Bi-Free Entropy with Respect to Completely Positive Maps

Paul Skoufranis

Joint work with Georgios Katsimpas

York University
June 9, 2021

Preliminaries for Free Entropy

- (\mathfrak{M}, τ) a tracial von Neumann algebra.
- $X \in \mathfrak{M}$ self-adjoint.
- B a unital von Neumann subalgebra of \mathfrak{M} with expectation $E_{B}: \mathfrak{M} \rightarrow B$.
- $\eta: B \rightarrow B$ a completely positive map.
- $B[X]$ the $*$-algebra generated by B and X.
- $\eta_{X}: B[X] \rightarrow B[X]$ by $\eta_{X}(T)=\eta\left(E_{B}(T)\right)$.
- Define a $B[X]$-valued inner product on $B[X] \otimes_{\mathbb{C}} B[X]$ by

$$
\left\langle T_{1} \otimes T_{2}, S_{1} \otimes S_{2}\right\rangle_{B[X]}=S_{2}^{*} \eta_{X}\left(S_{1}^{*} T_{1}\right) T_{2}
$$

- Let $\mathcal{H}\left(B[X], \eta_{X}\right)$ be the completion of $B[X] \otimes_{\mathbb{C}} B[X]$ with respect to the pre-inner product $\langle\cdot, \cdot\rangle=\tau\left(\langle\cdot, \cdot\rangle_{B[X]}\right)$.

Conjugate Variables with Completely Positive Maps

Let $\partial_{X}: B[X] \rightarrow \mathcal{H}\left(B[X], \eta_{X}\right)$ be the linear map defined by

$$
\begin{aligned}
\partial_{X}(b) & =0 \quad \text { for all } b \in B \\
\partial_{X}(X) & =1 \otimes 1 \\
\partial_{X}\left(T_{1} T_{2}\right) & =T_{1} \cdot \partial_{X}\left(T_{2}\right)+\partial_{X}\left(T_{1}\right) \cdot T_{2} \quad \text { for all } T_{1}, T_{2} \in B[X] .
\end{aligned}
$$

Note ∂_{X} extends to an unbounded densely defined operator on $L_{2}(B[X], \tau)$.

Definition (Shlyakhtenko; 1998)

If $1 \otimes 1$ is in the domain of $\partial_{X}^{*}: \mathcal{H}\left(B[X], \eta_{X}\right) \rightarrow L_{2}(B[X], \tau)$, then the element $J(X: B, \eta)=\partial_{X}^{*}(1 \otimes 1) \in L_{2}(B[X], \tau)$ is said to be the conjugate of X with respect to (B, η).

Moment Formula for Conjugate Variables

The existence of $J(X: B, \eta)$ is equivalent to the following:

Moment Condition

There exists a $\xi \in L_{2}(B[X], \tau)$ such that

$$
\tau\left(b_{0} X b_{1} X \cdots b_{n-1} X b_{n} \xi\right)=\sum_{k=1}^{n} \tau\left(b_{0} X \cdots X b_{k-1} \eta x\left(b_{k} X \cdots X b_{n}\right)\right)
$$

for all $n \in \mathbb{N}$ and $b_{0}, b_{1}, \ldots, b_{n} \in B$ (i.e. $\xi=J(X: B, \eta)$).

η-Semicirculars

- The full Fock space associated to B and η is

$$
\mathcal{F}_{\eta}(B)=L_{2}(B, \tau) \oplus\left(\bigoplus_{n \geq 1} \mathcal{H}(B, \eta)^{\otimes_{B} n}\right)
$$

- The left η-creation operator L is given by

$$
L\left(\xi_{1} \otimes \cdots \otimes \xi_{n}\right)=(1 \otimes 1) \otimes \xi_{1} \otimes \cdots \otimes \xi_{n}
$$

- L is bounded and $L^{*} b L=\eta(b)$.
- Let $X=L+L^{*}$. Then $E(X b X)=\eta(b)$. We call X the η-semicircular operator.
- It can be shown that $J(X: B, \eta)=X$.

Fisher Information and Entropy

Let $X_{1}, \ldots, X_{n} \in \mathfrak{M}$ be self-adjoint and let $B_{j}=B\left[\left\{X_{1}, \ldots, X_{n}\right\} \backslash\left\{X_{j}\right\}\right]$.

