaces.

Embed *G* into a real vector space *V* (s.t. *G* spans *V*). Set $V^+ = \mathbb{R}^+ \cdot G^+$

= the real cone generated by G^+ .

We want:

(i) (V, V⁺) to be an ordered vector space
 (need V⁺ ∩ −V⁺ = 0, ie. not just preordered)

```
(ii) to recover G^+ from V^+:

G^+ = V^+ \cap G
```

(iii) (V, V^+) to be a dimension group (need Riesz interpolation)

None of these are automatic.

<ロ> (四) (四) (三) (三) (三)

Our goal: to understand dimension groups better by embedding them into real vector spaces.

Embed *G* into a real vector space *V* (s.t. *G* spans *V*). Set $V^+ = \mathbb{R}^+ \cdot G^+$

= the real cone generated by G^+ .

We want:

(i) (V, V^+) to be an ordered vector space (need $V^+ \cap -V^+ = 0$, ie. not just preordered)

```
(ii) to recover G^+ from V^+:

G^+ = V^+ \cap G
```

(iii) (V, V^+) to be a dimension group (need Riesz interpolation)

None of these are automatic.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

Our goal: to understand dimension groups better by embedding them into real vector spaces.

Embed *G* into a real vector space *V* (s.t. *G* spans *V*). Set $V^+ = \mathbb{R}^+ \cdot G^+$

= the real cone generated by G^+ .

We want:

(i) (V, V^+) to be an ordered vector space (need $V^+ \cap -V^+ = 0$, ie. not just preordered)

```
(ii) to recover G^+ from V^+:

G^+ = V^+ \cap G
```

(iii) (V, V^+) to be a dimension group (need Riesz interpolation)

None of these are automatic.

<ロ> (四) (四) (三) (三) (三) (三)

Our goal: to understand dimension groups better by embedding them into real vector spaces.

Embed *G* into a real vector space *V* (s.t. *G* spans *V*). Set $V^+ = \mathbb{R}^+ \cdot G^+$

= the real cone generated by G^+ .

We want:

(i) (V, V^+) to be an ordered vector space (need $V^+ \cap -V^+ = 0$, ie. not just preordered)

```
(ii) to recover G^+ from V^+:
```

 $G^+ = V^+ \cap G$

(iii) (V, V^+) to be a dimension group (need Riesz interpolation)

None of these are automatic.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 ののの

Our goal: to understand dimension groups better by embedding them into real vector spaces.

Embed *G* into a real vector space *V* (s.t. *G* spans *V*). Set $V^+ = \mathbb{R}^+ \cdot G^+$

= the real cone generated by G^+ .

We want:

(i) (V, V^+) to be an ordered vector space (need $V^+ \cap -V^+ = 0$, ie. not just preordered)

```
(ii) to recover G^+ from V^+:
```

 $G^+ = V^+ \cap G$

(iii) (V, V^+) to be a dimension group (need Riesz interpolation)

None of these are automatic.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

This ordered group is denoted $\mathbb{Z} + \theta \mathbb{Z}$; indeed, it embeds into $V = \mathbb{R}$ by $(x, y) \mapsto x + \theta y$, which is a good embedding.

But $(x, y) \mapsto x + \eta y$ (where $\eta \neq \theta$) is bad, since $V^+ = \mathbb{R}$. Also $V^+ \cap G = G \neq G^+$.

イロト イポト イヨト イヨト 三日

This ordered group is denoted $\mathbb{Z} + \theta \mathbb{Z}$; indeed, it embeds into $V = \mathbb{R}$ by $(x, y) \mapsto x + \theta y$, which is a good embedding.

But $(x, y) \mapsto x + \eta y$ (where $\eta \neq \theta$) is bad, since $V^+ = \mathbb{R}$. Also $V^+ \cap G = G \neq G^+$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

This ordered group is denoted $\mathbb{Z} + \theta \mathbb{Z}$; indeed, it embeds into $V = \mathbb{R}$ by $(x, y) \mapsto x + \theta y$, which is a good embedding.

But $(x, y) \mapsto x + \eta y$ (where $\eta \neq \theta$) is bad, since $V^+ = \mathbb{R}$. Also $V^+ \cap G = G \neq G^+$.

