The real span of a dimension group

Aaron Tikuisis
aptikuis@math.toronto.edu

University of Toronto

Joint work with Greg Maloney

Canadian Operator Symposium 2011

Aaron Tikuisis The real span of a dimension group



Dimension groups

A dimension group is a directed ordered group
(G,G":={ge G:g=>0})
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Dimension groups

A dimension group is a directed ordered group
(G,G" :={g € G: g > 0}) satisfying:

(i) Unperforation: ifg+---+g>0theng >0

(i) Riesz interpolation: given ay, a2, ¢y, > satisfying
a < Cq
ap Co,

Aaron Tikuisis The real span of a dimension group



Dimension groups

A dimension group is a directed ordered group
(G,G" :={g € G: g > 0}) satisfying:
(i) Unperforation: ifg+---+g>0theng >0
(i) Riesz interpolation: given ay, a», ¢4, C» satisfying
a G
a O
b satisfying

a1<b< Cq
a — T Co.
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Dimension groups

A dimension group is a directed ordered group
(G,G" :={g € G: g > 0}) satisfying:
(i) Unperforation: ifg+---+g>0theng >0
(i) Riesz interpolation: given ay, a», ¢4, C» satisfying
a G
a O
b satisfying

a1<b< Cq
a — T Co.

Examples: lattice ordered groups (use max{ay, a>} or
min{cy, co} as an interpolant),
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Dimension groups

A dimension group is a directed ordered group
(G,G" :={g € G: g > 0}) satisfying:
(i) Unperforation: ifg+---+g>0theng >0
(i) Riesz interpolation: given ay, a», ¢4, C» satisfying
a G
a O
b satisfying

a1<b< Cq
a — T Co.

Examples: lattice ordered groups (use max{ay, a>} or
min{cy, co} as an interpolant),
C(X,R) with strict order, f < g if f(x) < g(x) Vx.
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Dimension groups and AF algebras

Recall that an AF algebra is given by an inductive limit of
finite-dimensional C*-algebras.
Al > A— - — A
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Dimension groups and AF algebras

Recall that an AF algebra is given by an inductive limit of
finite-dimensional C*-algebras.

Al - A — - = A
Ordered Kp-group computation:

Ko(A1) —  Ko(A2) — - = Ko(A)
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Dimension groups and AF algebras

Recall that an AF algebra is given by an inductive limit of
finite-dimensional C*-algebras.

Al - A — - = A
Ordered Kp-group computation:

Ko(A1) —  Ko(A2) — - = Ko(A)

(Z,N)™ — (Z,N)"2 — ... - Ky(A)
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Dimension groups and AF algebras

Recall that an AF algebra is given by an inductive limit of
finite-dimensional C*-algebras.

Al - A — - = A
Ordered Kp-group computation:

Ko(A1) —  Ko(A2) — - = Ko(A)

ZN)™ S (ZN)T e Ko(A)

Theorem (Elliott, Effros-Handelman-Shen)

The countable dimension groups are exactly the Ky-groups of
AF algebras.
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A good embedding of a dimension group

Our goal: to understand dimension groups better by embedding
them into real vector spaces.
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A good embedding of a dimension group

Our goal: to understand dimension groups better by embedding
them into real vector spaces.

Embed G into a real vector space V (s.t. G spans V).
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A good embedding of a dimension group

Our goal: to understand dimension groups better by embedding
them into real vector spaces.

Embed G into a real vector space V (s.t. G spans V).
Set Vt =R*.G"
= the real cone generated by G*.
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A good embedding of a dimension group

Our goal: to understand dimension groups better by embedding
them into real vector spaces.

Embed G into a real vector space V (s.t. G spans V).
Set Vt =R*.G"

= the real cone generated by G*.
We want:

(i) (V, V) to be an ordered vector space
(need VN —V* =0, ie. not just preordered)

Aaron Tikuisis The real span of a dimension group



A good embedding of a dimension group

Our goal: to understand dimension groups better by embedding
them into real vector spaces.

Embed G into a real vector space V (s.t. G spans V).
Set Vt =R*.G"

= the real cone generated by G*.
We want:

(i) (V, V) to be an ordered vector space
(need VN —V* =0, ie. not just preordered)

(ii) to recover G* from V*:
Gtr=VtnG
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A good embedding of a dimension group

Our goal: to understand dimension groups better by embedding
them into real vector spaces.