Definition (Shlyakhtenko; 1998)

The relative free Fisher information of X_{1}, \ldots, X_{n} with respect to (B, η) is

$$
\Phi^{*}\left(X_{1}, \ldots, X_{n}: B, \eta\right)=\sum_{1 \leq k \leq n}\left\|J\left(X_{j}: B_{j}, \eta\right)\right\|_{L_{2}(\mathfrak{M}, \tau)}^{2}
$$

and relative free entropy of X_{1}, \ldots, X_{n} with respect to (B, η) is

$$
\chi^{*}\left(X_{1}, \ldots, X_{n}: B, \eta\right)=\frac{1}{2} \ln (2 \pi e)+\frac{1}{2} \int_{0}^{\infty}\left(\frac{n \tau(\eta(1))}{1+t}-g(t)\right) d t
$$

where

$$
g(t)=\Phi^{*}\left(X_{1}+\sqrt{t} S_{1}, \ldots, X_{n}+\sqrt{t} S_{n}: B, \eta\right)
$$

where S_{1}, \ldots, S_{n} are η-semicircular operators such that $\left\{X_{1}, \ldots, X_{n}\right\}$, $\left\{S_{1}\right\}, \ldots,\left\{S_{n}\right\}$ are free with amalgamation over B.

Applications of Free Entropy

Definition (Shlyakhtenko; 1998)

Let $\mu: B \rightarrow B$ be another normal, self-adjoint, completely positive map. The free Fisher information $\Phi^{*}(\mu: \eta)$ is defined to be equal to $\Phi^{*}(X: B, \eta)$ where X is a μ-semicircular operator over B.

Theorem (Shlyakhtenko; 1998)

If A is a subfactor of B with finite Jones index $[B: A]$ and $E: B \rightarrow A$ is the unique trace-preserving conditional expectation onto A, then $\Phi^{*}(E: B, \mathrm{id})=[B: A]$.

Applications of Free Entropy

Theorem (Nica, Shlyakhtenko, Spicher; 1999)

If ν is a probability measure with compact support on $[0, \infty)$ and μ is the symmetric probability measure on \mathbb{R} defined such that $\mu(U)=\nu\left(U^{2}\right)$ for every symmetric Borel set $U \subseteq \mathbb{R}$, then

$$
\min \left\{\Phi^{*}\left(a, a^{*}\right) \mid a^{*} a \text { has distribution } \nu\right\}=2 \Phi^{*}(\mu)
$$

and the minimum is attained when a is R-diagonal.
Moreover, working in $M_{d}(\mathfrak{M})$ with respect to $\operatorname{tr}_{d} \circ \tau_{d}$,
$\max \left\{\chi^{*}\left(\left\{a_{i, j}, a_{i, j}^{*}\right\}_{i, j=1}^{d}\right) \left\lvert\, \begin{array}{c}\begin{array}{c}A=\left[a_{i, j}\right] \in M_{d}(\mathfrak{M}) \text { is such } \\ \text { that } A^{*} A \text { has distribution } \nu\end{array}\end{array}\right.\right\}=2 d^{2}\left(\chi^{*}(\mu)-\frac{1}{2} \ln (d)\right)$
and the maximum is obtained if A is R-diagonal and $\left\{A, A^{*}\right\}$ is free from $M_{d}(\mathbb{C})$ in $M_{d}(\mathfrak{M})$.

Bi-Free Entropy

The notions of conjugate variables, Fisher information, and entropy in the case $B=\mathbb{C}$ were extended to the bi-free setting (i.e. a notion of independence for pairs of algebras with actions on the left and right) in [Charlesworth, Skouf.; 2020].

Diagrams for Bi-Free Entropy

If $\xi=\mathcal{J}(X: B)$, then

$$
\tau\left(X b_{1} X b_{2} X \xi\right)=\tau\left(b_{1} X b_{2} X\right)+\tau\left(X b_{1}\right) \tau\left(b_{2} X\right)+\tau\left(X b_{1} X b_{2}\right)
$$

Diagrams for Bi-Free Entropy

If $\xi=\mathcal{J}(X: B)$, then

$$
\tau\left(X b_{1} X b_{2} X \xi\right)=\tau\left(b_{1} X b_{2} X\right)+\tau\left(X b_{1}\right) \tau\left(b_{2} X\right)+\tau\left(X b_{1} X b_{2}\right)
$$

Structures for Operator-Valued Bi-Free Probability

Definition (Charlesworth, Nelson, Skouf.; 2015)