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

This ordered group is denoted $\mathbb{Z} + \theta \mathbb{Z}$; indeed, it embeds into $V = \mathbb{R}$ by $(x, y) \mapsto x + \theta y$, which is a good embedding.

But $(x, y) \mapsto x + \eta y$ (where $\eta \neq \theta$) is bad, since $V^+ = \mathbb{R}$. Also $V^+ \cap G = G \neq G^+$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

This ordered group is denoted $\mathbb{Z} + \theta \mathbb{Z}$; indeed, it embeds into $V = \mathbb{R}$ by $(x, y) \mapsto x + \theta y$, which is a good embedding.

But $(x, y) \mapsto x + \eta y$ (where $\eta \neq \theta$) is bad, since $V^+ = \mathbb{R}$. Also $V^+ \cap G = G \neq G^+$.

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへで

This ordered group is denoted $\mathbb{Z} + \theta \mathbb{Z}$; indeed, it embeds into $V = \mathbb{R}$ by $(x, y) \mapsto x + \theta y$, which is a good embedding.

But $(x, y) \mapsto x + \eta y$ (where $\eta \neq \theta$) is bad, since $V^+ = \mathbb{R}$. Also $V^+ \cap G = G \neq G^+$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ○ ○ ○

 (V, V^+) may not have Riesz interpolation. Pick four \mathbb{Q} -linearly independent vectors v_1, \ldots, v_4 in one half-space of \mathbb{R}^3 , such that none of them is in the cone generated by the other three.

Embed $G = (\mathbb{Z}^4, \mathbb{N}^4)$ into $V = \mathbb{R}^3$ by $(x_1, \ldots, x_4) \mapsto x_1 v_1 + \cdots + x_4 v_4$.

 (V, V^+) may not have Riesz interpolation. Pick four Q-linearly independent vectors v_1, \ldots, v_4 in one half-space of \mathbb{R}^3 , such that none of them is in the cone generated by the other three.

Embed $G = (\mathbb{Z}^4, \mathbb{N}^4)$ into $V = \mathbb{R}^3$ by $(x_1, \ldots, x_4) \mapsto x_1 v_1 + \cdots + x_4 v_4$.

(V, V^+) may not have Riesz interpolation.

Then V^+ is the cone generated by v_1, \ldots, v_4 , which is ordered.

But (V, V^+) doesn't have Riesz interpolation (or else the positive functionals on it would be lattice-ordered).

 (V, V^+) may not have Riesz interpolation.

Then V^+ is the cone generated by v_1, \ldots, v_4 , which is ordered.

But (V, V^+) doesn't have Riesz interpolation (or else the positive functionals on it would be lattice-ordered).

Theorem (Maloney-T)

If (G, G^+) is a finite-rank dimension group then there exists an embedding $G \hookrightarrow V = \mathbb{R}^n$, such that: (i) is an ordered vector space with Riesz interpolation; and (ii) $G^+ = G \cap V^+$.

In fact, we may use the canonical embedding $G \hookrightarrow G \otimes \mathbb{Q}$

$$\cong \mathbb{Q}^n \hookrightarrow \mathbb{R}^n$$

 $(n = \operatorname{rank} G).$

・ロト ・ 理 ト ・ ヨ ト ・

Theorem (Maloney-T)

If (G, G^+) is a finite-rank dimension group then there exists an embedding $G \hookrightarrow V = \mathbb{R}^n$, such that:

(i) is an ordered vector space with Riesz interpolation; and (ii) $G^+ = G \cap V^+$.

In fact, we may use the canonical embedding $G \hookrightarrow G \otimes \mathbb{Q}$ $\cong \mathbb{Q}^n \hookrightarrow \mathbb{R}^n$

 $(n = \operatorname{rank} G).$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theorem (Maloney-T)

If (G, G^+) is a finite-rank dimension group then there exists an embedding $G \hookrightarrow V = \mathbb{R}^n$, such that:

(i) is an ordered vector space with Riesz interpolation; and (ii) $G^+ = G \cap V^+$.

