# Regularity properties for stably projectionless *C*\*-algebras

## Aaron Tikuisis atiku\_01@uni-muenster.de

Universität Münster

#### Masterclass on Nuclear Dimension, 2011

Aaron Tikuisis Regularity properties for stably projectionless C\*-algebras

▲ 🗇 ▶ → 三 ▶ →

Reaction: start an exclusive club of good *C*\*-algebras.

The members of the exclusive club are:

- (i)  $\mathcal{Z}$ -stable;
- (ii) Topologically low-dimensional;
- (iii) Cuntz semigroup-regular.

Hopefully these are equivalent and this is largely known for simple, unital  $C^*$ -algebras.

#### Reaction: start an exclusive club of good $C^*$ -algebras.

The members of the exclusive club are:

- (i) Z-stable;
- (ii) Topologically low-dimensional;
- (iii) Cuntz semigroup-regular.

Hopefully these are equivalent and this is largely known for simple, unital  $C^*$ -algebras.

Reaction: start an exclusive club of good  $C^*$ -algebras.

The members of the exclusive club are:

(i) Z-stable;(ii) Topologically low-dimensional;(iii) Cuntz semigroup-regular.

Hopefully these are equivalent and this is largely known for simple, unital  $C^*$ -algebras.

Reaction: start an exclusive club of good  $C^*$ -algebras.

The members of the exclusive club are:

(i)  $\mathcal{Z}$ -stable;

(ii) Topologically low-dimensional;

(iii) Cuntz semigroup-regular.

Hopefully these are equivalent and this is largely known for simple, unital  $C^*$ -algebras.

Reaction: start an exclusive club of good  $C^*$ -algebras.

The members of the exclusive club are:

- (i)  $\mathcal{Z}$ -stable;
- (ii) Topologically low-dimensional;

(iii) Cuntz semigroup-regular.

Hopefully these are equivalent and this is largely known for simple, unital  $C^*$ -algebras.

Reaction: start an exclusive club of good  $C^*$ -algebras.

The members of the exclusive club are:

- (i)  $\mathcal{Z}$ -stable;
- (ii) Topologically low-dimensional;
- (iii) Cuntz semigroup-regular.

Hopefully these are equivalent and this is largely known for simple, unital  $C^*$ -algebras.

Reaction: start an exclusive club of good  $C^*$ -algebras.

The members of the exclusive club are:

- (i)  $\mathcal{Z}$ -stable;
- (ii) Topologically low-dimensional;
- (iii) Cuntz semigroup-regular.

Hopefully these are equivalent and this is largely known for simple, unital  $C^*$ -algebras.

Reaction: start an exclusive club of good  $C^*$ -algebras.

The members of the exclusive club are:

- (i)  $\mathcal{Z}$ -stable;
- (ii) Topologically low-dimensional;
- (iii) Cuntz semigroup-regular.

Hopefully these are equivalent and this is largely known for simple, unital  $C^*$ -algebras.

・ 回 と ・ ヨ と ・ ヨ と

Stably projectionless C\*-algebras?

These can be well-behaved (simply tensor with  $\mathcal{Z}$ ) and, in fact, have (seemingly) important well-behaved examples.

#### Theorem (T, '11)

There exists a simple, seperable, nuclear, stably projectionless  $C^*$ -algebra A for which Cu(A) does not have m-comparison, for any m. In particular,  $A \ncong A \otimes Z$  and dim<sub>nuc</sub>  $A = \infty$ .

(In fact, A is ASH.)

## Stably projectionless C\*-algebras?

These can be well-behaved (simply tensor with  $\mathcal{Z}$ ) and, in fact, have (seemingly) important well-behaved examples.

#### Theorem (T, '11)

There exists a simple, seperable, nuclear, stably projectionless  $C^*$ -algebra A for which Cu(A) does not have m-comparison, for any m. In particular,  $A \ncong A \otimes Z$  and dim<sub>nuc</sub>  $A = \infty$ .

(In fact, A is ASH.)

Stably projectionless C\*-algebras?

These can be well-behaved (simply tensor with  $\mathcal{Z}$ ) and, in fact, have (seemingly) important well-behaved examples.