For a unital algebra B, a B - B-non-commutative probability space is a triple (A, E, ε) where A is a unital $*$-algebra, $\varepsilon: B \otimes B^{\circ p} \rightarrow A$ is a unital *-homomorphism such that the restrictions $\left.\varepsilon\right|_{B \otimes 1_{B}}$ and $\left.\varepsilon\right|_{1_{B} \otimes B^{\circ p}}$ are both injective, and $E: A \rightarrow B$ is a unital linear map that such that

$$
E\left(\varepsilon\left(b_{1} \otimes b_{2}\right) a\right)=b_{1} E(a) b_{2} \quad \text { and } \quad E\left(a \varepsilon\left(b \otimes 1_{B}\right)\right)=E\left(a \varepsilon\left(1_{B} \otimes b\right)\right)
$$

for all $b, b_{1}, b_{2} \in B$ and $a \in A$. The unital $*$-algebras

$$
A_{\ell}=\left\{a \in A \mid a \varepsilon\left(1_{B} \otimes b\right)=\varepsilon\left(1_{B} \otimes b\right) a \text { for all } b \in B\right\}
$$

and

$$
A_{r}=\left\{a \in A \mid a \varepsilon\left(b \otimes 1_{B}\right)=\varepsilon\left(b \otimes 1_{B}\right) a \text { for all } b \in B\right\} .
$$

are called left and right algebras of A respectively.

Structures for Operator-Valued Bi-Free Probability

Definition (Katsimpas, Skouf.; 2021)

Given a unital $*$-algebra B, an analytical B - B-non-commutative probability space consists of a tuple (A, E, ε, τ) such that

- (A, E, ε) is a B - B-non-commutative probability space,
- $\tau: A \rightarrow \mathbb{C}$ is a state (i.e. unital and positive) that is compatible with E; that is,

$$
\tau(a)=\tau\left(\varepsilon\left(E(a) \otimes 1_{B}\right)\right)=\tau\left(\varepsilon\left(1_{B} \otimes E(a)\right)\right)
$$

for all $a \in A$,

- the canonical state $\tau_{B}: B \rightarrow \mathbb{C}$ defined by $\tau_{B}(b)=\tau\left(\varepsilon\left(b \otimes 1_{B}\right)\right)$ for all $b \in B$ is tracial,
- left multiplication of A on A / N_{τ} are bounded linear operators and thus extend to bounded linear operators on $L_{2}(A, \tau)$, and

Structures for Operator-Valued Bi-Free Probability

Definition (Katsimpas, Skouf.; 2021)

Given a unital $*$-algebra B, an analytical B - B-non-commutative probability space consists of a tuple (A, E, ε, τ) such that

- (A, E, ε) is a B - B-non-commutative probability space,
- $\tau: A \rightarrow \mathbb{C}$ is a state (i.e. unital and positive) that is compatible with E; that is,

$$
\tau(a)=\tau\left(\varepsilon\left(E(a) \otimes 1_{B}\right)\right)=\tau\left(\varepsilon\left(1_{B} \otimes E(a)\right)\right)
$$

for all $a \in A$,

- the canonical state $\tau_{B}: B \rightarrow \mathbb{C}$ defined by $\tau_{B}(b)=\tau\left(\varepsilon\left(b \otimes 1_{B}\right)\right)$ for all $b \in B$ is tracial,
- left multiplication of A on A / N_{τ} are bounded linear operators and thus extend to bounded linear operators on $L_{2}(A, \tau)$, and
- $\left.E\right|_{A_{\ell}}$ and $\left.E\right|_{A_{r}}$ are completely positive.

Examples of Operator-Valued Structures

Example

Let (\mathfrak{M}, τ) be a tracial von Neumann algebra, B a unital von Neumann subalgebra of \mathfrak{M}, and A the algebra generated the left and right actions of \mathfrak{M} on $L_{2}(\mathfrak{M}, \tau)$. If $P: L_{2}(\mathfrak{M}, \tau) \rightarrow L_{2}(B, \tau)$ is the orthogonal projection, $E: A \rightarrow B$ is defined by

$$
E(Z)=P\left(Z 1_{\mathfrak{M}}\right)
$$

and $\tau_{A}: A \rightarrow \mathbb{C}$ is defined by

$$
\tau_{A}(T)=\left\langle T 1_{\mathfrak{M}}, 1_{\mathfrak{M}}\right\rangle_{L_{2}(\mathfrak{M}, \tau)}
$$

then $(A, E, \varepsilon, \tau)$ is an analytical B - B-non-commutative probability space.