In fact, we may use the canonical embedding $G \hookrightarrow G \otimes \mathbb{Q}$ $\cong \mathbb{Q}^n \hookrightarrow \mathbb{R}^n$

 $(n = \operatorname{rank} G).$

・ロト ・ 同ト ・ ヨト ・ ヨト … ヨ

Theorem (Maloney-T)

If (G, G^+) is a finite-rank dimension group then there exists an embedding $G \hookrightarrow V = \mathbb{R}^n$, such that:

(i) is an ordered vector space with Riesz interpolation; and (ii) $G^+ = G \cap V^+$.

In fact, we may use the canonical embedding

$$G \hookrightarrow G \otimes \mathbb{Q}$$

 $\cong \mathbb{Q}^n \hookrightarrow \mathbb{R}^n$

 $(n = \operatorname{rank} G).$

ヘロン 人間 とくほ とくほ とう

The proof mainly looks at the positive functionals $H \to \mathbb{R}$ for ideals H of G.

(An ideal is an order-convex, directed subgroup.)

The positive cone G^+ is largely defined by such functionals, and therefore by the "extreme" ones.

◆□ > ◆□ > ◆豆 > ◆豆 > →

The proof mainly looks at the positive functionals $H \to \mathbb{R}$ for ideals H of G.

(An ideal is an order-convex, directed subgroup.)

The positive cone G^+ is largely defined by such functionals, and therefore by the "extreme" ones.

The proof mainly looks at the positive functionals $H \to \mathbb{R}$ for ideals H of G.

(An ideal is an order-convex, directed subgroup.)

The positive cone G^+ is largely defined by such functionals, and therefore by the "extreme" ones.

The proof mainly looks at the positive functionals $H \to \mathbb{R}$ for ideals H of G.

(An ideal is an order-convex, directed subgroup.)

The positive cone G^+ is largely defined by such functionals, and therefore by the "extreme" ones.

If $K \subseteq H$, $f : H \to \mathbb{R}$ is an extreme positive functional then $f|_K$ is either zero or an extreme positive functional.

Lemma: Restriction is one-to-one

If $K \subseteq H$, $f : K \to \mathbb{R}$ is an extreme positive functional which extends to a positive functional on H, then it has a unique extreme extension.

ヘロト 人間 ト ヘヨト ヘヨト

If $K \subseteq H$, $f : H \to \mathbb{R}$ is an extreme positive functional then $f|_K$ is either zero or an extreme positive functional.

Lemma: Restriction is one-to-one

If $K \subseteq H$, $f : K \to \mathbb{R}$ is an extreme positive functional which extends to a positive functional on H, then it has a unique extreme extension.

くロト (過) (目) (日)

Proof: $f(x_1 + x_2) = f_1(x_1) + f_2(x_2)$ is the unique common extension of f_1, f_2 , and it is positive.

Use uniqueness of extreme extensions to conclude that *f* is extreme.

ヘロン 人間 とくほ とくほ とう

Lemma

Proof: $f(x_1 + x_2) = f_1(x_1) + f_2(x_2)$ is the unique common extension of f_1, f_2 , and it is positive.

Use uniqueness of extreme extensions to conclude that *f* is extreme.

ヘロト ヘ戸ト ヘヨト ヘヨト

Lemma

Proof: $f(x_1 + x_2) = f_1(x_1) + f_2(x_2)$ is the unique common extension of f_1, f_2 , and it is positive.

Use uniqueness of extreme extensions to conclude that *f* is extreme.

Lemma

Given H_1, H_2 and extreme positive functionals $f_1 : H_1 \to \mathbb{R}$ and $f_2 : H_2 \to \mathbb{R}$ that agree on $H_1 \cap H_2$, $H_1 + H_2 \qquad \exists f$ $H_1 \qquad H_2 \qquad f_1 \qquad f_2$ $H_1 \cap H_2 \qquad f_{1\cap 2}$ there exists an extreme extension to $H_1 + H_2$.

Proof: $f(x_1 + x_2) = f_1(x_1) + f_2(x_2)$ is the unique common extension of f_1, f_2 , and it is positive.

Use uniqueness of extreme extensions to conclude that *f* is extreme.

Lemma

Proof: $f(x_1 + x_2) = f_1(x_1) + f_2(x_2)$ is the unique common extension of f_1, f_2 , and it is positive.

Use uniqueness of extreme extensions to conclude that f is extreme.