Embed G into a real vector space V (s.t. G spans V).
Set Vt =R*.G"

= the real cone generated by G*.
We want:

(i) (V, V) to be an ordered vector space
(need VN —V* =0, ie. not just preordered)

(ii) to recover G* from V*:
Gtr=VtnG

(iii) (V, V1) to be a dimension group
(need Riesz interpolation)
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A good embedding of a dimension group

Our goal: to understand dimension groups better by embedding
them into real vector spaces.

Embed G into a real vector space V (s.t. G spans V).
Set Vt =R*.G"

= the real cone generated by G*.
We want:

(i) (V, V) to be an ordered vector space
(need VN —V* =0, ie. not just preordered)

(ii) to recover G* from V*:
Gtr=VtnG

(iii) (V, V1) to be a dimension group
(need Riesz interpolation)

None of these are automatic.
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Bad embeddings: example one

(V, V*) may not be an ordered vector space.  Let G = 72,
Gt ={(x,y): x+0y >0} (0 £Q).
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Bad embeddings: example one

(V, V*) may not be an ordered vector space.  Let G = 72,
Gt ={(x,y): x+0y >0} (0 £Q).

This ordered group is denoted Z + 07Z;
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Bad embeddings: example one

(V, V*) may not be an ordered vector space.  Let G = 72,
Gt ={(x,y): x+0y >0} (0 £Q).

This ordered group is denoted Z + 6Z; indeed, it embeds into
V=Rby (x,y)— x+ 6y,
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Bad embeddings: example one

(V, V*) may not be an ordered vector space.  Let G = 72,
Gt ={(x,y): x+0y >0} (0 £Q).

This ordered group is denoted Z + 6Z; indeed, it embeds into
V =Rby (x,y) — x + 8y, which is a good embedding.

Aaron Tikuisis The real span of a dimension group



Bad embeddings: example one

(V, V*) may not be an ordered vector space.  Let G = 72,
Gt ={(x,y): x+0y >0} (0 £Q).

This ordered group is denoted Z + 6Z; indeed, it embeds into
V =Rby (x,y) — x + 8y, which is a good embedding.

But (x,y) — x +ny (where n # 0) is bad, since V* = R.
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Bad embeddings: example one

(V, V*) may not be an ordered vector space.  Let G = 72,
Gt ={(x,y): x+0y >0} (0 £Q).

This ordered group is denoted Z + 6Z; indeed, it embeds into
V =Rby (x,y) — x + 8y, which is a good embedding.

But (x,y) — x +ny (where n # 0) is bad, since V* = R.
Also V* NG = G # G*.
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Bad embeddings: example two

(V, V™) may not have Riesz interpolation.

Pick four Q-linearly independent vectors vy, ..., v4 in one
half-space of R3, such that none of them is in the cone
generated by the other three.
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Bad embeddings: example two

(V, V™) may not have Riesz interpolation.

Pick four Q-linearly independent vectors vy, ..., v4 in one
half-space of R3, such that none of them is in the cone
generated by the other three.

Embed G = (Z*,N*) into V = R3 by
(X1,...yXq) = XqVq + -+ + Xq Va.
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Bad embeddings: example two

(V, V™) may not have Riesz interpolation.
Then VT is the cone generated by vy, ..., v4, which is ordered.
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Bad embeddings: example two

(V, V™) may not have Riesz interpolation.
Then VT is the cone generated by vy, ..., v4, which is ordered.

But (V, V) doesn’t have Riesz interpolation (or else the
positive functionals on it would be lattice-ordered).
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Good embeddings

There is always a good embedding:
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Good embeddings

There is always a good embedding:

Theorem (Maloney-T)

If (G, G") is a finite-rank dimension group then there exists an
embedding G — V = R”", such that:
(i) is an ordered vector space with Riesz interpolation
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Good embeddings

There is always a good embedding:

Theorem (Maloney-T)

If (G, G") is a finite-rank dimension group then there exists an
embedding G — V = R”", such that:
(i) is an ordered vector space with Riesz interpolation; and
(i)GT=Gn V™.

