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Regularity

Villadsen’s counterexamples.

Reaction: start an exclusive club of good C∗-algebras.

The members of the exclusive club are:

(i) Z-stable;
(ii) Topologically low-dimensional;
(iii) Cuntz semigroup-regular.

Hopefully these are equivalent and this is largely known for
simple, unital C∗-algebras.
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Projectionless C∗-algebras

What about simple, nonunital C∗-algebras?

Stably projectionless C∗-algebras?

These can be well-behaved (simply tensor with Z) and, in fact,
have (seemingly) important well-behaved examples.

Theorem (T, ’11)
There exists a simple, seperable, nuclear, stably projectionless
C∗-algebra A for which Cu(A) does not have m-comparison, for
any m. In particular, A 6∼= A⊗Z and dimnuc A =∞.

(In fact, A is ASH.)
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Topological dimension

A remarkable fact from classification is:
slow dimension growth + simple⇒ no dimension growth.

One expects slow dimension growth to be sufficient for
regularity, in the simple, nonunital case.

Defining slow dimension growth for nonunital ASH
algebras isn’t as straightforward.
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Nonunital complications

Theorem
Let A be the inductive limit of the system

A1
φ2

1−→ A2
φ3

2−→ · · ·
where each map φi+1

i is unital and injective. Then if a ∈ Ai is
nonzero then there exists j ≥ i such that φj

i(a) generates Aj as
an ideal

Aaron Tikuisis Regularity properties for stably projectionless C∗-algebras



Nonunital complications

Theorem
Let A be the inductive limit of the system

A1
φ2

1−→ A2
φ3

2−→ · · ·
where each map φi+1

i is unital and injective. Then if a ∈ Ai is
nonzero then there exists j ≥ i such that φj

i(a) generates Aj as
an ideal

Aaron Tikuisis Regularity properties for stably projectionless C∗-algebras



Nonunital complications

Not so in the nonunital case.

Aaron Tikuisis Regularity properties for stably projectionless C∗-algebras



Nonunital complications

Not so in the nonunital case.

Aaron Tikuisis Regularity properties for stably projectionless C∗-algebras



Nonunital complications

Not so in the nonunital case.

Aaron Tikuisis Regularity properties for stably projectionless C∗-algebras



A structure theorem

Theorem (T ’11)
Let A be a simple seperable ASH algebra. Then A is the
inductive limit of a system

A1
φ2

1−→ A2
φ3

2−→ · · ·
where, for all i ,

(i) Ai is subhomogeneous;
(ii) Primn(Ai) is finite-dimensional for all n;
(iii) φi+1

i is injective and full; and
(iv) Prim(Ai) is compact.

In particular, if a ∈ Ai is nonzero then there exists j ≥ i such
that φj

i(a) generates Aj as an ideal.

Key to the proof: Blackadar-Cuntz (’82): A⊗O2 ⊗K has a
projection, which can be used like a unit.
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Slow dimension growth

For A subhomogeneous and π : A→ Mn an irreducible,
nondegenerate representation, set

dtop(π) = dim Primn(A).

For a ∈ A, define the dimension-rank ratio of a by

Rd :r (a) := sup
π

dtop(π)

rankπ(a)
.

Think:

sup
n

dim Primn(Ai)

n
.

(This is what we get if a is strictly positive.)
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Slow dimension growth

Definition
Let

A1
φ2

1−→ A2
φ3

2−→ · · ·

be an inductive system of subhomogeneous algebras as in the
structure theorem.

(Ai , φ
i+1
i ) has slow dimension growth if

(i) There exists i and a ∈ Ai such that
Rd :r (φ

j
i(a))→ 0;

or, equivalently,
(ii) For any i and a ∈ Ai \ {0},

Rd :r (φ
j
i(a))→ 0.
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Regularity and slow dimension growth

Let A be simple, ASH.

Proposition
A⊗Z always has slow dimension growth.

Theorem (T ’11)

If A has slow dimension growth then Cu(A) has 0-comparison.

Proof: uses nonunital version of radius of comparison.

(Note: Rørdam already showed that Cu(A⊗Z) has
0-comparison.)
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To do: other generalizations

Slow dimension growth⇒ almost divisible (unital case: Toms
’09).

Finite nuclear dimension⇒ m-comparison: done (Robert, ’10).

Finite nuclear dimension⇒ m-divisible (unital case: Winter,
’10).

(m,m)-pure⇒ Z-stable (unital case: Winter, ’10).

Z-stable⇒ finite nuclear dimension (unital case: incomplete).

Aaron Tikuisis Regularity properties for stably projectionless C∗-algebras



To do: other generalizations

Slow dimension growth⇒ almost divisible (unital case: Toms
’09).

Finite nuclear dimension⇒ m-comparison: done (Robert, ’10).

Finite nuclear dimension⇒ m-divisible (unital case: Winter,
’10).

(m,m)-pure⇒ Z-stable (unital case: Winter, ’10).

Z-stable⇒ finite nuclear dimension (unital case: incomplete).

Aaron Tikuisis Regularity properties for stably projectionless C∗-algebras



To do: other generalizations

Slow dimension growth⇒ almost divisible (unital case: Toms
’09).

Finite nuclear dimension⇒ m-comparison: done (Robert, ’10).

Finite nuclear dimension⇒ m-divisible (unital case: Winter,
’10).

(m,m)-pure⇒ Z-stable (unital case: Winter, ’10).

Z-stable⇒ finite nuclear dimension (unital case: incomplete).

Aaron Tikuisis Regularity properties for stably projectionless C∗-algebras



To do: other generalizations

Slow dimension growth⇒ almost divisible (unital case: Toms
’09).

Finite nuclear dimension⇒ m-comparison: done (Robert, ’10).

Finite nuclear dimension⇒ m-divisible (unital case: Winter,
’10).

(m,m)-pure⇒ Z-stable (unital case: Winter, ’10).

Z-stable⇒ finite nuclear dimension (unital case: incomplete).

Aaron Tikuisis Regularity properties for stably projectionless C∗-algebras



To do: other generalizations

Slow dimension growth⇒ almost divisible (unital case: Toms
’09).

Finite nuclear dimension⇒ m-comparison: done (Robert, ’10).

Finite nuclear dimension⇒ m-divisible (unital case: Winter,
’10).

(m,m)-pure⇒ Z-stable (unital case: Winter, ’10).

Z-stable⇒ finite nuclear dimension (unital case: incomplete).

Aaron Tikuisis Regularity properties for stably projectionless C∗-algebras