#### Theorem (T, '11)

There exists a simple, seperable, nuclear, stably projectionless  $C^*$ -algebra A for which Cu(A) does not have m-comparison, for any m. In particular,  $A \ncong A \otimes Z$  and dim<sub>nuc</sub>  $A = \infty$ .

(In fact, A is ASH.)

Stably projectionless C\*-algebras?

These can be well-behaved (simply tensor with  $\mathcal{Z}$ ) and, in fact, have (seemingly) important well-behaved examples.

#### Theorem (T, '11)

There exists a simple, seperable, nuclear, stably projectionless  $C^*$ -algebra A for which Cu(A) does not have m-comparison, for any m. In particular,  $A \ncong A \otimes \mathcal{Z}$  and dim<sub>nuc</sub>  $A = \infty$ .

(In fact, A is ASH.)

ヘロト ヘアト ヘビト ヘビト

Stably projectionless C\*-algebras?

These can be well-behaved (simply tensor with  $\mathcal{Z}$ ) and, in fact, have (seemingly) important well-behaved examples.

## Theorem (T, '11)

There exists a simple, seperable, nuclear, stably projectionless  $C^*$ -algebra A for which Cu(A) does not have m-comparison, for any m. In particular,  $A \ncong A \otimes \mathcal{Z}$  and dim<sub>nuc</sub>  $A = \infty$ .

## (In fact, A is ASH.)

Stably projectionless C\*-algebras?

These can be well-behaved (simply tensor with  $\mathcal{Z}$ ) and, in fact, have (seemingly) important well-behaved examples.

## Theorem (T, '11)

There exists a simple, seperable, nuclear, stably projectionless  $C^*$ -algebra A for which Cu(A) does not have m-comparison, for any m. In particular,  $A \ncong A \otimes \mathcal{Z}$  and dim<sub>nuc</sub>  $A = \infty$ .

(In fact, A is ASH.)

## A remarkable fact from classification is: slow dimension growth + simple $\Rightarrow$ no dimension growth.

One expects slow dimension growth to be sufficient for regularity, in the simple, nonunital case.

Defining slow dimension growth for nonunital ASH algebras isn't as straightforward.

#### A remarkable fact from classification is: slow dimension growth + simple $\Rightarrow$ no dimension growth.

One expects slow dimension growth to be sufficient for regularity, in the simple, nonunital case.

Defining slow dimension growth for nonunital ASH algebras isn't as straightforward.

< 回 > < 回 > < 回 > .

## A remarkable fact from classification is:

## slow dimension growth + simple $\Rightarrow$ no dimension growth.

One expects slow dimension growth to be sufficient for regularity, in the simple, nonunital case.

# Defining slow dimension growth for nonunital ASH algebras isn't as straightforward.

伺き くほき くほう

#### Theorem

Let A be the inductive limit of the system

 $A_1 \xrightarrow{\phi_1^2} A_2 \xrightarrow{\phi_2^3} \cdots$ where each map  $\phi_i^{i+1}$  is unital and injective. Then if  $a \in A_i$  is nonzero then there exists  $j \ge i$  such that  $\phi_i^j(a)$  generates  $A_j$  as an ideal

#### Theorem

Let A be the inductive limit of the system

 $A_1 \xrightarrow{\phi_1^2} A_2 \xrightarrow{\phi_2^3} \cdots$ where each map  $\phi_i^{i+1}$  is unital and injective. Then if  $a \in A_i$  is nonzero then there exists  $j \ge i$  such that  $\phi_i^j(a)$  generates  $A_j$  as an ideal

# Nonunital complications

Not so in the nonunital case.

通りメモトメモト

# Nonunital complications

Not so in the nonunital case.



# Nonunital complications

Not so in the nonunital case.



Aaron Tikuisis Regularity properties for stably projectionless *C*\*-algebras

Let *A* be a simple seperable ASH algebra. Then *A* is the inductive limit of a system

$$A_1 \xrightarrow{\phi_1^2} A_2 \xrightarrow{\phi_2^3} \cdots$$

where, for all *i*,

(i)  $A_i$  is subhomogeneous;

- (ii)  $\operatorname{Prim}_n(A_i)$  is finite-dimensional for all *n*;
- (iii)  $\phi_i^{i+1}$  is injective and full; and

(iv)  $Prim(A_i)$  is compact.