Can prove the two lemmas for $K_0(AF)$ using operator theory.

countable dimension group	\leftrightarrow	AF algebra
ideal	\leftrightarrow	ideal
positive homomorphism	\leftrightarrow	densely finite trace ↓ GNS traceable representation
extreme state	\leftrightarrow	extreme densely finite trace traceable factor representation

・ロト ・四ト ・ヨト ・ヨトー

Can prove the two lemmas	for K_0	$_{0}(AF)$ using operator theory.
countable dimension group	\leftrightarrow	AF algebra
ideal	\leftrightarrow	ideal
positive homomorphism	\leftrightarrow	densely finite trace
		traceable representation
extreme state	\leftrightarrow	extreme densely finite trace
		↓ GNS
		traceable factor representation

Can prove the two lemmas	for K_0	$_{0}(AF)$ using operator theory.
countable dimension group	\leftrightarrow	AF algebra
ideal	\leftrightarrow	ideal
positive homomorphism	\leftrightarrow	densely finite trace
		traceable representation
extreme state	\leftrightarrow	extreme densely finite trace
		↓ GNS
		traceable factor representation

Can prove the two lemmas	for K_0	$_{0}(AF)$ using operator theory.
countable dimension group	\leftrightarrow	AF algebra
ideal	\leftrightarrow	ideal
positive homomorphism	\leftrightarrow	densely finite trace
		traceable representation
extreme state	\leftrightarrow	extreme densely finite trace
		↓ GNS
		traceable factor representation

Can prove the two lemmas	for K_0	$_{0}(AF)$ using operator theory.
countable dimension group	\leftrightarrow	AF algebra
ideal	\leftrightarrow	ideal
positive homomorphism	\leftrightarrow	densely finite trace
		traceable representation
extreme state	\leftrightarrow	extreme densely finite trace
		↓ GNS
		traceable factor representation

Can prove the two lemmas	for K_0	$_{0}(AF)$ using operator theory.
countable dimension group	\leftrightarrow	AF algebra
ideal	\leftrightarrow	ideal
positive homomorphism	\leftrightarrow	densely finite trace
		traceable representation
extreme state	\leftrightarrow	extreme densely finite trace
		↓ GNS
		traceable factor representation

Can prove the two lemmas	for K_0	$_{0}(AF)$ using operator theory.
countable dimension group	\leftrightarrow	AF algebra
ideal	\leftrightarrow	ideal
positive homomorphism	\leftrightarrow	densely finite trace
		traceable representation
extreme state	\leftrightarrow	extreme densely finite trace
		↓ GNS
		traceable factor representation

Can prove the two lemmas	for K_0	$_{0}(AF)$ using operator theory.
countable dimension group	\leftrightarrow	AF algebra
ideal	\leftrightarrow	ideal
positive homomorphism	\leftrightarrow	densely finite trace
		traceable representation
extreme state	\leftrightarrow	extreme densely finite trace
		↓ GNS
		traceable factor representation

Can prove the two lemmas	for K_0	$_{0}(AF)$ using operator theory.
countable dimension group	\leftrightarrow	AF algebra
ideal	\leftrightarrow	ideal
positive homomorphism	\leftrightarrow	densely finite trace
		traceable representation
extreme state	\leftrightarrow	extreme densely finite trace
		↓ GNS
		traceable factor representation

Can prove the two lemmas	for K	$_{0}(AF)$ using operator theory.
countable dimension group	\leftrightarrow	AF algebra
ideal	\leftrightarrow	ideal
positive homomorphism	\leftrightarrow	densely finite trace
		traceable representation
extreme state	\leftrightarrow	extreme densely finite trace
		↓ GNS
		traceable factor representation

Can prove the two lemmas	for K	$_{0}(AF)$ using operator theory.
countable dimension group	\leftrightarrow	AF algebra
ideal	\leftrightarrow	ideal
positive homomorphism	\leftrightarrow	densely finite trace
		traceable representation
extreme state	\leftrightarrow	extreme densely finite trace
		↓ GNS
		traceable factor representation

If $K \subseteq H$, $f : H \to \mathbb{R}$ is an extreme positive functional then $f|_K$ is either zero or an extreme positive functional.

