Bi-Free Entropy with Respect to Completely Positive Maps

Paul Skoufranis Joint work with Georgios Katsimpas

York University

June 9, 2021

Preliminaries for Free Entropy

- (\mathfrak{M}, τ) a tracial von Neumann algebra.
- $X \in \mathfrak{M}$ self-adjoint.
- *B* a unital von Neumann subalgebra of \mathfrak{M} with expectation $E_B : \mathfrak{M} \to B$.
- $\eta: B \to B$ a completely positive map.
- B[X] the *-algebra generated by B and X.
- $\eta_X : B[X] \to B[X]$ by $\eta_X(T) = \eta(E_B(T))$.
- Define a B[X]-valued inner product on $B[X] \otimes_{\mathbb{C}} B[X]$ by

$$\langle T_1 \otimes T_2, S_1 \otimes S_2 \rangle_{B[X]} = S_2^* \eta_X (S_1^* T_1) T_2.$$

• Let $\mathcal{H}(B[X], \eta_X)$ be the completion of $B[X] \otimes_{\mathbb{C}} B[X]$ with respect to the pre-inner product $\langle \cdot, \cdot \rangle = \tau(\langle \cdot, \cdot \rangle_{B[X]})$.

Let $\partial_X : B[X] \to \mathcal{H}(B[X], \eta_X)$ be the linear map defined by

$$\begin{array}{l} \partial_X(b) = 0 \quad \text{for all } b \in B \\ \partial_X(X) = 1 \otimes 1 \\ \partial_X(T_1T_2) = T_1 \cdot \partial_X(T_2) + \partial_X(T_1) \cdot T_2 \quad \text{for all } T_1, T_2 \in B[X]. \end{array}$$

Note ∂_X extends to an unbounded densely defined operator on $L_2(B[X], \tau)$.

Definition (Shlyakhtenko; 1998)

If $1 \otimes 1$ is in the domain of $\partial_X^* : \mathcal{H}(B[X], \eta_X) \to L_2(B[X], \tau)$, then the element $J(X : B, \eta) = \partial_X^*(1 \otimes 1) \in L_2(B[X], \tau)$ is said to be the *conjugate* of X with respect to (B, η) .

Moment Formula for Conjugate Variables

The existence of $J(X : B, \eta)$ is equivalent to the following:

Moment Condition

There exists a $\xi \in L_2(B[X], \tau)$ such that

$$\tau(b_0Xb_1X\cdots b_{n-1}Xb_n\xi)=\sum_{k=1}^n\tau(b_0X\cdots Xb_{k-1}\eta_X(b_kX\cdots Xb_n))$$

for all $n \in \mathbb{N}$ and $b_0, b_1, \dots, b_n \in B$ (i.e. $\xi = J(X : B, \eta)$).

Paul Skoufranis (YorkU)

• The full Fock space associated to B and η is

$$\mathcal{F}_{\eta}(B) = L_2(B, au) \oplus \left(\bigoplus_{n \geq 1} \mathcal{H}(B, \eta)^{\otimes_B n} \right)$$

• The left η -creation operator L is given by

$$L(\xi_1 \otimes \cdots \otimes \xi_n) = (1 \otimes 1) \otimes \xi_1 \otimes \cdots \otimes \xi_n.$$

- L is bounded and $L^*bL = \eta(b)$.
- Let X = L + L*. Then E(XbX) = η(b). We call X the η-semicircular operator.
- It can be shown that $J(X : B, \eta) = X$.