Aaron Tikuisis The real span of a dimension group



Good embeddings

There is always a good embedding:

Theorem (Maloney-T)

If (G, G") is a finite-rank dimension group then there exists an
embedding G — V = R”", such that:
(i) is an ordered vector space with Riesz interpolation; and

(ilGtr=Gn V™.
In fact, we may use the canonical embedding
G—=GR0Q
o~ Qn s Rn

(n = rankG).
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Ideas in the proof

The proof mainly looks at the positive functionals H — R for
ideals H of G.
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Ideas in the proof

The proof mainly looks at the positive functionals H — R for
ideals H of G.

(Anideal is an order-convex, directed subgroup.)
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Ideas in the proof

The proof mainly looks at the positive functionals H — R for
ideals H of G.

(Anideal is an order-convex, directed subgroup.)

The positive cone G™ is largely defined by such functionals,
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Ideas in the proof

The proof mainly looks at the positive functionals H — R for
ideals H of G.

(Anideal is an order-convex, directed subgroup.)

The positive cone G™ is largely defined by such functionals,
and therefore by the “extreme” ones.
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Ideas in the proof

Lemma: Restriction preserves extremeness

If K C H, f: H— Ris an extreme positive functional then f|x is
either zero or an extreme positive functional.
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Ideas in the proof

Lemma: Restriction preserves extremeness

If K C H, f: H— Ris an extreme positive functional then f|x is
either zero or an extreme positive functional.

Lemma: Restriction is one-to-one

If K C H, f: K— Ris an extreme positive functional which
extends to a positive functional on H, then it has a unique
extreme extension.
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Ideas in the proof

Lemma

Given Hy, Ho
Hi + Ho
Ve N\
H, H,
N\ v
Hi N Ho
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|deas in the proof

Lemma

Given H;, H, and extreme positive functionals f; : H; — R and
f> : H> — R that agree on H; N Ho,
Hy + H>
Ve N\
H; Ho fi fa

N\ v N\ v
Hi N Ho fin2
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|deas in the proof

Lemma

Given H;, H, and extreme positive functionals f; : H; — R and
f> : H> — R that agree on H; N Ho,
Hy + H> af
Ve N\ Ve N\
H, Ho fi fa
N\ vd hV vd
Hi N Ho finz
there exists an extreme extension to H; + Ho.
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|deas in the proof

Lemma

Given H;, H, and extreme positive functionals f; : H; — R and
f> : H> — R that agree on H; N Ho,
Hy + H> af
Ve N\ Ve N\
H, Ho fi fa
N\ vd hV vd
Hi N Ho finz
there exists an extreme extension to H; + Ho.

Proof: f(xy + x2) = fi(x1) + f2(x2) is the unique common
extension of f;, f, and it is positive.
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|deas in the proof

Lemma

Given H;, H, and extreme positive functionals f; : H; — R and
f> : H> — R that agree on H; N Ho,
Hy + H> af
Ve N\ Ve N\
H, Ho fi fa
N\ Ve N\ Ve
Hi N Ho finz

there exists an extreme extension to H; + Ho.

Proof: f(xy + x2) = fi(x1) + f2(x2) is the unique common
extension of f;, f, and it is positive.
Use uniqueness of extreme extensions to conclude that f is

extreme.
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Ko-groups of AF algebras

Can prove the two lemmas for Ky(AF) using operator theory.
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Ko-groups of AF algebras

Can prove the two lemmas for Ky(AF) using operator theory.

countable dimension group <« AF algebra
ideal “ ideal
positive homomorphism > densely finite trace
i GNS
traceable representation
extreme state <>  extreme densely finite trace
i GNS

traceable factor representation
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Ko-groups of AF algebras

Can prove the two lemmas for Ky(AF) using operator theory.

countable dimension group <« AF algebra
ideal “ ideal
positive homomorphism > densely finite trace
i GNS
traceable representation
extreme state <>  extreme densely finite trace
i GNS

traceable factor representation
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Ko-groups of AF algebras

Can prove the two lemmas for Ky(AF) using operator theory.

countable dimension group <« AF algebra
ideal “ ideal
positive homomorphism > densely finite trace
i GNS
traceable representation
extreme state <>  extreme densely finite trace
i GNS

traceable factor representation
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Ko-groups of AF algebras

Lemma: Restriction preserves extremeness

If K C H, f: H— Ris an extreme positive functional then f| is
either zero or an extreme positive functional.
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Ko-groups of AF algebras

Lemma: Restriction preserves extremeness

If K C H, f: H— Ris an extreme positive functional then f| is
either zero or an extreme positive functional.