Proof: $H = K_0(A)$, $K = K_0(I)$, *f* corresponds to traceable factor representation $\pi : A \to B(\mathcal{H})$.

Then $\pi(A)'' = \pi(I)'' \oplus M$, so $\pi|_I$ is either 0 or a factor rep.

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

If $K \subseteq H$, $f : H \to \mathbb{R}$ is an extreme positive functional then $f|_K$ is either zero or an extreme positive functional.

Proof: $H = K_0(A)$, $K = K_0(I)$, *f* corresponds to traceable factor representation $\pi : A \to B(\mathcal{H})$.

Then $\pi(A)'' = \pi(I)'' \oplus M$, so $\pi|_I$ is either 0 or a factor rep.

ヘロン 人間 とくほ とくほ とう

If $K \subseteq H$, $f : H \to \mathbb{R}$ is an extreme positive functional then $f|_K$ is either zero or an extreme positive functional.

Proof: $H = K_0(A)$, $K = K_0(I)$, *f* corresponds to traceable factor representation $\pi : A \to B(\mathcal{H})$.

Then $\pi(A)'' = \pi(I)'' \oplus M$, so $\pi|_I$ is either 0 or a factor rep.

ヘロン 人間 とくほ とくほ とう

If $K \subseteq H$, $f : K \to \mathbb{R}$ is an extreme positive functional which extends to a positive functional on H, then it has a unique extreme extension.

Proof: $H = K_0(A)$, $K = K_0(I)$, and let *f* correspond to the trace τ on *I*.

There exists a rep. π of A such that $\pi(I)''$ is a factor with a faithful trace ρ , and $\tau = \rho \circ \pi|_I$.

Then $\tilde{\pi}(a) = \pi(a) \mathbf{1}_{\pi(I)''} = \text{WOT-lim } \pi(ae_{\alpha})$ is a factor rep. of *A*.

And, if π is a factor rep. then $1_{\pi(I)''} = 1_{\pi(A)''}$ so $\pi = \tilde{\pi}$.

Hence, $\tilde{\tau}(a) = \lim \tau(ae_{\alpha})$ is the unique extreme densely finite trace extending τ .

ヘロン ヘアン ヘビン ヘビン

If $K \subseteq H$, $f : K \to \mathbb{R}$ is an extreme positive functional which extends to a positive functional on H, then it has a unique extreme extension.

Proof: $H = K_0(A)$, $K = K_0(I)$, and let *f* correspond to the trace τ on *I*.

There exists a rep. π of A such that $\pi(I)''$ is a factor with a faithful trace ρ , and $\tau = \rho \circ \pi|_I$.

Then $\tilde{\pi}(a) = \pi(a) \mathbb{1}_{\pi(I)''} = \text{WOT-lim } \pi(ae_{\alpha})$ is a factor rep. of *A*.

And, if π is a factor rep. then $1_{\pi(I)''} = 1_{\pi(A)''}$ so $\pi = \tilde{\pi}$.

Hence, $\tilde{\tau}(a) = \lim \tau(ae_{\alpha})$ is the unique extreme densely finite trace extending τ .

・ロト ・ 理 ト ・ ヨ ト ・

If $K \subseteq H$, $f : K \to \mathbb{R}$ is an extreme positive functional which extends to a positive functional on H, then it has a unique extreme extension.

Proof: $H = K_0(A)$, $K = K_0(I)$, and let *f* correspond to the trace τ on *I*.

There exists a rep. π of *A* such that $\pi(I)''$ is a factor with a faithful trace ρ , and $\tau = \rho \circ \pi|_I$.

Then $\tilde{\pi}(a) = \pi(a) \mathbf{1}_{\pi(h)''} = \text{WOT-lim } \pi(ae_{\alpha})$ is a factor rep. of *A*.

And, if π is a factor rep. then $1_{\pi(I)''} = 1_{\pi(A)''}$ so $\pi = \tilde{\pi}$.

Hence, $\tilde{\tau}(a) = \lim \tau(ae_{\alpha})$ is the unique extreme densely finite trace extending τ .

・ロ・ ・ 同・ ・ ヨ・ ・ ヨ・

If $K \subseteq H$, $f : K \to \mathbb{R}$ is an extreme positive functional which extends to a positive functional on H, then it has a unique extreme extension.