Fisher Information and Entropy

Let $X_1, \ldots, X_n \in \mathfrak{M}$ be self-adjoint and let $B_j = B[\{X_1, \ldots, X_n\} \setminus \{X_j\}].$

Definition (Shlyakhtenko; 1998)

The relative free Fisher information of X_1, \ldots, X_n with respect to (B, η) is

$$\Phi^*(X_1,\ldots,X_n:B,\eta)=\sum_{1\leq k\leq n}\|J(X_j:B_j,\eta)\|^2_{L_2(\mathfrak{M},\tau)}$$

and relative free entropy of X_1, \ldots, X_n with respect to (B, η) is

$$\chi^*(X_1,\ldots,X_n:B,\eta) = \frac{1}{2}\ln(2\pi e) + \frac{1}{2}\int_0^\infty \left(\frac{n\tau(\eta(1))}{1+t} - g(t)\right) dt$$

where

$$g(t) = \Phi^*\left(X_1 + \sqrt{t}S_1, \ldots, X_n + \sqrt{t}S_n : B, \eta\right)$$

where S_1, \ldots, S_n are η -semicircular operators such that $\{X_1, \ldots, X_n\}$, $\{S_1\}, \ldots, \{S_n\}$ are free with amalgamation over B.

Paul Skoufranis (YorkU)

Bi-Free Entropy with CP Maps

Definition (Shlyakhtenko; 1998)

Let $\mu: B \to B$ be another normal, self-adjoint, completely positive map. The *free Fisher information* $\Phi^*(\mu:\eta)$ is defined to be equal to $\Phi^*(X:B,\eta)$ where X is a μ -semicircular operator over B.

Theorem (Shlyakhtenko; 1998)

If A is a subfactor of B with finite Jones index [B : A] and $E : B \to A$ is the unique trace-preserving conditional expectation onto A, then $\Phi^*(E : B, id) = [B : A].$

Theorem (Nica, Shlyakhtenko, Spicher; 1999)

If ν is a probability measure with compact support on $[0, \infty)$ and μ is the symmetric probability measure on \mathbb{R} defined such that $\mu(U) = \nu(U^2)$ for every symmetric Borel set $U \subseteq \mathbb{R}$, then

 $\min\{\Phi^*(a, a^*) \mid a^*a \text{ has distribution } \nu\} = 2\Phi^*(\mu)$

and the minimum is attained when a is R-diagonal.

Moreover, working in $M_d(\mathfrak{M})$ with respect to $\operatorname{tr}_d \circ \tau_d$,

$$\max\left\{\chi^*(\{a_{i,j}, a_{i,j}^*\}_{i,j=1}^d) \middle| \begin{array}{c} A = [a_{i,j}] \in M_d(\mathfrak{M}) \text{ is such} \\ \text{that } A^*A \text{ has distribution } \nu \end{array}\right\} = 2d^2\left(\chi^*(\mu) - \frac{1}{2}\ln(d)\right)$$

and the maximum is obtained if A is R-diagonal and $\{A, A^*\}$ is free from $M_d(\mathbb{C})$ in $M_d(\mathfrak{M})$.

Paul Skoufranis (YorkU)

The notions of conjugate variables, Fisher information, and entropy in the case $B = \mathbb{C}$ were extended to the bi-free setting (i.e. a notion of independence for pairs of algebras with actions on the left and right) in [Charlesworth, Skouf.; 2020].

Diagrams for Bi-Free Entropy

If $\xi = \mathcal{J}(X : B)$, then

 $\tau(Xb_1Xb_2X\xi) = \tau(b_1Xb_2X) + \tau(Xb_1)\tau(b_2X) + \tau(Xb_1Xb_2).$

Diagrams for Bi-Free Entropy

If $\xi = \mathcal{J}(X : B)$, then

 $\tau(Xb_1Xb_2X\xi) = \tau(b_1Xb_2X) + \tau(Xb_1)\tau(b_2X) + \tau(Xb_1Xb_2).$

Paul Skoufranis (YorkU)

Definition (Charlesworth, Nelson, Skouf.; 2015)

