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Dimension groups

A dimension group is a directed ordered group
(G,G+ := {g ∈ G : g ≥ 0}) satisfying:

(i) Unperforation: if g + · · ·+ g ≥ 0 then g ≥ 0

(ii) Riesz interpolation: given a1,a2, c1, c2 satisfying
a1
a2
≤ c1

c2,
∃b satisfying

a1
a2
≤ b ≤ c1

c2.

Examples: lattice ordered groups (use max{a1,a2} or
min{c1, c2} as an interpolant),
C(X ,R) with strict order, f < g if f (x) < g(x) ∀x .
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Dimension groups and AF algebras

Recall that an AF algebra is given by an inductive limit of
finite-dimensional C∗-algebras.

A1 → A2 → · · · → A.
Ordered K0-group computation:

K0(A1) → K0(A2) → · · · → K0(A)
= = =

(Z,N)m1 → (Z,N)m2 → · · · → K0(A)

Theorem (Elliott, Effros-Handelman-Shen)
The countable dimension groups are exactly the K0-groups of
AF algebras.
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A good embedding of a dimension group

Our goal: to understand dimension groups better by embedding
them into real vector spaces.

Embed G into a real vector space V (s.t. G spans V ).
Set V+ = R+ ·G+

= the real cone generated by G+.
We want:

(i) (V ,V+) to be an ordered vector space
(need V+ ∩ −V+ = 0, ie. not just preordered)

(ii) to recover G+ from V+:
G+ = V+ ∩G

(iii) (V ,V+) to be a dimension group
(need Riesz interpolation)

None of these are automatic.
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Bad embeddings: example one

(V ,V+) may not be an ordered vector space. Let G = Z2,
G+ = {(x , y) : x + θy ≥ 0} (θ 6∈ Q).

This ordered group is denoted Z+ θZ; indeed, it embeds into
V = R by (x , y) 7→ x + θy , which is a good embedding.

But (x , y) 7→ x + ηy (where η 6= θ) is bad, since V+ = R.
Also V+ ∩G = G 6= G+.
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Bad embeddings: example two

(V ,V+) may not have Riesz interpolation.
Pick four Q-linearly independent vectors v1, . . . , v4 in one
half-space of R3, such that none of them is in the cone
generated by the other three.

Embed G = (Z4,N4) into V = R3 by
(x1, . . . , x4) 7→ x1v1 + · · ·+ x4v4.
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Bad embeddings: example two

(V ,V+) may not have Riesz interpolation.
Then V+ is the cone generated by v1, . . . , v4, which is ordered.

But (V ,V+) doesn’t have Riesz interpolation (or else the
positive functionals on it would be lattice-ordered).
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Good embeddings

There is always a good embedding:

Theorem (Maloney-T)

If (G,G+) is a finite-rank dimension group then there exists an
embedding G ↪→ V = Rn, such that:

(i) is an ordered vector space with Riesz interpolation; and
(ii)G+ = G ∩ V+.

In fact, we may use the canonical embedding
G ↪→G ⊗Q
∼= Qn ↪→ Rn

(n = rankG).
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Ideas in the proof

The proof mainly looks at the positive functionals H → R for
ideals H of G.

(An ideal is an order-convex, directed subgroup.)

The positive cone G+ is largely defined by such functionals,
and therefore by the “extreme” ones.
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Ideas in the proof

Lemma: Restriction preserves extremeness

If K ⊆ H, f : H → R is an extreme positive functional then f |K is
either zero or an extreme positive functional.

Lemma: Restriction is one-to-one
If K ⊆ H, f : K → R is an extreme positive functional which
extends to a positive functional on H, then it has a unique
extreme extension.
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Ideas in the proof

Lemma
Given H1,H2 and extreme positive functionals f1 : H1 → R and
f2 : H2 → R that agree on H1 ∩ H2,

H1 + H2
↙ ↘

H1 H2
↘ ↙

H1 ∩ H2
there exists an extreme extension to H1 + H2.

Proof: f (x1 + x2) = f1(x1) + f2(x2) is the unique common
extension of f1, f2, and it is positive.

Use uniqueness of extreme extensions to conclude that f is
extreme.
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K0-groups of AF algebras

Can prove the two lemmas for K0(AF) using operator theory.

countable dimension group ↔ AF algebra

ideal ↔ ideal

positive homomorphism ↔ densely finite trace
l GNS

traceable representation

extreme state ↔ extreme densely finite trace
l GNS

traceable factor representation
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K0-groups of AF algebras

Lemma: Restriction preserves extremeness

If K ⊆ H, f : H → R is an extreme positive functional then f |K is
either zero or an extreme positive functional.

Proof: H = K0(A), K = K0(I), f corresponds to traceable factor
representation π : A→ B(H).

Then π(A)′′ = π(I)′′ ⊕M, so π|I is either 0 or a factor rep.
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K0-groups of AF algebras

Lemma: Restriction is one-to-one
If K ⊆ H, f : K → R is an extreme positive functional which
extends to a positive functional on H, then it has a unique
extreme extension.

Proof: H = K0(A), K = K0(I), and let f correspond to the trace
τ on I.

There exists a rep. π of A such that π(I)′′ is a factor with a
faithful trace ρ, and τ = ρ ◦ π|I .

Then π̃(a) = π(a)1π(I)′′ = WOT-limπ(aeα) is a factor rep. of A.

And, if π is a factor rep. then 1π(I)′′ = 1π(A)′′ so π = π̃.

Hence, τ̃(a) = lim τ(aeα) is the unique extreme densely finite
trace extending τ .
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Outlook

• Lemmas don’t need G countable.

• Lemmas (noncountable version) used to describe explicitly all
finite-dimensional ordered real vector spaces with Riesz
interpolation.

• Lemmas + main theorem + more used to describe explicitly
all finite-rank dimension groups.

• Infinite-rank case is work in progress (the linear algebra
methods may not generalize).
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