Proof: H = Ky(A), K = Ky(/), f corresponds to traceable factor
representation = : A — B(H).
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Ko-groups of AF algebras

Lemma: Restriction preserves extremeness

If K C H, f: H— Ris an extreme positive functional then f| is
either zero or an extreme positive functional.

Proof: H = Ky(A), K = Ky(/), f corresponds to traceable factor
representation = : A — B(H).

Then n(A)" = =(1)” @ M, so |, is either 0 or a factor rep.
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Ko-groups of AF algebras

Lemma: Restriction is one-to-one

If K C H, f: K— Ris an extreme positive functional which
extends to a positive functional on H, then it has a unique
extreme extension.
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Ko-groups of AF algebras

Lemma: Restriction is one-to-one

If K C H, f: K— Ris an extreme positive functional which
extends to a positive functional on H, then it has a unique
extreme extension.

Proof: H = Ky(A), K = Ky(/), and let f correspond to the trace
Ton |l
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Ko-groups of AF algebras

Lemma: Restriction is one-to-one

If K C H, f: K— Ris an extreme positive functional which
extends to a positive functional on H, then it has a unique
extreme extension.

Proof: H = Ky(A), K = Ky(/), and let f correspond to the trace
Ton |l

There exists a rep. = of A such that 7(/)” is a factor with a
faithful trace p, and 7 = p o 7).
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Ko-groups of AF algebras

Lemma: Restriction is one-to-one

If K C H, f: K— Ris an extreme positive functional which
extends to a positive functional on H, then it has a unique
extreme extension.

Proof: H = Ky(A), K = Ky(/), and let f correspond to the trace
Ton |l

There exists a rep. = of A such that 7(/)” is a factor with a
faithful trace p, and 7 = p o 7).

Then 7(a) = n(a)1» = WOT-im(ae,) is a factor rep. of A.
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Ko-groups of AF algebras

Lemma: Restriction is one-to-one

If K C H, f: K— Ris an extreme positive functional which
extends to a positive functional on H, then it has a unique
extreme extension.

Proof: H = Ky(A), K = Ky(/), and let f correspond to the trace
Ton |l

There exists a rep. = of A such that 7(/)” is a factor with a
faithful trace p, and 7 = p o 7).

Then 7(a) = n(a)1» = WOT-im(ae,) is a factor rep. of A.

And, if 7 is a factor rep. then 1, (j» = 1,4y SO ™ = 7.
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Ko-groups of AF algebras

Lemma: Restriction is one-to-one

If K C H, f: K— Ris an extreme positive functional which
extends to a positive functional on H, then it has a unique
extreme extension.

Proof: H = Ky(A), K = Ky(/), and let f correspond to the trace
Ton |l

There exists a rep. = of A such that 7(/)” is a factor with a
faithful trace p, and 7 = p o 7).

Then 7(a) = n(a)1» = WOT-im(ae,) is a factor rep. of A.
And, if 7 is a factor rep. then 1, (j» = 1,4y SO ™ = 7.

Hence, 7(a) = lim 7(ae,) is the unique extreme densely finite
trace extending 7.
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e Lemmas don’t need G countable.

Aaron Tikuisis The real span of a dimension group



e Lemmas don’t need G countable.

e Lemmas (noncountable version) used to describe explicitly all
finite-dimensional ordered real vector spaces with Riesz
interpolation.
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e Lemmas don’t need G countable.

e Lemmas (noncountable version) used to describe explicitly all
finite-dimensional ordered real vector spaces with Riesz
interpolation.

e Lemmas + main theorem + more used to describe explicitly
all finite-rank dimension groups.
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e Lemmas don’t need G countable.

e Lemmas (noncountable version) used to describe explicitly all
finite-dimensional ordered real vector spaces with Riesz
interpolation.

e Lemmas + main theorem + more used to describe explicitly
all finite-rank dimension groups.

e Infinite-rank case is work in progress (the linear algebra
methods may not generalize).
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