For a unital algebra *B*, a *B-B-non-commutative probability space* is a triple (A, E, ε) where *A* is a unital *-algebra, $\varepsilon : B \otimes B^{\mathrm{op}} \to A$ is a unital *-homomorphism such that the restrictions $\varepsilon|_{B \otimes 1_B}$ and $\varepsilon|_{1_B \otimes B^{\mathrm{op}}}$ are both injective, and $E : A \to B$ is a unital linear map that such that

$$E(\varepsilon(b_1 \otimes b_2)a) = b_1E(a)b_2$$
 and $E(a\varepsilon(b \otimes 1_B)) = E(a\varepsilon(1_B \otimes b)),$

for all $b, b_1, b_2 \in B$ and $a \in A$. The unital *-algebras

$$A_\ell = \{ a \in A \ | \ a\varepsilon(1_B \otimes b) = \varepsilon(1_B \otimes b) a \text{ for all } b \in B \}$$

and

$$A_r = \{a \in A \mid a\varepsilon(b \otimes 1_B) = \varepsilon(b \otimes 1_B)a \text{ for all } b \in B\}.$$

are called *left and right algebras of A* respectively.

Paul Skoufranis (YorkU)

Bi-Free Entropy with CP Maps

Structures for Operator-Valued Bi-Free Probability

Definition (Katsimpas, Skouf.; 2021)

Given a unital *-algebra *B*, an *analytical B-B-non-commutative probability* space consists of a tuple $(A, E, \varepsilon, \tau)$ such that

- (A, E, ε) is a *B*-*B*-non-commutative probability space,
- $\tau : A \to \mathbb{C}$ is a state (i.e. unital and positive) that is compatible with E; that is,

$$\tau(\mathsf{a}) = \tau\left(\varepsilon(\mathsf{E}(\mathsf{a})\otimes 1_B)\right) = \tau\left(\varepsilon(1_B\otimes \mathsf{E}(\mathsf{a}))\right)$$

for all $a \in A$,

- the canonical state $\tau_B : B \to \mathbb{C}$ defined by $\tau_B(b) = \tau(\varepsilon(b \otimes 1_B))$ for all $b \in B$ is tracial,
- left multiplication of A on A/N_{τ} are bounded linear operators and thus extend to bounded linear operators on $L_2(A, \tau)$, and

Structures for Operator-Valued Bi-Free Probability

Definition (Katsimpas, Skouf.; 2021)

Given a unital *-algebra *B*, an *analytical B-B-non-commutative probability* space consists of a tuple $(A, E, \varepsilon, \tau)$ such that

- (A, E, ε) is a *B*-*B*-non-commutative probability space,
- $\tau : A \to \mathbb{C}$ is a state (i.e. unital and positive) that is compatible with E; that is,

$$\tau(\mathsf{a}) = \tau\left(\varepsilon(\mathsf{E}(\mathsf{a})\otimes 1_B)\right) = \tau\left(\varepsilon(1_B\otimes \mathsf{E}(\mathsf{a}))\right)$$

for all $a \in A$,

- the canonical state $\tau_B : B \to \mathbb{C}$ defined by $\tau_B(b) = \tau(\varepsilon(b \otimes 1_B))$ for all $b \in B$ is tracial,
- left multiplication of A on A/N_{τ} are bounded linear operators and thus extend to bounded linear operators on $L_2(A, \tau)$, and
- $E|_{A_{\ell}}$ and $E|_{A_r}$ are completely positive.

Example

Let (\mathfrak{M}, τ) be a tracial von Neumann algebra, B a unital von Neumann subalgebra of \mathfrak{M} , and A the algebra generated the left and right actions of \mathfrak{M} on $L_2(\mathfrak{M}, \tau)$. If $P : L_2(\mathfrak{M}, \tau) \to L_2(B, \tau)$ is the orthogonal projection, $E : A \to B$ is defined by

$$E(Z) = P(Z1_{\mathfrak{M}})$$

and $\tau_A : A \to \mathbb{C}$ is defined by

$$\tau_{\mathcal{A}}(T) = \langle T1_{\mathfrak{M}}, 1_{\mathfrak{M}} \rangle_{L_{2}(\mathfrak{M}, \tau)}$$

then $(A, E, \varepsilon, \tau)$ is an analytical *B*-*B*-non-commutative probability space.