In particular, if  $a \in A_i$  is nonzero then there exists  $j \ge i$  such that  $\phi_j^i(a)$  generates  $A_j$  as an ideal.

Let *A* be a simple seperable ASH algebra. Then *A* is the inductive limit of a system

$$A_1 \xrightarrow{\phi_1^2} A_2 \xrightarrow{\phi_2^3} \cdots$$

where, for all *i*,

(i)  $A_i$  is subhomogeneous;

(ii)  $\operatorname{Prim}_n(A_i)$  is finite-dimensional for all *n* (iii)  $\phi_i^{i+1}$  is injective and full; and

(iv)  $Prim(A_i)$  is compact.

In particular, if  $a \in A_i$  is nonzero then there exists  $j \ge i$  such that  $\phi_j^i(a)$  generates  $A_j$  as an ideal.

Let *A* be a simple seperable ASH algebra. Then *A* is the inductive limit of a system

$$A_1 \xrightarrow{\phi_1^2} A_2 \xrightarrow{\phi_2^3} \cdots$$

where, for all *i*,

(i)  $A_i$  is subhomogeneous;

(ii)  $\operatorname{Prim}_n(A_i)$  is finite-dimensional for all *n*;

(iii)  $\phi_i^{i+1}$  is injective and full; and

(iv)  $Prim(A_i)$  is compact.

In particular, if  $a \in A_i$  is nonzero then there exists  $j \ge i$  such that  $\phi_i^j(a)$  generates  $A_j$  as an ideal.

Let *A* be a simple seperable ASH algebra. Then *A* is the inductive limit of a system

$$A_1 \xrightarrow{\phi_1^2} A_2 \xrightarrow{\phi_2^3} \cdots$$

where, for all *i*,

(i)  $A_i$  is subhomogeneous;

(ii)  $\operatorname{Prim}_n(A_i)$  is finite-dimensional for all *n*;

(iii)  $\phi_i^{i+1}$  is injective and full; and

(iv)  $Prim(A_i)$  is compact.

In particular, if  $a \in A_i$  is nonzero then there exists  $j \ge i$  such that  $\phi_j^i(a)$  generates  $A_j$  as an ideal.

Let *A* be a simple seperable ASH algebra. Then *A* is the inductive limit of a system

$$A_1 \xrightarrow{\phi_1^2} A_2 \xrightarrow{\phi_2^3} \cdots$$

where, for all *i*,

(i)  $A_i$  is subhomogeneous;

(ii)  $\operatorname{Prim}_n(A_i)$  is finite-dimensional for all *n*;

(iii)  $\phi_i^{i+1}$  is injective and full; and

(iv)  $Prim(A_i)$  is compact.

In particular, if  $a \in A_i$  is nonzero then there exists  $j \ge i$  such that  $\phi_i^j(a)$  generates  $A_j$  as an ideal.

Let *A* be a simple seperable ASH algebra. Then *A* is the inductive limit of a system

$$A_1 \xrightarrow{\phi_1^2} A_2 \xrightarrow{\phi_2^3} \cdots$$

where, for all *i*,

(i)  $A_i$  is subhomogeneous;

(ii)  $\operatorname{Prim}_n(A_i)$  is finite-dimensional for all *n*;

(iii)  $\phi_i^{i+1}$  is injective and full; and

(iv)  $Prim(A_i)$  is compact.

In particular, if  $a \in A_i$  is nonzero then there exists  $j \ge i$  such that  $\phi_i^j(a)$  generates  $A_i$  as an ideal.

Let *A* be a simple seperable ASH algebra. Then *A* is the inductive limit of a system

$$A_1 \xrightarrow{\phi_1^2} A_2 \xrightarrow{\phi_2^3} \cdots$$

where, for all *i*,

(i)  $A_i$  is subhomogeneous;

(ii)  $\operatorname{Prim}_n(A_i)$  is finite-dimensional for all *n*;

(iii)  $\phi_i^{i+1}$  is injective and full; and

(iv)  $Prim(A_i)$  is compact.