Examples of Operator-Valued Structures

Example

Let \mathcal{A} and B be unital C^{*}-algebras, $\varphi: \mathcal{A} \rightarrow \mathbb{C}$ a state, $A=\mathcal{A} \otimes B \otimes B^{\mathrm{op}}$, $E: A \rightarrow B$ defined by

$$
E\left(Z \otimes b_{1} \otimes b_{2}\right)=\varphi(Z) b_{1} b_{2}
$$

and $\tau_{B}: B \rightarrow \mathbb{C}$ a tracial state. Then $(A, E, \varepsilon, \tau)$ is an analytical B - B-non-commutative probability space.

Theorem (Skouf.; 2016)

Let (\mathcal{A}, φ) be a non-commutative probability space and let $\left\{\left(C_{k}, D_{k}\right)\right\}_{k \in K}$ be bi-freely independence pairs of algebras in (\mathcal{A}, φ). Then

$$
\left\{\left(C_{k} \otimes B \otimes 1_{B}, D_{k} \otimes 1_{B} \otimes B^{\mathrm{op}}\right)\right\}_{k \in K}
$$

are bi-free with amalgamation over B with respect to E.

Bi-Free Conjugate Variables

Definition (Katsimpas, Skouf.; 2021)

In an analytic B - B-non-commutative probability space $(A, E, \varepsilon, \tau)$, let (C_{ℓ}, C_{r}) be a pair of B-algebras in $A, X \in A_{\ell}$, and $\eta: B \rightarrow B$ a completely positive map. An element

$$
\xi \in \overline{\operatorname{alg}\left(X, C_{\ell}, C_{r}\right)} \in L_{2}(A, \tau)
$$

is said to be the left bi-free conjugate variable relations for X with respect to η and τ in the presence of $\left(C_{\ell}, C_{r}\right)$, denoted $J_{\ell}\left(X:\left(C_{\ell}, C_{r}\right), \eta\right)$, if $\ldots \ldots$

Bi-Free Conjugate Variables via Diagrams

Matricial Constructions for Max/Min

- (\mathcal{A}, φ) a C^{*}-non-commutative probability space.
- $x, y \in \mathcal{A}$ such that $x^{*} x$ and $x x^{*}$ have the same distribution and $y^{*} y$ and $y y^{*}$ have the same distribution.
- $A_{2}=\mathcal{A} \otimes M_{2}(\mathbb{C}) \otimes M_{2}(\mathbb{C})^{\mathrm{op}}$
- $\tau_{2}: A_{2} \rightarrow \mathbb{C}$ by $\tau_{2}\left(T \otimes b_{1} \otimes b_{2}\right)=\varphi(T) \operatorname{tr}_{2}\left(b_{1} b_{2}\right)$.
- $X=x \otimes E_{1,2} \otimes I_{2}+x^{*} \otimes E_{2,1} \otimes I_{2}$.
- $Y=y \otimes I_{2} \otimes E_{1,2}+y^{*} \otimes I_{2} \otimes E_{2,1}$.
- The joint moments of X and Y are 0 if of odd length and otherwise are the average of the φ-moment of a χ-alternating series of $\{x, y\}$ and $\left\{x^{*}, y^{*}\right\}$, and the series obtained via $x \leftrightarrow x^{*}$ and $y \leftrightarrow y^{*}$.
- $\Delta_{X, Y}$ all $\left(x_{0}, y_{0}\right)$ that produce X_{0} and Y_{0} with the same distribution as X and Y.
- if $\left\{x, x^{*}\right\}$ commutes with $\left\{y, y^{*}\right\}, X$ and Y commute and produce a distribution on \mathbb{R}^{2}.

Min/Max Bi-Free Fisher Information and Entropy

Theorem (Katsimpas, Skouf.; 2021)

Using the above notation
$\min \left\{\Phi^{*}\left(\left\{x_{0}, x_{0}^{*}\right\} \sqcup\left\{y_{0}, y_{0}^{*}\right\}:(\mathbb{C}, \mathbb{C}), \varphi\right) \mid\left(x_{0}, y_{0}\right) \in \Delta_{X, Y}\right\} \geq 2 \Phi^{*}(X \sqcup Y)$
and equality holds and is achieved for any pair $\left(x_{0}, y_{0}\right)$ that is alternating adjoint flipping and bi-R-diagonal.

Theorem (Katsimpas, Skouf.; 2021)

Using the above notation

$$
\chi^{*}\left(\left\{x, x^{*}\right\} \sqcup\left\{y, y^{*}\right\}\right) \leq 2 \chi^{*}(X \sqcup Y)
$$

and equality holds whenever the pair (x, y) is bi-R-diagonal and alternating adjoint flipping.

Thanks for Listening!