Examples of Operator-Valued Structures

Example

Let \mathcal{A} and B be unital C*-algebras, $\varphi : \mathcal{A} \to \mathbb{C}$ a state, $A = \mathcal{A} \otimes B \otimes B^{\mathrm{op}}$, $E : A \to B$ defined by

$$E(Z \otimes b_1 \otimes b_2) = \varphi(Z)b_1b_2,$$

and $\tau_B : B \to \mathbb{C}$ a tracial state. Then $(A, E, \varepsilon, \tau)$ is an analytical *B-B*-non-commutative probability space.

Theorem (Skouf.; 2016)

Let (\mathcal{A}, φ) be a non-commutative probability space and let $\{(C_k, D_k)\}_{k \in K}$ be bi-freely independence pairs of algebras in (\mathcal{A}, φ) . Then

$$\{(C_k \otimes B \otimes 1_B, D_k \otimes 1_B \otimes B^{\mathrm{op}})\}_{k \in K}$$

are bi-free with amalgamation over B with respect to E.

Paul Skoufranis (YorkU)

Bi-Free Entropy with CP Maps

Definition (Katsimpas, Skouf.; 2021)

In an analytic *B*-*B*-non-commutative probability space $(A, E, \varepsilon, \tau)$, let (C_{ℓ}, C_r) be a pair of *B*-algebras in *A*, $X \in A_{\ell}$, and $\eta : B \to B$ a completely positive map. An element

$$\xi \in \overline{\operatorname{alg}(X, C_{\ell}, C_{r})} \in L_{2}(A, \tau)$$

is said to be the *left bi-free conjugate variable relations for* X with respect to η and τ in the presence of (C_{ℓ}, C_r) , denoted $J_{\ell}(X : (C_{\ell}, C_r), \eta)$, if

Bi-Free Conjugate Variables via Diagrams

Matricial Constructions for Max/Min

- (\mathcal{A}, φ) a C*-non-commutative probability space.
- $x, y \in A$ such that x^*x and xx^* have the same distribution and y^*y and yy^* have the same distribution.
- $A_2 = \mathcal{A} \otimes M_2(\mathbb{C}) \otimes M_2(\mathbb{C})^{\mathrm{op}}$
- $\tau_2: A_2 \to \mathbb{C}$ by $\tau_2(T \otimes b_1 \otimes b_2) = \varphi(T) \operatorname{tr}_2(b_1 b_2).$

•
$$X = x \otimes E_{1,2} \otimes I_2 + x^* \otimes E_{2,1} \otimes I_2$$
.

•
$$Y = y \otimes I_2 \otimes E_{1,2} + y^* \otimes I_2 \otimes E_{2,1}$$
.

- The joint moments of X and Y are 0 if of odd length and otherwise are the average of the φ-moment of a χ-alternating series of {x, y} and {x*, y*}, and the series obtained via x ↔ x* and y ↔ y*.
- $\Delta_{X,Y}$ all (x_0, y_0) that produce X_0 and Y_0 with the same distribution as X and Y.
- if {x, x*} commutes with {y, y*}, X and Y commute and produce a distribution on ℝ².

Min/Max Bi-Free Fisher Information and Entropy

Theorem (Katsimpas, Skouf.; 2021)

Using the above notation

 $\min \left\{ \Phi^*(\{x_0, x_0^*\} \sqcup \{y_0, y_0^*\} : (\mathbb{C}, \mathbb{C}), \varphi) \, | \, (x_0, y_0) \in \Delta_{X, Y} \right\} \ge 2\Phi^*(X \sqcup Y)$

and equality holds and is achieved for any pair (x_0, y_0) that is alternating adjoint flipping and bi-R-diagonal.

Theorem (Katsimpas, Skouf.; 2021)

Using the above notation

$$\chi^*(\{x, x^*\} \sqcup \{y, y^*\}) \le 2\chi^*(X \sqcup Y)$$

and equality holds whenever the pair (x, y) is bi-R-diagonal and alternating adjoint flipping.

Thanks for Listening!