In particular, if  $a \in A_i$  is nonzero then there exists  $j \ge i$  such that  $\phi_i^j(a)$  generates  $A_j$  as an ideal.

For *A* subhomogeneous and  $\pi : A \rightarrow M_n$  an irreducible, nondegenerate representation, set

 $d_{top}(\pi) = \dim \operatorname{Prim}_n(A).$ 

For  $a \in A$ , define the dimension-rank ratio of a by

$$R_{d:r}(a) := \sup_{\pi} \frac{d_{top}(\pi)}{\operatorname{rank} \pi(a)}.$$

Think:

$$\sup_n \frac{\dim \operatorname{Prim}_n(A_i)}{n}.$$

(This is what we get if a is strictly positive.)

For *A* subhomogeneous and  $\pi : A \rightarrow M_n$  an irreducible, nondegenerate representation, set

$$d_{top}(\pi) = \dim \operatorname{Prim}_n(A).$$

For  $a \in A$ , define the dimension-rank ratio of a by

$$R_{d:r}(a) := \sup_{\pi} \frac{d_{top}(\pi)}{\operatorname{rank} \pi(a)}.$$

Think:

$$\sup_n \frac{\dim \operatorname{Prim}_n(A_i)}{n}.$$

(This is what we get if a is strictly positive.)

< 回 > < 回 > < 回 >

For *A* subhomogeneous and  $\pi : A \rightarrow M_n$  an irreducible, nondegenerate representation, set

$$d_{top}(\pi) = \dim \operatorname{Prim}_n(A).$$

For  $a \in A$ , define the dimension-rank ratio of a by

$$R_{d:r}(a) := \sup_{\pi} \frac{d_{top}(\pi)}{\operatorname{rank}\pi(a)}.$$

Think:

$$\sup_n \frac{\dim \operatorname{Prim}_n(A_i)}{n}.$$

(This is what we get if a is strictly positive.)

# Slow dimension growth

#### Definition

#### Let

$$A_1 \xrightarrow{\phi_1^2} A_2 \xrightarrow{\phi_2^3} \cdots$$

be an inductive system of subhomogeneous algebras as in the structure theorem.

 $(A_i, \phi_i^{i+1}) \text{ has slow dimension growth if}$ (i) There exists *i* and  $a \in A_i$  such that  $R_{d:r}(\phi_i^j(a)) \to 0;$ or, equivalently, (ii) For any *i* and  $a \in A_i \setminus \{0\},$  $P_i \in (\phi_i^j(a)) \to 0$ 

# Slow dimension growth

#### Definition

#### Let

$$A_1 \xrightarrow{\phi_1^2} A_2 \xrightarrow{\phi_2^3} \cdots$$

be an inductive system of subhomogeneous algebras as in the structure theorem.

 $(A_i, \phi_i^{i+1})$  has slow dimension growth if

(i) There exists *i* and  $a \in A_i$  such that  $R_{d:r}(\phi_i^j(a)) \to 0;$ 

or, equivalently,

(ii) For any *i* and  $a \in A_i \setminus \{0\}$ ,

# Slow dimension growth

#### Definition

#### Let

$$A_1 \xrightarrow{\phi_1^2} A_2 \xrightarrow{\phi_2^3} \cdots$$

be an inductive system of subhomogeneous algebras as in the structure theorem.

 $(A_i, \phi_i^{i+1})$  has slow dimension growth if

(i) There exists *i* and  $a \in A_i$  such that  $R_{d:r}(\phi_i^j(a)) \to 0;$ 

or, equivalently,

(ii) For any *i* and 
$$a \in A_i \setminus \{0\}$$
,  
 $R_{d:r}(\phi_i^j(a)) \to 0.$ 

▲ □ ▶ ▲ □ ▶ ▲

ъ

### Let A be simple, ASH.

#### Proposition

 $A \otimes \mathcal{Z}$  always has slow dimension growth.

#### Theorem (T '11

If A has slow dimension growth then Cu(A) has 0-comparison.