Proof: $H = K_0(A)$, $K = K_0(I)$, and let *f* correspond to the trace τ on *I*.

There exists a rep. π of *A* such that $\pi(I)''$ is a factor with a faithful trace ρ , and $\tau = \rho \circ \pi|_I$.

Then $\tilde{\pi}(a) = \pi(a) \mathbf{1}_{\pi(I)''} = \text{WOT-lim } \pi(ae_{\alpha})$ is a factor rep. of *A*.

And, if π is a factor rep. then $1_{\pi(I)''} = 1_{\pi(A)''}$ so $\pi = \tilde{\pi}$.

Hence, $\tilde{\tau}(a) = \lim \tau(ae_{\alpha})$ is the unique extreme densely finite trace extending τ .

イロン 不良 とくほう 不良 とうほ

If $K \subseteq H$, $f : K \to \mathbb{R}$ is an extreme positive functional which extends to a positive functional on H, then it has a unique extreme extension.

Proof: $H = K_0(A)$, $K = K_0(I)$, and let *f* correspond to the trace τ on *I*.

There exists a rep. π of *A* such that $\pi(I)''$ is a factor with a faithful trace ρ , and $\tau = \rho \circ \pi|_I$.

Then $\tilde{\pi}(a) = \pi(a) \mathbf{1}_{\pi(l)''} = \text{WOT-lim } \pi(ae_{\alpha})$ is a factor rep. of *A*.

And, if π is a factor rep. then $\mathbf{1}_{\pi(I)''} = \mathbf{1}_{\pi(A)''}$ so $\pi = \tilde{\pi}$.

Hence, $\tilde{\tau}(a) = \lim \tau(ae_{\alpha})$ is the unique extreme densely finite trace extending τ .

・ロト ・四ト ・ヨト ・ヨト ・ヨ

If $K \subseteq H$, $f : K \to \mathbb{R}$ is an extreme positive functional which extends to a positive functional on H, then it has a unique extreme extension.

Proof: $H = K_0(A)$, $K = K_0(I)$, and let *f* correspond to the trace τ on *I*.

There exists a rep. π of *A* such that $\pi(I)''$ is a factor with a faithful trace ρ , and $\tau = \rho \circ \pi|_I$.

Then $\tilde{\pi}(a) = \pi(a) \mathbf{1}_{\pi(l)''} = \text{WOT-lim } \pi(ae_{\alpha})$ is a factor rep. of *A*.

And, if π is a factor rep. then $\mathbf{1}_{\pi(I)''} = \mathbf{1}_{\pi(A)''}$ so $\pi = \tilde{\pi}$.

Hence, $\tilde{\tau}(a) = \lim \tau(ae_{\alpha})$ is the unique extreme densely finite trace extending τ .

・ロト ・四ト ・ヨト ・ヨト ・ヨ

• Lemmas don't need G countable.

• Lemmas (noncountable version) used to describe explicitly all finite-dimensional ordered real vector spaces with Riesz interpolation.

• Lemmas + main theorem + more used to describe explicitly all finite-rank dimension groups.

• Infinite-rank case is work in progress (the linear algebra methods may not generalize).

- Lemmas don't need G countable.
- Lemmas (noncountable version) used to describe explicitly all finite-dimensional ordered real vector spaces with Riesz interpolation.
- Lemmas + main theorem + more used to describe explicitly all finite-rank dimension groups.
- Infinite-rank case is work in progress (the linear algebra methods may not generalize).

- Lemmas don't need G countable.
- Lemmas (noncountable version) used to describe explicitly all finite-dimensional ordered real vector spaces with Riesz interpolation.
- Lemmas + main theorem + more used to describe explicitly all finite-rank dimension groups.
- Infinite-rank case is work in progress (the linear algebra methods may not generalize).

- Lemmas don't need G countable.
- Lemmas (noncountable version) used to describe explicitly all finite-dimensional ordered real vector spaces with Riesz interpolation.
- Lemmas + main theorem + more used to describe explicitly all finite-rank dimension groups.
- Infinite-rank case is work in progress (the linear algebra methods may not generalize).

▲ 圖 ▶ ▲ 国 ▶ ▲ 国 ▶ ……