Proof: uses nonunital version of radius of comparison. (Note: Rørdam already showed that  $Cu(A \otimes Z)$  has 0-comparison.)

Let A be simple, ASH.

#### Proposition

 $A \otimes \mathcal{Z}$  always has slow dimension growth.

## Theorem (T '11)

If A has slow dimension growth then Cu(A) has 0-comparison.

Proof: uses nonunital version of radius of comparison.

(Note: Rørdam already showed that  $Cu(A \otimes Z)$  has 0-comparison.)

< □ > < 同 > < 三 > <

Let A be simple, ASH.

#### Proposition

 $A \otimes \mathcal{Z}$  always has slow dimension growth.

## Theorem (T '11)

If A has slow dimension growth then Cu(A) has 0-comparison.

## Proof: uses nonunital version of radius of comparison.

(Note: Rørdam already showed that  $Cu(A \otimes Z)$  has 0-comparison.)

Let A be simple, ASH.

#### Proposition

 $A \otimes \mathcal{Z}$  always has slow dimension growth.

## Theorem (T '11)

If A has slow dimension growth then Cu(A) has 0-comparison.

Proof: uses nonunital version of radius of comparison.

(Note: Rørdam already showed that  $Cu(A \otimes \mathcal{Z})$  has 0-comparison.)

ヘロト ヘアト ヘヨト ヘ

# Slow dimension growth $\Rightarrow$ almost divisible (unital case: Toms '09).

Finite nuclear dimension  $\Rightarrow$  *m*-comparison: done (Robert, '10). Finite nuclear dimension  $\Rightarrow$  *m*-divisible (unital case: Winter, '10).

 $(m,\overline{m})$ -pure  $\Rightarrow \mathcal{Z}$ -stable (unital case: Winter, '10).

 $\mathcal{Z}$ -stable  $\Rightarrow$  finite nuclear dimension (unital case: incomplete).

# Slow dimension growth $\Rightarrow$ almost divisible (unital case: Toms '09).

Finite nuclear dimension  $\Rightarrow$  *m*-comparison: done (Robert, '10).

Finite nuclear dimension  $\Rightarrow$  *m*-divisible (unital case: Winter, '10).

 $(m,\overline{m})$ -pure  $\Rightarrow \mathcal{Z}$ -stable (unital case: Winter, '10).

 $\mathcal{Z}$ -stable  $\Rightarrow$  finite nuclear dimension (unital case: incomplete).

- Slow dimension growth  $\Rightarrow$  almost divisible (unital case: Toms '09).
- Finite nuclear dimension  $\Rightarrow$  *m*-comparison: done (Robert, '10). Finite nuclear dimension  $\Rightarrow$  *m*-divisible (unital case: Winter, '10).
- $(m,\overline{m})$ -pure  $\Rightarrow \mathcal{Z}$ -stable (unital case: Winter, '10).
- $\mathcal{Z}$ -stable  $\Rightarrow$  finite nuclear dimension (unital case: incomplete).

Slow dimension growth  $\Rightarrow$  almost divisible (unital case: Toms '09).

Finite nuclear dimension  $\Rightarrow$  *m*-comparison: done (Robert, '10).

Finite nuclear dimension  $\Rightarrow$  *m*-divisible (unital case: Winter, '10).

 $(m,\overline{m})$ -pure  $\Rightarrow \mathcal{Z}$ -stable (unital case: Winter, '10).

 $\mathcal{Z}$ -stable  $\Rightarrow$  finite nuclear dimension (unital case: incomplete).

(雪) (ヨ) (ヨ)

Slow dimension growth  $\Rightarrow$  almost divisible (unital case: Toms '09).

Finite nuclear dimension  $\Rightarrow$  *m*-comparison: done (Robert, '10).

Finite nuclear dimension  $\Rightarrow$  *m*-divisible (unital case: Winter, '10).

 $(m,\overline{m})$ -pure  $\Rightarrow \mathcal{Z}$ -stable (unital case: Winter, '10).

 $\mathcal{Z}$ -stable  $\Rightarrow$  finite nuclear dimension (unital case: incomplete).